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Hypoelliptic and Gevrey Hypoelliptic Invariant
Differential Operators on Certain Symmetric Spaces.

PAUL GODIN

0. - Summary.

In this paper we find a necessary condition for the hypoellipticity of
invariant differential operators on a Riemannian symmetric space G/K of
the noncompact type. We prove that this necessary condition is also suffi-
cient in the following cases: when G has a complex structure, when G is
the product of real rank one groups, or when a tranversality condition is
satisfied. We obtain analogous results with hypoellipticity replaced by
Gevrey hypoellipticity.

1. - Introduction.

A differential operator P on a C°° paracompact manifold X is called
hypoelliptic if for each distribution U E Ð’(X), u and Pu have the same
singular support. If X is analytic and s &#x3E; 1, P is said to be Gevrey hypoel-
liptic of class s if u and Pu have the same Gevrey singular support of class s
for each u E D(X). Here the Gevrey singular support of class s of v E 0’(X)
is the complement of the largest open set where v belongs to the s-th Gevrey
class G s .

If X is an open subset of Rn, Hormander has characterized hypoelliptic
and Gevrey hypoelliptic differential operators with constant coefficients

on X in terms of their symbol (see [12]; [13], chapter IV). The symbol
p($), $c-Rn, of a differential operator P(D) with constant coefficients on
X c R, is defined by P(D0153) (eiX,t;) ) = p ($) e,x,", where x E X, D = (Dl’ ..., Dn ),

Pervenuto alla Redazione il 16 Febbraio 1981.
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and

Then Hormander’s condition for

hypoellipticity can be written

and Hormander’s condition for Gevrey hypoellipticity of class s is

for some C &#x3E; 0 independent of $, when $ is large enough.
In this paper we shall study regularity properties of solutions of invariant

differential equations on Riemannian symmetric spaces of the noncompact
type, that is on coset spaces X = G/.g, where G is a connected Don compact
semisimple Lie group with finite center and g is a maximal compact sub-
group of G. There is an action 7: of G on X defined by the formula z(g)(hg) _
= (gh) g if g, h E G. By « invariant differential operators» we mean those
who have complex coefficients and are r-invariant. As shown in [4], they
form a commutative algebra which we shall denote by D(X). Helgason [6]
(resp. [11]) has proved that any non zero P E D(X) is locally solvable (resp.
is surjective from C°°(X) to C°°(X)).
A function E C’(X) is called spherical if

is an eigenvector of Q.

Harish-Chandra [3] determined all the spherical functions of X. If

G _ KAN is an Iwasawa decomposition of G, he proved that they can
be parametrized by a* (the complexified space of the dual a* of the Lie
algebra a of A ) when one associates with C E a* the spherical function

Here we have to explain the notation in the right-hand side: dk is the

Haar measure on K with total measure equal to 1, f2 = § z ma a is the half
(XEE+

sum of the positive restricted roots a (counted with their multiplicity mj
relative to the choice of a positive Weyl chamber, and H: G - a is defined
by exp H(g) = a if g = kan is an Iwasawa decomposition of G. Two sphe-
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rical functions 99, and gg,. are equal if and only if 03B6’= gC for some element 8
of the Weyl group W (see [3] and [4] chapter X).

With P E D(X) we may associate a complex polynomial p on a, W-inva-
riant, by the formula Pgg, = p(;) cp(03BE) (see for example [4], chapter X, where
p(03BE) is denoted by T’(P)(i03BE)).

The purpose of our paper is to study relations between the hypoellip-
ticity (resp. Gevrey hypoellipticity of class s) of .P’ and condition (A) (resp.
(As)) imposed on p. This paper is divided into three sections.

