Henry B. Laufer

Versal deformations for two-dimensional pseudoconvex manifolds

<http://www.numdam.org/item?id=ASNSP_1980_4_7_3_511_0>
Versal Deformations
for Two-Dimensional Pseudoconvex Manifolds.

HENRY B. LAUFER (*)

Let M be a strictly pseudoconvex manifold with a one-dimensional exceptional set A. Let Θ be the holomorphic tangent sheaf to M. The general Kodaira-Spencer [11] theory shows that $H^1(M, \Theta)$ corresponds to first order infinitesimal deformations of M and that $H^2(M, \Theta)$ represents the obstructions to formally extending deformations to higher order. $H^1(M, \Theta)$ is finite dimensional since M is strictly pseudoconvex [1]. $H^2(M, \Theta) = 0$ essentially because A is one-dimensional. But it is known [6], [5] that there is no finite-dimensional deformation theory for M if one keeps track of the boundary. So in order to stay within the Kodaira-Spencer framework, given a deformation of M and a compact set K in M, we shall only worry about the deformation near K. Then M has a versal deformation $\omega : M \to Q$ with Q a manifold of dimension $\dim H^1(M, \Theta)$ in case either (i) M is of arbitrary dimension and is a sufficiently small neighborhood of A (Definition 1, Theorem 2 and Theorem 5 below) or (ii) M is of dimension two (Theorem 8 below). The existence of ω was proved for arbitrary Stein M by Andreotti and Vesentini [2]. Openness of versality holds (Theorem 3 and Theorem 8 below).

Some applications of this paper are given in [16] and [17]. In [17], the dimension two analogue of [7] and [23, Theorem 2.1 and Proposition 2.3] is proved, i.e. if all of the fibers of a deformation are isomorphic, then the deformation is trivial.

Most of the results of this paper have been announced in [15].

Much of the research for this paper was done at Purdue University. The author thanks Purdue University for its generous hospitality.

(*) The author is an Alfred P. Sloan Fellow. This research was also partially supported by NSF Grant MCS 7604969A01.

Pervenuto alla Redazione il 17 Agosto 1979.
Definition 1. Let M be a strictly pseudoconvex manifold. A special cover $\mathcal{U} = \{U_i\}$, $0 < i < m$, is a finite cover of M such that each U_i is Stein and such that $\overline{U_i} \cap \overline{U_j} \cap \overline{U_k} = \emptyset$ for $i \neq j \neq k$. ($\overline{\cdot}$ denotes closure in M.)

Theorem 2. Let M^* be a strictly pseudoconvex manifold with a one-dimensional exceptional set A. Then there is a strictly pseudoconvex neighborhood M of A, a special cover \mathcal{U} of M, and a deformation $\omega: M \to Q$ of $\omega = \omega^{-1}(0)$, with Q a manifold, such that the Kodaira-Spencer map $\partial_\omega: T_{\theta} \to H^1(M, \Theta)$ is an isomorphism. ω may be chosen to be a 1-convex holomorphic map.

Proof. We first construct a larger cover $\mathcal{B} = \{V_i\}$, $0 < i < m$. Let the V_i, $1 < i < m$, be small balls in local coordinates for M^* centered about the singular points s_i of A. Choose $\overline{V_i} \cup \overline{V_j} = \emptyset$ for $i \neq j$; closure is in M^*. Should a connected component of A be non-singular, also choose such a V_i about some points s_i in the component. So we get points s_i, $1 < i < m$, lying in all irreducible components A_k of A. Let $S = \cup s_i$, $1 < i < m$. Let $T \subset \cup V_i$, $1 < i < m$, be a closed neighborhood of S in A. We choose V_0 to be a Stein neighborhood of $A - T$ as follows. Each $A_k - S$ is an open Riemann surface and thus Stein [9, Theorem IX. C. 10, p. 270]. Let f_k be a C^∞ strictly plurisubharmonic function on $A_k - S$ such that $f_k(z) \to \infty$ as $z \to S$, $z \in A_k$. By [18, Satz 3.3, p. 275], there is a neighborhood W_k of $A_k - S$ in M^* such that f_k has a C^∞ plurisubharmonic extension, also denoted by f_k, to W_k. Let g be a C^∞ function defined in a neighborhood W of the connected component A' of A containing A_k such that $f_k(z) = 0$ for $z \in A'$, $g > 0$ off A', g is plurisubharmonic on W, and g is strictly plurisubharmonic on $W - A'$. Let N be sufficiently large so that $f_k(z) < N - 1$ for $z \in A_k - T$. Then for r sufficiently large real number, $V_{\alpha k} = \{z \in W \cap W_k | f_k(z) + + rg(z) < N\}$ is a Stein neighborhood of $A_k - T$. Moreover, for large r the various $V_{\alpha k}$ will be disjoint. Let $V_0 = \cup V_{\alpha k}$, all k. Then $\overline{V_i} \cap \overline{V_j} \cap \overline{V_k} = \emptyset$ for $i \neq j \neq k$.

