Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

G. D'ESTE

The \oplus_c -topology on abelian *p*-groups

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^{*e*} *série*, tome 7, nº 2 (1980), p. 241-256

<http://www.numdam.org/item?id=ASNSP_1980_4_7_2_241_0>

© Scuola Normale Superiore, Pisa, 1980, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The \bigoplus_{c} -Topology on Abelian *p*-Groups (*).

G. D'ESTE

Introduction.

In this paper we investigate the topology of an abelian p-group G which admits as a base of neighborhoods of 0 all the subgroups X of G such that G/X is a direct sum of cyclic groups. We call this topology the \bigoplus_c -topology of G. If G with the \bigoplus_c -topology is a complete Hausdorff topological group, then G is said to be \bigoplus_c -complete. The Hausdorff completion of G with respect to the \bigoplus_c -topology is called the \bigoplus_c -completion of G and is denoted by \check{G} .

In section 1 we prove that the \bigoplus_c -completion \check{G} of a *p*-group *G* is a \bigoplus_c -complete group; moreover the completion topology of \check{G} and its own \bigoplus_c -topology are the same. The group \check{G} coincides with the completion of *G* with respect to the inductive topology if and only if *G* is thick.

In section 2 we study the class of \bigoplus_c -complete groups. This class of separable *p*-groups is very large, containing the groups which are direct sums of torsion-complete *p*-groups, as well as the groups which are the torsion part of direct products of direct sums of cyclic *p*-groups. But the most interesting result in this direction perhaps is that every separable p^{σ} -projective *p*-group is \bigoplus_c -complete. There are a lot of these groups: in fact Nunke proved in [12] that, for every ordinal σ , there exists a p^{σ} -projective *p*-group which fails to be p^{τ} -projective for every $\tau < \sigma$. Moreover the class of \bigoplus_c -complete groups has many closure properties typical of both the classes of p^{ω} -projective and p^{ω} -injective *p*-groups.

In section 3 we study the \bigoplus_{c} -completion with respect to basic subgroups and we prove the inadequacy of the socle in determining the \bigoplus_{c} -complete groups; finally we give some applications in connection with the class of thick groups.

^(*) Lavoro eseguito nell'ambito dei Gruppi di Ricerca Matematica del C.N.R. Pervenuto alla Redazione il 6 Febbraio 1979 ed in forma definitiva il 18 Giugno 1979.

I would like to express my gratitude to Dr. L. Salce for his many helpful suggestions.

1. – The \oplus_{c} -completion.

All groups considered in the following are abelian groups. Notations and terminology are those of [4]. In particular p is a prime number and the symbol \bigoplus_e denotes a direct sum of cyclic p-groups. If G is any group and G' is a pure subgroup of G, then we write $G' \leq G$. A p-group G may be equipped with various topologies. The p-adic topology has the subgroups $p^n G$ with $n \in \mathbb{N}$ as a base of neighborhoods of 0; the inductive topology has the family of large subgroups as a base of neighborhoods of 0. Throughout the paper, for every p-group G, the group \overline{G} stands for the completion of G with respect to the inductive topology. If λ is a limit ordinal, then the generalization of the p-adic topology is the λ -adic topology. This topology. studied by Mines in [11], has the subgroups $p^{\sigma}G$ with $\sigma < \lambda$ as a base of neighborhoods of 0. In [13] Salce has studied the λ -inductive topology introduced by Charles in [3]; a base of neighborhoods of 0 for this topology consists of all subgroups $G(\boldsymbol{u})$ where $G(\boldsymbol{u}) = \{x \in G : h(p^n x) \ge \sigma_n, n \in \mathbb{N}\}$ and $\boldsymbol{u} = (\sigma_n)_{n \in \mathbb{N}}$ is an increasing sequence of ordinals $\sigma_n < \lambda$ for all $n \in \mathbb{N}$. In the following, unless otherwise indicated, every p-group G is endowed with the \oplus_c -topology. If we are dealing with some other topology, then the group G equipped with its \oplus_c -topology is denoted by (G, \oplus_c) .

Let G be a p-group and let L be a large subgroup of G. Since $G/L = \bigoplus_c$ ([4] Proposition 67.4), L is open with respect to the \bigoplus_c -topology of G and so the \bigoplus_c -topology is finer than the inductive topology. The next statement immediately follows from this result and the fact that a p-group G is thick if and only if $G/X = \bigoplus_c$ implies L < X for some large subgroup L of G.