In section I we prove some useful properties of the polynomial p.
Section II is devoted to the study of hypoellipticity. In II.1, we prove

that p satisfies (A) if P is hypoelliptic.
To study the sufficiency of (A) for hypoellipticity, we construct in IL2 ac

parametrix i3 of P, which is the  convolution &#x3E;&#x3E; by some T E Ð’(X). When G
is complex, we show in 11.3 that (A) implies hypoellipticity. In IL4 it is

proved that T is smooth in X’ when (A) is fulfilled. Here X’ is the set of

regular points of X. The method of 11.4 is then used in 11.5 to show that
(A) implies hypoellipticity when G is a product of real rank one groups.
In 11.6, we consider T as the pullback of a distribution on a and introduce a
transversality condition (condition (B)). We show that when (A) is ful-

filled, T is smooth in a neighbourhood of each point where (B) is satisfied.
Therefore P is hypoelliptic if (B) is satisfied at each point of Xg(X’W {K}).
(Here K denotes the origin of GIK) (1). We end 11.6 by presenting some
examples.

Section III, which parallels section II, is devoted to the study of Gevrey
hypoellipticity. In IIr.I, we prove that (A8) is a necessary condition for

Gevrey hypoellipticity of class s. In III.2, y we reduce the problem of suf-
ficiency of (A8) to the study of T. The sufficiency of (As) is proved in III.3
when G is complex and in m.5 when G is a product of real rank one groups.
In III.4, we prove that T E Gs(X’) if p satisfies (As). In IEEI.6, we introduce
condition (B,). When it is fulfilled at each point of XB(X’u {K}), P is
Gevrey hypoelliptic of class s as soon as p satisfies (As). Examples are
given to conclude paragraph 111.6.

This paper makes use of the theory of Riemannian symmetric spaces
and of the theory of hypoelliptic differential equations with constant coef-
ficients in Rn. For all unexplained notions on the first topic we refer to

[4], [5]; see also the beginning of [6], [8] and [10]. For the second topic
we refer to [13]. 

’

(1 ) Added in proof: After this paper was written, Professor J. J. Duistermaat

pointed out to me that the use of Abel transform allows to eliminate the transver-
sality hypothesis.
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I. - Some properties of the polynomial p.

In this section we collect some properties of p which we shall need in
the sequel. First we recall some well known facts (see [4], chapter X).

Denote by D(G) the algebra of left invariant differential operators with
complex coefficients on G. Let DK(G) be the subalgebra consisting of those
operators of D(G) which are also right invariant under K. If n: G - X

GIK is the canonical projection, there is a homomorphism p: DK(G) -+
- D(X) given by the formula (I"(Q) f) on = Q(fon) if Q e DK(G) and f e OCO(X).
If f is the Lie algebra of K, the kernel of ,u is equal to DK(G) r1 D(G) f. On
the other hand, if l(a,) is the algebra of complex polynomials on a which
are invariant under the Weyl group, there is a canonical homomorphism
v: DK(G) --&#x3E;’(a,) with kernel DK(G) n D(G)f. From p and v we get a ca-
nonical isomorphism of algebras F: D(X) -+ I(ac) such that Pq;l;== (r(p)(i))ffJl;
if P E D(X). As said in the introduction, we put p($) == -V(P)(i$).

If P E D(X), denote by ord P the order of P (as a differential operator)
and by deg p the degree of p (as a polynomial). Then the following holds:

LEMMA I.1. Ord P = deg p.

PROOF. (a) Let A+ be a positive Weyl chamber in A. We can define
the radial part rad (P) of P in A + . o. (We shall often denote by g .o the
point g{K} of X = GIK). rad (P) is the unique differential operator on
A +.0 such that P f I A+. o = rad (P) (fIA+oo) if f E C’(X) is K-invariant, where
IA+-o means restriction to A+ . o (see [3] or [9] chapter II).

Furthermore rad (P) = e-e r(p) ee + lower order terms, ([9], chapter II,
prop. 1.5), where e is as in the introduction half the sum of the positive
restricted roots with multiplicity. (Here of course we have identified the
polynomial e-er(P)ee with the differential operator on A it defines). This

equality shows that deg p = ord rad (P), which in turn is not larger than
ord P.