Let M_i be a strictly pseudoconvex neighborhood of A contained in $\cup V_i$, $0 < i < m$. Replace $\{V_i\}$ by $\{V_i \cap M_i\}$, which we will also denote by $\{V_i\} = \mathcal{B}$. Since \mathcal{B} is a Leray cover of M_i, $H^1(M_i, \Theta) \approx H^1(N(\mathcal{B}), \Theta)$. Let $\theta_1, \ldots, \theta_n$ be vector fields on $\{V_i \cap V_j\}$ which represent a basis of $H^1(M_i, \Theta)$. If $M_i \supset M$, also a strictly pseudoconvex neighborhood of A, then the restriction map $H^1(M_i, \Theta) \to H^1(M, \Theta)$ is an isomorphism [13, Lemma 3.1, p. 599]. So $\{\theta_i\}$ will also be a basis for $H^1(M, \Theta)$ for M smaller than M_i and for refinements \mathcal{U} of \mathcal{B}.

Using just the specialness of the cover \mathcal{B}, we shall construct \mathcal{M} via coordinate patches. These patches will be modified in the course of the construction. Let $\mathcal{B}' = \{V_i\}$, $0 < i < m$ with $V_i \subset V_j$ be a refinement of \mathcal{B}. Given
any compact set K in M_1, we may choose B' to be a cover of K. Now let $\overline{\cdot}$ denote closure in M_1. Let $K = \overline{M}$. Take an initial Q to be a poly-disc of dimension $n = \dim H^1(M_1, \Theta)$. Start with patches $V'_i \times Q$, $0 < i < m$.

We must give the g_{ij}, the transition functions for \mathcal{M}. For each small $t = (t_1, \ldots, t_n)$ in Q, integration along $t_1\theta_1 + \ldots + t_n\theta_n$ for time 1 gives a map $h_{ij}(t): \overline{V'_i \cap V'_j} \to V_i \cap V_j$. Restrict Q to these small values of t and define an initial $g_{ij}: (V'_i \cap V'_j) \times Q \to (V_i \cap V_j) \times Q$ by $g_{ij} = (h_{ij}(t), t)$. There will be no compatibility conditions to verify for these changes of coordinates since no three coordinate patches intersect. However, for these changes of coordinates to define a manifold and in particular to insure that the space is Hausdorff, we still must modify the domains and ranges of the g_{ij}.

Let B be the set of non-interior points of $V'_i - V'_j$. Then the points of $V'_i \times Q$ which might not be separated from points in $V'_j \times Q$ (which are not identified by g_{ij}) lie in $B \times Q$. \overline{B} is disjoint from the compact set $\mathcal{C} = (V'_i - V'_j) \cap V_i \cap K$. Let D be a neighborhood of \mathcal{C} such that \overline{D} is compact and $\overline{D} \cap \overline{B} = \emptyset$. Then for small Q, $h_{ij}(B \times Q) \cap \overline{D} = \emptyset$. So far, g_{ij} maps $(V'_i \cap V'_j) \times Q \subset V'_i \times Q$ biholomorphically to an open subset R_{ij} of $V_i \times Q$. R_{ij} lies near to $(V'_i \cap V'_j) \times Q$, as a subset of $V'_i \times Q$. In the cover for \mathcal{M}, replace $V_i \times Q$ by the subset $[(V'_i - V'_j) \cup D] \times Q \cup R_{ij} = T_i$. This modifies $V'_i \times Q$ only near V_i and makes Hausdorff the space $(V'_i \times Q) \cup T_i$ with points identified under g_{ij}.

