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The Continuity of the Rearrangement in W1,p(R)

J. M. CORON

1. - Introduction.

Let, in the following, p be a real number such that 1  p  + oo. Let
be a nonnegative function of Let u* be the rearrangement of u,
that is the unique function u* which is even, nonincreasing on [0, + oo]
and such that:

forallYER (meas A stands for
the Lebesgue measure of A).

We know (see, for example [1] appendix 1, [2], [3], [4] p. 154, [5], [6],
[7] and [8]) that ’U* is in and:

Let be the set of nonnegative functions of the weak and

the strong topologies of induce two topologies on we shall

also call them weak and strong topologies respectively.
Let c be a positive real number and let:

The purpose of this article is to prove the following theorem:

THEOREM. Øc is weakly l.s.c. if and only i f c c 1 /2p.

COROLLARY. The rearrangement is a continuous mapping from 
into W¡’P(R) f or the strong topologies.

Pervenuto alla Redazione il 27 Dicembre 1982 ed in forma definitiva il

27 Aprile 1983.
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PROOF OF COROLLARY. Let in W1,2&#x3E;(R). ·
Since the rearrangement is a continuous mapping from the set of non-

negative functions of L"(R) into L"(R) (see appendix 0) we have:

Therefore using (1), we have u* - u* in W1,P(R) weakly. Let c E (o, 1/2p].

But

hence

and therefore (since 1  p  + oo u* in 

The proof of the theorem will be divided in two parts.
In part A we assume that c1/21’ and we prove that 0, is weakly l.s.c..

In part B we assume that c &#x3E; and we construct a sequence un such

that un - u in and 0,(u) &#x3E; lim 

I thank H. Brezis, T. Gallouet, E. Lieb and L. Nirenberg who initiate
this work.

2. - Proof of the theorem.

Part A. Here we assume that c c 1/2~ and we prove that 0, is weakly
l.s.c. Let f E we shall use the following notation

Let un be a sequence of functions in such that
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If u = 0, we have:

Therefore we may assume that ’it =1= 0.
Let v be in and let:

TT(v) = {y E Rj there exists x in such that either v is not dif-

ferentiable in x or v is derivable in x and v’(x) = 01.

One can prove (see appendix 1) that V~(v) is negligible for the Lebesgue meas-
ure (this is a little modification of Sard’s theorem). Let n &#x3E; 0; since 
is negligible, there exist m and M, real numbers, such that

and if

we have:

Let:

~ and un are in W~2)(R) and:

For the moment being let us assume that:

we have:
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Using (4), (1) and (5), this yields

and the theorem is proved.
It remains to prove (5); without any restriction we may assume that

Let 8 = (e1’ ..., Er) be a sequence of r strictly positive numbers (r depends
on 8) such that:

Let

We are going to define by induction a finite sequence of real numbers. Let

(it is easy to see that a1 exists). Assume that a,-i is defined. Either:

then we stop here the sequence ai; we have = 0 and:

or:

then we let:

We are going to prove that the sequence ai has only a finite number of terms.
Let
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We have

but

with

therefore:

Let b = Sup and

then using (6) and (7) we see that the sequence (ai) has only a finite number
of terms. Let 1 be the number of terms of the sequence With ~ and the

sequence tti we are going to define a new function in PeU as follows:

- then we let:

- or u(ai) &#x3E; u(ai+1) then we let:

It is easy to see that PeU is a continuous function; using appendix 2 we
see that and
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Thus l’el1 E and

We are now going to define a" and 
Let 30 be such that

let

ai exists for n large enough and, I always for n large enough,

Let us assume that is defined.

Either:

then we stop here the sequence an we have 6, and for n large
enough (i.e. if U-n(all + 6,1)  m) :

or: o

and then we set

In the same way as for the sequence aa, one can prove that the sequence a)
has only a finite number of terms and we define PeU from and ;a-.
in the same way we have defined PeU from and u. Let us remark that:

and
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We are going to prove :

(9) in when 

(10) - (11)* in when ~E~ --~ 0

( 11 ) 

(12) If A(E) m V(~) = 0 then :

Before proving (9), (10), (11) and (12) we are going to explain how from (9),
(1~0), (11) and (12) we can deduce (5). Let y &#x3E; 0; since V(u) is negligible,
from (9) and (10) we deduce that there exists a sequence s = 

of strictly positive numbers with such that

and:

Using (11) and (12) we have:

We use (13) and (14); we obtain

which establishes (5).
It remains to prove (9), (10), (11), (12).

PROOF oF (9). (8) yields:

But there exists a in R such that

Then we have:
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From (15) and (16) it follows that -M is bounded in But it is

easy to see that:

Then using (15) we have (9).