(b) Let g be the Lie algebra of G and p the orthogonal complement
of f in g, with respect to the Killing form, so that a is a maximal abelian
subspace of p. Denote by l(p,,) the algebra of complex AdG(g)-invariant
polynomials on p. Using the Killing form which allows to identify a and a*
(resp. p and p*) , we may consider elements of l(a,) (resp. l(p,)) as polynomial
functions on a (resp. p). Then the Chevalley isomorphism theorem ([3];
[4], chapter X) implies that any p E I(aJ has a unique extension to an
element p c- l(p,). Denote by A: l(p,) --&#x3E; DK(G) the symmetrization map
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defined by where J runs over the group of

all permutations of the set {1, ..., rl. We are going to show the following:

r-1(p) and pa(fo) have the same order equal to deg p and the same
principal part.

We prove (1) by induction on deg p which we denote by d. If d = 0,
(1) is clear, so we suppose that (1) is true for d c s and we prove it when
d = s + 1. By Lemma 6.12 of [4], chapter X, v2(j)) - p is of degree less
than or equal to s ; hence the induction hypothesis shows that ord r-1(y Â(p) -
- p) cs. But -P--l (,y2(p) - p) = p2(,Z) - F--I(p); furthermore ord IZ2(,Z) 
 deg Z = deg p = s + 1; and ordr-1(p»degp by part (a) of the lemma.
This proves (1) and completes the proof of the lemma.

In fact we can be more precise. Let P E D(X) be of order m and write
p = I pm-j , where Pm-j E l(a,) is homogeneous of degree m - j. Denote by

0 - i - m

a(P) the principal symbol of P in the usual sense of differential operators
theory; this means that a(P) is the function from T*XBO to C defined
by u(P)(z, $) = i-P(I-)(x)lm! I if f E CCO(X) vanishes at x and has a dif-

ferential at x equal to $. Denote by Exp the exponential map p - .X’ (that
is the composition of the exponential map of g restricted to p with the
canonical projection from G to X) and by 0. the canonical extension of pm
to an element of l(p,). Then we have:

where 0 denotes the origin of p.

PROOF. As noticed in the proof of lemma I.1, P and = zA(F(P))
have the same principal part. We are going to compute i-R(I-)(x)lm! t
when f E C’(X), f (x) = 0, df0153=;. Applying theorem 2.7 of [4], chapter X,
we see that R(f-)(x) = R’(f-or(g)oExp)(0), where R’ is the differential

operator on p defined as follows. Choose any basis ¥1’.’" Y, of p and
associate to the linear coordinates

(with the usual multi-indices notation) and
is defined by Note that ord

which by (1) is equal to m. Therefore I
The last expression is readily seen to be equal to

. The proof is complete.
In section III the following result will be useful:

LEMMA 1.3. For each C E a*, there exists p E I(ac) homogeneous and not
constant, such that p(C) =A 0.
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PROOF. Denote by S1’ ..., sr the elements of the Weyl group of a. They
act on a* by sE, H&#x3E; = ($, s-’H&#x3E;, $ E a*, g E a, and on a* by complex-
ification. If aj is the j-th elementary symmetric function in r indeterminates,
define fiE I(ac) by the formula where

I is such that 

are the r complex roots w of the equation
Therefore there must be rome j such

As explained in [4], chapter X, 9 6, I(a,) is finitely generated. Denote

by pl, ..., pl a set of not constant homogeneous elements of I(ac) which,
together with 1, generates -I(a,). Then we have the following obvious
consequences of lemma 1.3.

COROLLARY 1.1. If Q E a*, 0 there exists some j, 1 . j  1, such that p’(Q) # o.

COROLLARY 1.2. Put dj = deg pi and denote by "I any fixed norm in ci,*.
’I’hen there exists a strictly positive constant C such that, for all C E a::

II. - Hypoellipticity.

11.1. - The necessity of ( A ) .