Since $V_i \cap V_j \cap V_k = \emptyset$ for $i \neq j \neq k$, the construction of the above paragraph leaves $V_i \cap V_k$ and $V_j \cap V_k$ unchanged. Thus to complete the construction of coordinate patches for \mathcal{M}, we look at an unordered pair (i, j), $i \neq j$. We favor one element of the unordered pair, say i, and form T_i as in the previous paragraph. This changes the range of g_{ij} and the domain of $g_{ij} = [g_{ij}]^{-1}$ to R_{ij}. We then consider a different unordered pair and repeat the construction of the previous paragraph. After considering all unordered pairs, we have a Hausdorff space \mathcal{M}' and a projection map $\omega': \mathcal{M}' \to Q$ which shows that \mathcal{M}' is a family of deformations of $M' = (\omega')^{-1}(0)$. $K \subset M'$. \mathcal{M}, the interior of K, is the desired strictly pseudoconvex manifold.

Let $U_i = M \cap V_i$. $U = \{U_i\}$ is then a special cover. Let \mathcal{M} be a neighborhood of M in \mathcal{M}' such that $\mathcal{M} \cap (\omega')^{-1}(0) = M$. Then, after possibly shrinking Q, $\omega = \omega'|\mathcal{M}$ is the desired deformation. By construction, $\omega_6: \mathcal{T}_6 \to H^1(M, \Theta)$ is an isomorphism. Recall [19, Satz 1, p. 547]:

Let $\pi: Z \to S$ be a holomorphic mapping of complex spaces with strictly pseudoconvex special fiber $X = \pi^{-1}(s_0)$, $s_0 \in S$ fixed. Then for every compact set $K \subset X$, there exist open sets $U \subset Z$ and $V \subset S$, with $K \subset U$, $s_0 \in V$, $\pi(U) \subset V$, such that $\pi|U: U \to V$ is a 1-convex map.
We shall use this result several times in this paper. In particular, ω can be chosen to be 1-convex. This completes the proof of the Theorem.

Theorem 3. Let $\omega: \mathcal{M} \to Q$ be a deformation of a strictly pseudoconvex manifold $M_0 = \omega^{-1}(0)$ which has a special cover \mathcal{U}. Let Θ be the tangent sheaf on $M_0 = \omega^{-1}(q)$. Suppose that ω is 1-convex, Q is a manifold and $\varphi_0: qT \to H^1(M_0, \Theta_0)$ is surjective. Then $\varphi_q: qT \to H^1(M_q, \Theta_q)$ is surjective for all small q.

Proof. Let Θ be the sheaf of germs of vector fields on \mathcal{M} which lie in the direction of the fibers. Let $\omega^*(\Theta)$ be the first direct image sheaf of Θ under the map ω. Then $\omega^*(\Theta)$ is a coherent analytic sheaf on Q [21, Main Theorem (i), p. 213].

Using ω, we may shrink \mathcal{M} along the fibers and not change any map φ_q for small q. Then, as in the proof of Theorem 2, we may use [18] to extend the special cover \mathcal{U} on M to a special cover on the shrunken \mathcal{M}. Without loss of generality, we may thus assume that \mathcal{M} has a special cover. Then $\omega^*_q(F) = 0$ for $r > 1$ and F any coherent sheaf on \mathcal{M}. In particular, $\omega^*_q(F)$ is Θ-flat. Θ is locally free and so is ω-flat. Let m_q be the ideal sheaf of $q \in Q$. Then [22, Proposition 2.2, p. 208] $H^1(M_q, \Theta_q) \approx \omega^*_q(\Theta)/m_q \omega^*_q(\Theta)$. Let \mathcal{C} be the tangent sheaf on Q. Then the Kodaira-Spencer map $[11, e: 13 \to \omega^*_q(\Theta)$ is a map of coherent analytic sheaves. Since $qT \approx \mathcal{C}/m_q \mathcal{C}$, the given hypothesis that φ_0 is surjective says that $\varphi_0: \mathcal{C}/m_q \mathcal{C} \to \omega^*_q(\Theta)/m_q \omega^*_q(\Theta)$ is surjective. By Nakayama's Lemma, φ is surjective at 0. Then φ is surjective near 0 by coherence. Then φ_q is surjective for q near 0.

To deal with non-reduced parameter spaces, we need the following easy strengthening of [2].

Theorem 4. Let M be a Stein manifold and $\omega: \mathcal{M} \to S$ a deformation of $M = M_0 = \omega^{-1}(0)$ with S a possibly non-reduced analytic space. Then given any compact set $K \subset M$, there is a neighborhood \mathcal{M}_1 or K in \mathcal{M} such that $\omega|_{\mathcal{M}_1}$ is a trivial deformation.