PROOF of (10). Since the rearrangement is a continuous mapping from
the set of nonnegative functions of into Lp(R) it follows from (9)
and (1) that (since 301supp c [- c, c]) :

We are going to prove that:

Clearly (10) follows from (17) and (18).
Let Ek with lekl 2013~0 + oo.
Let

We have (see appendix 3):

v

We are going to prove:

(21) there exists a function h of M)) such that

Clearly (18) follows from (19), (20), (21) and (22).
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PROOF OF (21) AND (22). Let

[0, M] - C is negligible. Let y E C. Using appendix 4 we see that vk is dif-
ferentiable in y and:

(remark: since is a finite set)
Then, using the convexity of t1-P we have

Let

On [ai, ~+1] uk is monotone; let 0: be the unique function from

ai+1J) r’1 C into [ai, such that :

We have:

Then it is easy to see that hk is a measurable function and that

but (;Wk) - u’ I in .Lp(lEg) when 1~ --~ + 00, and thus

Using Fatou’s lemma we obtain
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Let

We are going to prove that

and if x E then = 

(26) if y E C, for k sufficiently large we have

Before proving (25) and (26) we are going to deduce (21) and (22) from (25)
and (26).

Using (25) we have:

Using (25) and (26) hk(y) -~ h(y) (k -~ + 00) Vy E C.
Using (24)

11

which gives (20). 
(22) follows from (25), (26) and appendix 4.

PROOF oF (25). Let x be in ai  x  aa+1; let us assume that,
for example, u(ai)  u(ai+1) (the proof in the case u(ai) &#x3E; u(ai+l) would be
nearly the same).

Let z be in [ai, ai+,]

We have uk(x»u(x); but if uk(x) &#x3E; u(x) it is easy to see that (uk)’(x) = 0
in contradiction withy E C therefore ük(x) = ü(x). We recall that Ft and 7u-k

are differentiable in x (since y e C). Let 1 &#x3E; 0 with x -f- i  

therefore
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Let

Hence:

From (27) and (28) we deduce

Thus (25) is proved.

PROOF oF (26). Let and x c- ~9-1(y); we are going to prove that
if k is sufficiently large then x E (~Wk)-l(y). Since 7u--’(y) is a finite set this

will prove (26). u is derivable in x and 7u-’(x) 0 0 (since y E C). Let us

assume that for example &#x3E; 0 (the proof in the case i~’ (x)  0 would be

nearly the same). Let q &#x3E; 0 such that:

Let

Let us assume that

Let af be the sequence used for definition of uk (see above definition of ai).
It is easy to see, using (29), y that if

then
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Then

and

(26) is proved, and so (10) is proved.

PROOF OF (11). Now E is fixed.
Using (15) with Un instead of li§ we have

Let

Let D = ]0, m[ - (V(un) U [0, m]BD is negligible. Using
Appendix 3, we know that, if YED, then Vn and wn are differentiable in y a,nd :

But (see the proof of (25))

and if x EE we have (ic~.)’(x) = therefore

But (see appendix 3):

and

Then (11) follows from (30).



69

PROOF OF (12). First we show that:

PROOF OF (31). We have = m and

We extract from the sequence a’ , a convergent subsequence, (we shall also
note such that:

We have u(b) = m.
Since m 0 V(u), Vb &#x3E; 0 there exists x such that

Hence

But u(a,) = m and m 0 V(u) then, Vb &#x3E; 0, there exists x’ such that:

and

We have:

Thus for n sufficiently large

and therefore (if 6  6,,): 1

Then:

Clearly (31) follows from (32) and (33).
Let 1. be the number of terms of sequence a~2 .
We assume that:

Using the arguments of the Proof of (32) it is easy to prove that there exists no
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such that

and

and, then, there exists n, such that:

Let x be a real number with a« z a+i; for n sufficiently large,

Now using the definitions of Peun and PeU it is easy to see that:

and the same method yields: if x &#x3E; a1 or x  a1 then:

for n sufficiently large but (see (15) instead of u) is bounded

in (Let us recall that 
Then :

For i E [1, 1] and y in Wl,P(R), let be the function of defined by:

with the convention Eo = 0. We have:

and

Then using appendix 3 we see that (19) follows from the following lemma:
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LEMMA. Let T and L be two positive real numbers; let k be a positive integer
and (al,,X2, ..., a~) be a sequence of elements in (W1,P((0, that for
each i in [1, k] :

an is nondecreasing

Let

Then

PROOF OF THE LEMMA. Let mn be the unique positive Radon measure
on [0, ~L] such that:

Let mi be the unique positive Radon measure on [0, ..L] such that:

Let 99 be a continuous function from [0, L] into R; we have:

Since an in W1,V( (0, T)), - dx E [0, T].
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Hence

and:

But

where vn and dy are mutually singular, and, vi and dy are mutually sin-
gular. Therefore the lemma follows from appendix 6.

Part B. Here we assume that c &#x3E; 1/2~ and we construct a sequence un
such that u. - u in and 0,(u) &#x3E; lim 

It follows from appendix 5 that there exist four real numbers t1, t2, SIY s2
such that:

and:

Let dn and en be the functions from ]0, 1] into R defined by:

for x in ]0,1] with kj2n  + 1)j2n where k is an integer we set :

- when k is odd: dn(y) = si, en(y) = - tl

- when k is even: dn(y) = S2, en(y) = - t2.

Let
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We have

and

We are going to define un:

s2)/2 let = 0

when (Sl + S2) /2 let un(x) be the only real number such that

when - (t1--f- t2)/2  x  0 let be the only real number such that

when x  - (tl -~- t2)/2 let un(x) = 0.