In this section we are going to study operators P E D(X) for which the
corresponding p E I(ac) satisfies condition (A ) . Since p can be viewed as a

function on a*, the precise meaning of (A) is of course that p(cx)(03BE)/p(03BE) -&#x3E; 0

when ZJ+ 3 (X =F- 0 and $ - 00 (l = dim a), where pCcx) is computed in any
linear coordinate system ( E1, ... , El ) of a*.

Using the well known characterizations of polynomials satisfying (A)
(see [13], chapter IV and [17], chapter 7), it suffices to prove the following
theorem to show that p satisfies (A) if P e D(X) is hypoelliptic.

THEOREM 11.1.1. Let 8 be a not empty relatively compact open subset of X.
Assume that for each v E D’(S), Pv = 0 in 8 implies that v E 000(8). Then

the following holds: if C e a§ tends to 0o and satisfies p()) = 0, then Im i
tends to oo. (We write i = Re i + I Im ) ; Re F, Im ) e a*).

PROOF. The proof is similar to that of the corresponding theorem for
differential operators with constant coefficients in R". We equip N(S) _
= {v E Lt:c(8), Pv = O} with the topology induced by the usual topology
of L;;’(8). We have N(S) c 000(8). Denoting by 8’ an open subset of 8
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such that N’c S and by ( s, the restriction to S’, the mapping v i-* Evi.,
from N(S) to L’(S’) has a closed graph if .L denotes the Laplace operator
of X for the metric defined by the Killing form. Assuming, as we may,
that o E S’, the closed graph theorem implies that for some .F E COO(S) and
some positive constant C:

if v E N(S).
Now epCE N(S) if C E a: satisfies p (C) = 0. Furthermore corollary 2

of [3] implies that

where p = ! 2 ma a, as recalled in the introduction. We are using the fol-
tXe¿;+

lowing notation: if Â, p e a:, let HAE ao be determined by Â(H) = B(HA, H)
for all HE a, where B is the Killing form ; then we put (Â, 1"&#x3E; = B(HA, HI-,).
On the other hand,

Introducing (3) (resp. (4)) in the left-hand (resp. right-hand) side of (2),
we see that when p(C) = 0, Re C must remain bounded if Im C is bounded.
The proof is complete.

From theorem ][1.1.1 we can get some information about the real charac-
teristic points of P:

THEOREM 11.1.2. I f P c- D(X) is hypoelliptic and (r, $) E T*.XB0, then
Or(P)(x, $) = 0 implies that dl1(P)(x, $) = 0.

PROOF. By lemma 1.2, we have J(P) (g . o, $) = Pm(n), where q = $odc(g)oo
od Expo. So if u(P)(g . o, $) = 0, we have Pm(n) = 0. We are going to show
that dZ.(,q) = 0, which of course will imply that da(P) (g - o, e) = 0.

Denote by M the centralizer of a in jE" and by a+ a positive Weyl chamber
in a. Let 99: KIM x a+ --* p be defined by 99(kM, H) = AdG(k)H for k E .g
and H c a+ - 99 is a diffeomorphism onto a dense subset p’ of p (see [4],
chapter X). Put 99-1 (Y) = (x’( Y), xn( Y)) E KIM x a+ for Y E ,p’, and a’=
p’n a.

(a) Assume first that 77 c- p. We can find kEg such that 77’= AdG(k)rEa
Since = 0, we have pj?/) = 0 and so dp,,,(i7’) = 0 because pm
satisfies condition (A ) by theorem 11.1.1. Since in the coordinate system
(x’, x"), Pm is independent of x’, it is clear that dp.(77’) = 0, whence dZ.(,q) = 0.
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(b) Assume now that q E p%p’. If dp.(,q) =A 0, the set B = (q’e p,
Pm(n) == O:A dp.(27’)} is a manifold throughq of dimension equal to dim 1.
Furthermore E c pBp I, as we have seen in (a). But dim (p%p ’ )  dim p - 2
(see [4], chapter X). This contradiction proves the theorem.