Proof. ω is given to be locally trivial. As in [9, p. 266-269], we may use a C^∞ strictly plurisubharmonic exhaustion function on M to write $M = \bigcup M^{(i)} 1 \leq i < \infty$, with $M^{(i)} \subset M^{(i+1)}$, $M^{(i)}$ a strictly pseudoconvex Stein manifold, and $M^{(i+1)} = M^{(i)} \cup N^{(i)}$ with $N^{(i)}$ a Stein manifold near which ω is a trivial deformation. We may assume that ω is a trivial deformation near $M^{(i)}$.

We can now prove the theorem by induction on i. The case $i = 1$ is given. $M^{(i+1)} = M^{(i)} \cup N^{(i)}$. After shrinking a little, we may assume by induction that ω is trivial near $M^{(i)}$ and $N^{(i)}$. Then near $M^{(i+1)}$, ω may be
defined by giving just one transition map \(g_{12} : U_1 \cap U_2 \rightarrow U_1 \cap U_2 \) with \(U_1 \approx M^{(0)} \times S \) and \(U_2 \approx N^{(0)} \times S \). Shrinking \(M^{(\epsilon + 1)} \) a little more, we shall extend \(\omega \) to a (non-singular) ambient neighborhood \(\Delta \) of \(0 \in S \). The theorem will then follow from the original formulation in \([2]\).

To extend \(\omega \), let \(M' \subseteq M^{(0)} \) and \(N' \subseteq N^{(0)} \) with \(M', N', N' \) Stein. Then for \(T \) a sufficiently small neighborhood of \(0 \) in \(S \), \(g_{12} \) restricts to give a map \((h_{12}(s), s) : (M' \cap N') \times T \rightarrow (M' \cap N') \times T \). Here, in the domain of \(h_{12} \), we are using the product structure on \(U_2 \). In the range of \(h_{12} \), we are using the product structure on \(U_1 \). \(h_{12}(0) \) is the inclusion map. So that \(h_{12}(s) \) may be given by a set of functions, embed the Stein manifold \(M' \cap N' \) in \(C^n \) for some \(n \). By \([9\text{, Theorem VIII, C. 8, p. 257]}\), there is a neighborhood \(V \) of \(M' \cap N' \) in \(C^n \) and a holomorphic retraction map \(q : V \rightarrow M' \cap N' \). Let the initial ambient neighborhood \(\Delta' \) of \(0 \) in \(S \) be Stein with \(\Delta' \cap T \) a subvariety of \(\Delta' \). Then the functions defining \(h_{12}(s) \) extend to functions on \((M' \cap N') \times \Delta' \). By restricting to a smaller neighborhood \(\Delta'' \), we may assume that the image of the extended \(h_{12}(s) \) lies in \(V \). Composing with \(q \) gives \((f_{12}(s), s) : (M' \cap N') \times \Delta'' \rightarrow (M' \cap N') \times \Delta'' \). Since \(f_{12}(0) = h_{12}(0) \) is the identity map onto its image, \(f_{12}(s) \) is a biholomorphic map onto its image for all sufficiently small \(s \in \Delta'' \). Proceeding as in the proof of Theorem 2, we may shrink \(M^{(\epsilon + 1)} \) a little more and form the desired deformation which extends \(\omega \). This completes the proof of Theorem 4.

Theorem 5. Let \(M \) be a strictly pseudoconvex manifold with a special cover \(U \). Let \(\Theta_0 \) be the tangent sheaf to \(M \). Let \(\omega : \mathcal{K} \rightarrow Q \) be a deformation of \(M = M_s = \omega^{-1}(0) \) such that \(Q \) is a manifold and \(\partial \omega : \mathcal{K}_0 \rightarrow H^1(M_s, \Theta_0) \) is surjective. Let \(\lambda : \mathcal{R} \rightarrow S \) be any deformation of \(M = M_s = \lambda^{-1}(0) \) with \(S \) a possibly non-reduced analytic space. Then, given any compact set \(K \) in \(M \), there are neighborhoods \(\mathcal{K}_1 \) and \(\mathcal{R}_1 \) of \(0 \) in \(\mathcal{K} \) and \(\mathcal{R} \) respectively, neighborhoods \(Q_1 \) and \(S_1 \) of \(0 \) in \(Q \) and \(S \) respectively, and a holomorphic map \(f : S_1 \rightarrow Q_1 \) such that \(\omega|_{\mathcal{K}_1} = \omega_1 : \mathcal{K}_1 \rightarrow Q_1 \) and \(\lambda|_{\mathcal{R}_1} = \lambda_1 : \mathcal{R}_1 \rightarrow S_1 \) are deformations with \(\lambda_1 \) induced by \(f \). If \(\omega_0 \) is also injective, then the tangent map of \(f \) at the origin is uniquely determined.