It is easy, using (35), to prove that:

with

We have

Then u. is bounded in and using (36)
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An easy computation gives:

Using (34), (37), (38), (39) and (40) we have

Appendix 0.

Let L) (R) be the set of nonnegative functions of L"(R). Then we have
the following (for 1  p  + 00).

PROPOSITION. The rearrangement is a continuous mapping from L" (R)
into L) (R) (for the strong topologies).

PROOF. First we recall that, I if u E L" + (R), u* E .L+ (R) and:

(see [5]).
Let be a sequence of functions of L) (R) such that

We are going to prove that

Obviously we may assume that

and
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Let f n, f and g be the following functions

Then f n - f a.e., g E L1(R), f n c g a.e.
Therefore

Thus

Then the proposition follows easily from the definition of un and u*, from:

and

Appendix 1.

Let u be an absolutely continuous function from R into R. Let

V’(0) = (y[ I there exists x in R such that u(x) = y and either a is not

derivable in x is derivable in x and = 0}.
Then;

(41) V(u) is negligible (for the Lebesgue measure).

PROOF. Let A be a measurable set; we are going to prove that:

where

is an open set of R such that

(Â is the Lebesgue measure).
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Property (41) follows easily from (42) by taking

A = is not derivable in x~ is derivable in x and u’(x) = 0}.

Let 8 &#x3E; 0. There exists 77 &#x3E; 0 such that:

(43) for any measurable set E such that ~,(E)  ~ then 
E

There exist two sequences of real numbers such that

and:

Clearly

but

we use (43) and (44):

Hence (42) follows.

Appendix 2.

Let u be in W1,P( (0, T)~ ; let

then:
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PROOF OF (45).

(45) is of course true when u is a polynomial function; let un be a sequence
of polynomial functions such that:

Let

We have

Using (45) for vn we have

Then Vn is bounded in T)) ; using (46) we have:

Let x be a point of (0, T) such that v and u are differentiable in x. We are
going to prove that:

This will prove (45).
Note that since v is nondecreasing, ~(~);&#x3E;0; if v’ (x) = 0 (47) is of course true.
Now let us assume that v’(x) &#x3E; 0. We shall prove that v(x) = ~c(x). Clearly

Assume by contradiction that v(x) &#x3E; ~(x) ; then there exists

8 &#x3E; 0 such that

and

Therefore

and so v’ (x) = 0.
A contradiction with v’ (x) &#x3E; 0.

We have proved that v(x) = u(x). Since v&#x3E;u and v(x) = u(x), we
have (47).



78

Appendix 3.

This appendix is due to T. Gallouet.
Let u be a nondecreasing function in T)) such that u(0) = 0

and u(T) = Z.
Let v the function from [0, L] into [- T, 0] defined by

v is a nondecreasing function and then derivable a.e. with w’ &#x3E; 0. Let l/v’
be the function from [0, .~] into R defined by:

v is differentiable in y with v’(y) =A 0

elsewhere (a E R+ a is fixed) .

Then we have:

PROOF OF (48). We have

Then 
’

and therefore:

Since u is absolutely continuous and nondecreasing, we have:

Let x be in ]0, T[ such that u is derivable in x with u’ (x) ~ 0.
We have:

Let y = u(x) and h be such that y + h and y - h are in (0, T). Using (50)
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we have:

but using (49) and (52) it is easy to see that

Then v is differentiable in y and v’(y) = 1/u’(x) =1= 0. Then using (~1) we
have (48).

Appendix 4.

Let let:

V(u) and y E u(R) then v is derivable in y and:

PROOF OF (53). First we remark that, since V(u), has only a
finite number of elements. On the other hand the number of elements of

u-1 (y) is even since u - 0 at infinity. For simplicity we shall assume that
has only two elements si, x, with Xl  x2 and we shall prove only the

right-differentiability. We have u’ (xl) &#x3E; 0, u’ (x2)  0.

Let k &#x3E; 0 be such that u-1 (y + k) 5~ 0 (if k is sufficiently small + k) # 
Let

We have

and

Therefore + k~ cx2(l~) - xl(k).
We have
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with

Thus:

Therefore

Let

is well defined if k is sufficiently small).
We have

It is easy to see that if k is sufficiently small,

We have

as before we prove that

and we have:

Thus we have

Using (54) and (55) we have
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Appendix 5.

Let d be a real number and let

Then if 99 is convex and l.s.c. If d &#x3E; 1 and n = 2 (p is not convex on (R+*)".

PROOF, 1 ) n = 2.

99 is C°° on (R+* )2 . Let xl &#x3E; 0, x2 &#x3E; 0 we have :

Thus, if is convex (and continuous) on (~+=~ ) 2 ; if d &#x3E; 1 there exists

x2) E (R+* )2 such that

and therefore 99 is not convex on (R+* )2. We assume now is convex

on (R+* )2 and tllen cp is convex on R 2. Iy is easy to see that cp is l.s.c. in
(xl, X2) if (Xl’ X2) 0 (0, 0). It remains to prove that cp is l.s.c. in (0, 0).
We have