REMARK 11.1.1. If X = GIK is a rank one symmetric space of the
noncompact type, equipped with the metric defined by the Killing form,
then every nonzero P E D(JP) is a nonzero polynomial I a;L’ with complex
coefficients a, in the Laplace operator .L of X ([4], chapter X). Formula

(3) shows that the corresponding p satisfies condition (A1), hence (As) for
all s &#x3E;:L and (A). On the other hand, P is an elliptic operator with analytic
coefficients on the analytic manifold X, hence it is hypoelliptic and Gevrey
hypoelliptic of class s for each s&#x3E;l. Therefore when rank .X’ is equal to 1,
(A) (resp. (As)) is necessary and sufficient for hypoellipticity (resp. Gevrey
hypoellipticity of class s).

REMARK 11.1.2. When rank &#x3E;2, we can always find non elliptic opera-
tors P E ID(.X) such that the corresponding p satisfies (A). In fact let

r E l(a,) be the polynomial of degree 2 associated with the Killing form B.
Let q E l(a,,) be real and not elliptic. For example, we may take q H Ix 2

aEE+

Theorem 4.1.9 of [13] shows that the polynomial p($) = q($)’ + r(E) km- x + 1
satisfies (A) if m = deg q and k is an integer larger than or equal to 2. It

suffices then to take P such that r(p)(ie) = p($). Since P2mk vanishes at

some nonzero vector of a*, lemma 1.2 shows that P cannot be elliptic.

11.2. - Construction of a parametrix of P when condition ( A ) is satisfied.

We shall need suitably normalized measures, the definition of which

we recall now. Let g = f + p be a Cartan decomposition of the Lie algebra g
of G, with Cartan involution 0. Let G = KAN be a corresponding Iwasawa
decomposition and denote by if the centralizer of a in K.

We define Haar measures dk, dm, da, dn, dg on K, M2 A2 N, G by the
following conditions: jdk = 1, jdm = 1, (2nyank X/2 da is the Euclidean

K M

measure induced by the Killing form, 0(dn) is the Haar measure dn on

N = 8 (N) normalized by

and

for each f E Co (G) if g = kan is the Iwasawa decomposition of g defined
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above. (If Y is a C°° manifold, we denote by Co (Y) the space of C°° func-
tions with compact support on Y). The G-invariant measure on G/g
induced by dg and dk will be denoted by dx. Finally the quotient B = Kf M
will be equipped with the K-invariant measure db of total measure one
induced by dk and dm.

Since G (resp. X) is equipped with a canonical positive 000 density dg
(resp. dx), we may view Ð’(G) (resp. D’(X)) as the dual of Co (G) (resp.
C§°(X)) in a canonical way.

Then if P_ E D(X) and T E :O’(X), PT is simply the map C§°(X) i f -
-&#x3E; T, tp/) e C, where tP denotes the adjoint of P with respect to dx.
We shall need some more notations (see [11]). If f E Co ( G) and S e

e D’(X), we put In(xK) === fl(xk) dk and 8(/) = S(ln). Then InE C§°(X) and
_ 

x

S e D’ (G) . If v e 6’ (X) and T e D’ (X) , we define v x T e D’ (X) by w X T,
F) = (lY * ’1’, p) if I’ e Co (,x), where * denotes the convolution on G.

To prove the hypoellipticity of P when condition (A ) is satisfied, we
shall try to construct a suitable T E D’(X) such that

where 6 is the Dirac mass at o.

With T we associate the continuous linear operator 13: C-(X) -+ C°° (X )
defined by i3v = v x T, i3 has an extension to a continuous linear operator
from 8’(.Z) to 0’(X) (with their weak topologies, say). Since P(v &#x3E;C T) _
- v &#x3E;C PT = Pv &#x3E;C T (see [11]), (5) implies that Pl3v = i3Pv = v + v x h,
where h = PT - 6 E C’(X). Hence i3 is a twosided parametrix of P.

The action of 13 on the singularities is given in the following lemma:

LEMMA 11.2.1. Assume that sing supp T c {o}. Then sing supp ’Gf c
c sing supp f for each f E 8’(X). 