Proof. Shrinking \(M \) and \(U \) a little, we may assume by Theorem 4 that \(\lambda \) is trivial near \(0 \) on each \(U_i \). As in the proof of Theorem 4, we may shrink \(M \) further and extend \(\lambda \) to a non-singular ambient neighborhood \(\Delta \) of \(0 \) in \(S \).

So, without loss of generality, we shall now assume that \(S \) is non-singular. Let the transition maps for \(\lambda \) be given by \(g_{i}(s), s \in S \). Let the transition maps for \(\omega \) be given by \(h_{i}(q), q \in Q \). Let \(U'_i \subseteq U'_i \subseteq U_i \) be two refinements of \(U \). Choose \(Q_1 \) and \(S_1 \), small so that \(h_{i}(q) \circ g_{i}(s) = k_{i}(q, s) : U'_i \cap U'_j \rightarrow U'_i \cap U'_j \) is well defined for \((q, s) \in Q_1 \times S_1 \). Then, as in the proof of The-
Theorem 2, the \(k_{ij} \) may be used to construct a deformation \(\tau : \mathcal{Y} \to B \) of a slightly shrunk \(M \). \(B \) is a Cartesian product \(Q_1 \times S_1 \) of neighborhoods \(Q_1 \) and \(S_1 \) of 0 in \(Q \) and \(S \) respectively. Above \(0 \times S_1 \), \(\tau \) coincides with \(\lambda \). Above \(Q_1 \times 0 \), \(\tau \) coincides with \(\omega \). Let \(\mathcal{E} \) be the tangent sheaf of \(B \). Let \(\mathcal{E} \) be the subsheaf of \(\mathcal{E} \) of germs of vector fields on \(B \) in the \(Q_i \) directions. Choose \cite{[19, Satz 1, p. 547]} \(\tau \) to be a 1-convex map. Then, by the proof of Theorem 2, \(\varrho : \mathcal{E} \to \tau^*_s(\Theta) \) is surjective near \(0 \times 0 = 0 \). Let \(v_1, \ldots, v_n \) be vector fields on \(B \) such that \(v_i(0), \ldots, v_n(0) \) project onto a basis of \(\tau^*_sT_0 \). Since \(\varrho \) is surjective near 0, we may modify \(v_1, \ldots, v_n \) by sections of \(\varrho \mathcal{E} \) and assume that \(\varrho(v_i) = 0 \) in \(\tau^*_s(\Theta) \) for all \(i \) and small \(B \). Then, for sufficiently small \(B \), \(\varrho(v_i) = 0 \) in \(H^1(\tau^*(B), \Theta) \). Then, by the nature of \(\varrho \), for each \(i \) there exists a vector field \(\theta_i \) on \(\tau^{-1}(B) \) such that at each point \(b \) of \(\tau^{-1}(B) \), \(\varrho_s \) maps \(\theta_i(b) \) to \(v_i(\tau(b)) \). Let \((t_1, \ldots, t_n) \) be near \((0, \ldots, 0) \). Then, integrating along \(t_1 \theta_1 + \ldots + t_n \theta_n \) and \(t_1 v_1 + \ldots + t_n v_n \) for time 1 and for small \((t_1, \ldots, t_n) \) gives a Cartesian product structure \(\mathcal{Y} \approx \mathcal{M} \times S_1 \) with a projection map \(\omega \times \text{id} : \mathcal{M} \times S_1 \to Q_1 \times S_1 \) which shows that \(\mathcal{Y} \) is a deformation of a slightly smaller \(M \). There is also an automorphism of \(B = Q_1 \times S_1 \) near \(0 \times 0 \) which shows that \(\tau \) and \(\omega \times \text{id} \) are equivalent deformations. \(\lambda : \mathcal{M} \to S_1 \) is a subspace of \(\tau : \mathcal{Y} \to B \). Projecting \(\mathcal{Y} \) onto \(\mathcal{M} \) via the Cartesian product structure gives the desired map \(f : S_1 \to Q_1 \).