°

PROOF. Assume that f is in Coo in a neighbourhood of g - o. If q; E C-(X)
is equal to 1 close to g.o and if y e Co (,X), we may write:

We choose ip with a small support; then yf E Co (.X’) and qi3yf E C°° (.X ) .
We take supp 99 small and y such that y = 1 in a neighbourhood of supp 99.
Then §5(g) (I - §J) (gy-1) = 0 if y E G and a(y) belongs to some narrow neigh-
bourhood of the origin. Therefore ql3(1 - V) f E Coo(X), which shows that
’Gf is in C°° in some neighbourhood of g. o. The proof is complete.

Classical arguments give easily:
COROLLARY IL2.1. I f T satis f ies (5) and i f sing supp T c {o}, then P is

hypoelliptic.
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To construct T satisfying (5), we shall use the Fourier transform on X,
for the study of which we refer for example to [10].

If x = g.o E X and b = kMeB, we put A(x, b) =-H(g-1k). Then the

Fourier transform Yu of u E C-(X) is defined for $ E a* and b E B by

(In [10], y Yu is denoted by 11, but we want to avoid a possible confusion
with the - operation introduced above).

There is a Fourier inversion formula:

where IWI is the order of the Weyl group W, c($) is the Harish-Chandra c
function, and (2nyankX/2 d$ is the Euclidean measure induced by the Killing
form on a*.

In the remainder of this paper we shall write 1;B2 for ;, $) if $ E a*.
Assume that p satisfies condition (A). Then for some R &#x3E; 0, we have
ip (E) I &#x3E; 1 if E &#x3E; B. Choose x E Ooo(a*), W-invariant, equal to 0 when )$) R
and equal to 1 when 1$1 &#x3E; 2B.

Hence (6) gives that :F(tpu)(F, b) === p( ) :Fu(, b). Therefore, an easy
computation using (6) and (7) shows that the distribution T, defined for

satisfies (5). The integral exists since, when $ -+ oo, :Fu(E, b) is rapidly
decreasing in $ uniformly in b and 1,0($)1-2 has polynomial growth (see
e.g. [10]).

11.3. - Study of T when G is complex.

If G = KA+ K is a Cartan decomposition of G, ([5], chapter IX), , each
g E G can be written g = k1 ak2, where k1, k2 E K and ac E A + . ac is uniquely
determined by g and we denote it by A+(g).
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Finally the mapping 93 defined on a by $(H) = B(H, H) is a polynomial
function on a, that is a polynomial on a*. We have

is the basis of a* dual to some B-orthonormal basis of a.

put

Then we have:

LEMMA IT.3.1. If G is complex, the following holds :

where log: A --&#x3E; a is the inverse of the exponential map of a.

PROOF. Since G is complex, we have the following simple expression
for 99, (see [9], chapter II) :

when a E A, where Since CPt; is K-invariant,

an easy computation gives (9).
Let us fix some go - o c- X and choose $ such that a(- i$) 99- (g - o) 0 0

for g.o close to go.o. Then (9) shows that g.o r+ 93(log A+(g)) is analytic
close to go. 0, and since go. 0 is arbitrary, the function is analytic everywhere
on X. It is positive and vanishes only at o. If d(g.o) denotes the Rieman-
nian distance from g .o to o, when X is equipped with the Riemannian
metric induced by the Killing form of g, one has:

To show (10) it suffices to show that d2( a .0) = lS(log a) for a E A, since
d(ka .0) = d(a .0) if k c- K. Put log a = H. Then {Exp tH, t E R) is the

geodesic through o and a - o (see [5], chapter IV), y and since

where 7: denotes the action of G on .X, we get that Id EXPtH’ H&#x3E;17H is

independent of t if ) 17H denotes the norm in T EXD tH(X) defined by the metric
of X. Since Id Expo, H) ]§ = 93(H), it is clear that d2(a.o) = $(log a).