This concludes the proof of Theorem 5 except for the last sentence. But the tangent map of \(f \) at the origin just agrees with the infinitesimal Kodaira-Spencer map in this case.

Let \(M \) be as in Theorem 5. Then \(H^1(M, 0) = 0 \). \cite{[19, Satz 5, p. 562]} says that under such circumstances we can form its simultaneous-blow-down subspace \(T \) of \(Q \), as in Definition 9 below. The versality result of Theorem 5 implies versality for deformations of germs of \(M \) near \(A \). Blow down \(M \) to \(V \). Let \(p \) be the singular point of \(V \). Then \cite{[19, Satz 7, p. 562]} says that the simultaneous blow-down over \(T \) is versal for deformations which can be simultaneously resolved.

The following corollary about the rigidity of exceptional curves of the first kind is known. For example, use \cite{[10, Theorem 3, p. 85]}, which says that \(A \) lists above \(S \), and \cite{[19, Satz 2, p. 547]}, which says that one can simultaneously blow down near the lifting. We shall use it to strengthen our results in the two-dimensional case.

Corollary 6. Let \(M \) be a two-dimensional manifold. Let \(A \) be a submanifold of \(M \) which is a compact Riemann surface of genus 0 with \(A \cdot A = -1 \). Let \(\lambda : \mathcal{M} \to S \) be a deformation of \(M = \lambda^{-1}(0) \). Then in a neighborhood of \(A \) in \(\mathcal{M} \), \(\lambda \) is the trivial deformation.
Proof. It suffices to see that for any small strictly pseudoconvex neighborhood \(N\) of \(A\) in \(M\), \(H^1(N, \Theta) = 0\).

Since \(A\) is in fact an exceptional curve of the first kind, \(H^1(N, \Theta)\) can be directly computed via a Leray cover to give 0. Or, one may use [8, Satz 1, p. 355] and [14, (3.9), p. 85].

Proposition 7. Let \(M\) be a strictly pseudoconvex two-dimensional manifold. Let \(A\) be the exceptional set. Then there are a finite number of points \(p_i \in \mathcal{M} - A\) such that the manifold \(M'\) obtained from \(M\) by quadratic transformations at the \(p_i\) can be written \(M' = U_1 \cup U_2\) with \(U_1\) and \(U_2\) open Stein subsets of \(M'\).

Proof. Let \(\mathcal{M}'\) be a strictly pseudoconvex manifold with \(\mathcal{M}' \subseteq M\) and also with the same exceptional set \(A\). Let \(\mathfrak{g}\) be the ideal sheaf of \(A\). By [12, Lemma 4.10, p. 61], we can find a divisor \(D\) on \(A\) with \(A_i \cdot D\) arbitrarily negative for all irreducible components \(A_i\) of \(A\). Let \(\mathfrak{g}\) be the ideal sheaf corresponding to \(D\). Then, by [12, Lemma 6.19, p. 117] (and its proof in case \(A\) lacks normal crossings), for the \(A_i \cdot D\) sufficiently negative, \(H^1(\mathcal{M}'', \mathfrak{g}) = H^1(\mathcal{M}'', \mathfrak{g}) = 0\). Then \(\Gamma(\mathcal{M}'', \mathfrak{g}) \to \Gamma(\mathcal{M}'', \mathfrak{g})\) and \(\Gamma(\mathcal{M}'', \mathfrak{g}) \to \Gamma(\mathcal{M}'', \mathfrak{g})\) are surjective. Then we can find \(f_1, f_2 \in \Gamma(\mathcal{M}'', \mathfrak{g})\) such that \((f_1) - D\) and \((f_2) - D\) contain no \(A_i\), and also if \(p \in \text{supp}((f_1) - D) \cap \text{supp}((f_2) - D)\) then \(p \not\in A\) and \(p\) is a point of normal crossing for \((f_1) - D\) and \((f_2) - D\). There are only a finite number of such \(p_i\). Let \(M'\) be obtained from \(M\) by quadratic transformations at the \(p_i\). Let \(D_1\) and \(D_2\) be the proper transforms on \(M'\) of \((f_1) - D\) and \((f_2) - D\) respectively. Let \(U_i = \mathcal{M}' - \text{supp} D_i, i = 1, 2\). Then \(U_1\) and \(U_2\) are the desired Stein subsets of \(M'\). One may construct the needed holomorphic functions on the \(U_i\) by considering \(f_2/f_1\), with \(f_2 \in \Gamma(\mathcal{M}'', \mathfrak{g})\) or \(f_2 \in \Gamma(\mathcal{M}'', \mathfrak{g})\). Then \(U_i\) is holomorphically convex and the \(f_2/f_1\) will give local coordinates. This concludes the proof of Proposition 7.

Theorem 8. Let \(M\) be a strictly pseudoconvex two-dimensional manifold. Then there exists a deformation \(\omega: \mathcal{M} \to Q\) of \(M = \omega^{-1}(0)\) such that \(\omega\) is 1-convex, \(Q\) is a manifold and the Kodaira-Spencer map \(q_\omega: qT_q \to H^1(M, \Theta_q)\) is an isomorphism. Let \(M_q = \omega^{-1}(q)\). \(q_\omega: qT_q \to H^1(M_q, \Theta_q)\) is surjective for all small \(q \in Q\). Let \(\lambda: \mathcal{R} \to S\) be any deformation of \(M = M_0 = \lambda^{-1}(0)\) with \(S\) a possibly non-reduced analytic space. Then, given any compact set \(K\) in \(M\), there are neighborhoods \(\mathcal{M}_1\) and \(\mathcal{R}_1\) of \(K\) in \(\mathcal{M}\) and \(\mathcal{R}\) respectively, neighborhoods \(Q_1\) and \(S_1\) of 0 in \(Q\) and \(S\) respectively, and a holomorphic map \(f: S_1 \to Q_1\) such that \(\omega|\mathcal{M}_1 = \omega_1: \mathcal{M}_1 \to Q_1\) and \(\lambda|\mathcal{R}_1 = \lambda_1: \mathcal{R}_1 \to S_1\) are deformations with \(\lambda_1\) induced from \(\omega_1\) by \(f\). The tangent map of \(f\) at 0 is uniquely determined.
PROOF. For any coherent sheaf \mathcal{F} on M, $H^1(M, \mathcal{F})$ is determined by small neighborhoods of the exceptional set. If N is a small holomorphically convex neighborhood of an exceptional curve of the first kind, then $H^1(N, \Theta) = 0$. Hence quadratic transformations off the exceptional set have no effect on $H^1(M, \Theta)$.

To construct ω, let M^* be a strictly pseudoconvex manifold with $M \subset M^*$. Let M^* be obtained from M^* by a finite number of quadratic transformations and have a special cover (Proposition 7). Let $\pi : M^* \to M^*$. By the proof of Theorem 2, there is a deformation $\omega : \mathcal{M}' \to Q$ of $M' = \pi^{-1}(M)$ with $\varphi_q : q^{-1}T \to H^1(M', \Theta)$ an isomorphism and ω' a 1-convex map. By Corollary 6, the exceptional curves of the first kind in M' which are the result of quadratic transformations in M have neighborhoods on which ω' is a trivial deformation. Simultaneously blow down the exceptional curves of the first kind in these neighborhoods. This gives a deformation $\omega : \mathcal{M} \to Q$ of M. ω is 1-convex. φ_q is an isomorphism by the observation of the previous paragraph. φ_q' is surjective for small q by Theorem 3. With A_{ω}', the exceptional set in M_{ω}', is the subvariety of \mathcal{M}' where the Remmert reduction is not an isomorphism. $H^1(M_{\omega}', \Theta)$ is the exceptional set in M_{ω}' which are the result of quadratic transformations in M have neighborhoods on which ω' is a trivial deformation. Simultaneously blow down the exceptional curves of the first kind in these neighborhoods. This gives a deformation $\omega : \mathcal{M} \to Q$ of M. ω is 1-convex. φ_q is an isomorphism by the observation of the previous paragraph. φ_q' is surjective for small q by Theorem 3. $\pi(q) = \pi^{-1}(q)$ near 0 such that, letting $\mathcal{A} = \omega^{-1}(T)$, the family $\omega_a = \omega|A : A \to T$ simultaneously blows down to a flat deformation $\pi_a : \mathcal{X} \to T$ of the blow down $V = X_a = \pi_a^{-1}(0)$ of M. $T = \{q \in Q | \dim H^1(M_{\omega}, \Theta) = \dim H^1(M_{\omega}, \Theta)\}$.

DEFINITION 9. Let $\omega : \mathcal{M} \to Q$ be a 1-convex deformation of $M = M_\omega = \omega^{-1}(0)$. Let the reduced space T be given by $T = \{q \in Q | \dim H^1(M_{\omega}, \Theta) = \dim H^1(M_{\omega}, \Theta)\}$. Then T is the simultaneous blow-down subspace of Q.
THEOREM 10. Let M be a strictly pseudoconvex two-dimensional manifold with exceptional set A. Let $w: M \to Q$ be as in Theorem 8. Suppose that M is the minimal resolution of the normal two-dimensional analytic space V. Let T be the simultaneous-blow-down subspace of Q. Then the blow-down $\pi_a: X \to T$ of w over T is the unique deformation of V which is versal for deformations with reduced parameter spaces that can be simultaneously resolved, i.e. given any deformation $\pi: Y \to S$ of $V = X_0 = \pi^{-1}(0)$ with S reduced such that π may be simultaneously resolved and any compact set $K \subset V$, then there exist neighborhoods X_1 and Y_1 of K in X and Y respectively, neighborhoods T_1 and S_1 of 0 in T and S respectively, and a holomorphic map $f: S_1 \to T_1$ such that $\pi_a|X_1: X_1 \to T_1$ and $\pi = \pi|Y_1: Y_1 \to S_1$ are deformations with π_a induced by f. The induced map f^* on the Zariski tangent space of S at 0 to the Zariski tangent space of T at 0 is unique.

For all points $t \in T$ sufficiently near to 0, π_a is versal near t except for the uniqueness of the map f^*.

If $X', open in X$, has $\pi_a = \pi|X': X' \to T$ a deformation with $V' = (\pi_a')^{-1}(0)$ being a strictly pseudoconvex neighborhood of the singular points of V, then π_a' is the unique deformation of V' which is versal for deformations with reduced parameter spaces which can be simultaneously resolved.

PROOF. Let $\lambda: R \to S$ be a simultaneous resolution of π_a. Then $R = \lambda^{-1}(0)$ is a resolution of $V = \pi^{-1}(0)$. Suppose that $A_i \subset R$ is an exceptional curve of the first kind. Then by Corollary 6, we can simultaneously blow down A_i and nearby exceptional curves of the first kind and still have a deformation of the blown down R. Thus, without loss of generality, we may assume that R is the minimal resolution of V. Since minimal resolutions are unique [20], [12, pp. 87-88], $R \cong M$. Let $\tau_a: M \to V$ be the resolving map.

Apply Theorem 8, using the compact set $\tau_a^{-1}(K)$. We need that $f(S_1) \subset T$. But since λ may be simultaneously blown down, for $s \in S$, $\dim H^1(R_s, 0) = \dim H^1(M, 0)$. Hence $f(s) \in T$. The first paragraph of the Theorem now follows by letting X_a and Y_a be the blow downs of $M \cap w^{-1}(T_1)$ and R respectively. (The uniqueness of π_a is proved in the usual way from the uniqueness of f^*.)

The second paragraph of the Theorem follows from Theorem 8 and the above argument, which proved the first paragraph.

Let $M' = \tau_a^{-1}(V')$. Let K' be a compact set in M' with $A \subset K'$. By [19, Satz 1, p. 547], there is a neighborhood \mathcal{M}' of K' in \mathcal{M} and a neighborhood Q' of 0 in Q such that $\omega' = \omega|\mathcal{M}' : \mathcal{M}' \to Q'$ is a 1-convex map. Since in \mathcal{M} the union of the exceptional sets of M_a is the subvariety of \mathcal{M} where the Remmert reduction is not an isomorphism [19, p. 553], $M_a = \omega^{-1}(q)$ and $M_a' = (\omega')^{-1}(q)$ have the same exceptional set for all small q. Then
[13, Lemma 3.1, p. 599] the restriction map \(H^q(M_q, \mathcal{O}) \to H^q(M'_q, \mathcal{O}) \) is an isomorphism for all small \(q \). Thus \(\omega \) and \(\omega' \) have the same simultaneous-blow-down subspace \(T \) of \(Q \) for small \(q \). This concludes the proof of Theorem 10.

REFERENCES

VERSAL DEFORMATIONS FOR TWO-DIMENSIONAL PSEUDOCONVEX MANIFOLDS

State University of New York
Department of Mathematics
Stony Brook, New York 11794