PROPOSITION 1.1. Let G be a p-group. Then G is thick if and only if the \bigoplus_{c} -topology coincides with the inductive topology and a thick group G is \bigoplus_{c} -complete if and only if it is torsion-complete.

Since quasi-complete groups are thick ([4] Theorem 74.1, Corollary 74.6; [1] Theorem 3.2), the quasi-complete and non torsion-complete group constructed by Hill and Megibben in ([7] Theorem 7) is an example of a group which is not \bigoplus_c -complete. Let us note the following facts.

1) A p-group G is discrete in the \bigoplus_c -topology if and only if $G = \bigoplus_c$ and G is Hausdorff if and only if $p^{\omega}G = 0$.

- 2) Every homomorphism $f: G \to H$ with G and H p-groups is continuous with respect to the \bigoplus_c -topologies. In fact if $H/X = \bigoplus_c$, the same holds for $G/f^{1-}(X)$.
- 3) For every p-group G the \bigoplus_{c} -topology of $G/p^{\omega}G$ coincides with the quotient topology of the \bigoplus_{c} -topology of G. By property 2, it is enough to observe that the natural homomorphism $G \to G/p^{\omega}G$ is open.

Therefore in the study of the \bigoplus_c -completion it is not restrictive to confine ourselves to separable non thick groups. In order to show that the \bigoplus_c -completion of a *p*-group is \bigoplus_c -complete, we need two lemmas.

LEMMA 1.2. Let G be a p-group. Then the \bigoplus_c -completion \check{G} of G is a p-group.

PROOF. By definition $\check{G} = \lim_{x \to \infty} G/X$ where X ranges over the subgroups X of G such that $G/X = \bigoplus_c$. Let \hat{G} denote the p-adic completion of G. Since $\hat{G} = \lim_{x \to \infty} G/p^n G$ where $n \in \mathbb{N}$, there is a canonical homomorphism $\varphi \colon \check{G} \to \hat{G}$ such that $\varphi((g_X + X)_X) = (g_{p^n} + p^n G)_n$ for all $(g_X + X)_X \in \check{G}$. Since the completion of G in the inductive topology is the group $\bar{G} = \lim_{x \to \infty} G/L$ with L running over the large subgroups of G, there exists a natural homomorphism $\psi \colon \check{G} \to \bar{G}$ that takes $(g_X + X)_X$ to $(g_L + L)_L$ for all $(g_X + X)_X \in \check{G}$. To show that \check{G} is a p-group, it suffices to check that ψ is an embedding, and this clearly holds if φ is injective. We shall now prove that if $(g_X + X)_X \in \operatorname{Ker} \varphi$, then $g_X \in X$ for all X. To see this, fix X. Let $m \in \mathbb{N}$; if $Y = X \cap p^m G$, then $G/Y = \bigoplus_c$. By hypothesis $g_{p^m G} \in p^m G$ and, by the choice of Y, $g_X + p^m G = g_{p^m G} + p^m G$; consequently $g_X \in p^m G$. On the other hand $g_X + X = g_Y + X$ and so the height of $g_X + X$ in G/X is at least m. Since m is any natural number and $G/X = \bigoplus_c$, we conclude that $g_X \in X$, as claimed. This completes the proof that \check{G} is a p-group. \Box

From now on we shall identify \check{G} with the subgroup $\psi(\check{G})$ of \bar{G} and, if G is separable, then we shall view G as a subgroup of \check{G} .

LEMMA 1.3. Direct summands of \bigoplus_c -complete groups are \bigoplus_c -complete.

PROOF. Let G' be a direct summand of a \bigoplus_c -complete group G. Since the inclusion $G' \to G$ is continuous, every Cauchy net in G' is a Cauchy net in G. Therefore the hypothesis that G is \bigoplus_c -complete and the continuity of the projection of G onto G' assure that G' is \bigoplus_c -complete. \Box

We are now ready to establish the main result of this section.

THEOREM 1.4. Let G be a p-group. Then the \bigoplus_{c} -completion γ of G is \bigoplus_{c} -complete.

PROOF. Without loss of generality we may assume that G is separable. For every ordinal λ we define a group G_{λ} as follows: if $\lambda = 0$, then $G_{\lambda} = G$; if $\lambda > 0$ and λ is not a limit ordinal, then G_{λ} is the \bigoplus_{c} -completion of $G_{\lambda-1}$; if λ is a limit ordinal, then $G_{\lambda} \bigcup_{\sigma < \lambda} G_{\sigma}$. To prove the theorem, we shall use three facts:

(i) The \oplus_c -topology of \check{G} is finer than the completion topology.

Let \mathfrak{B} be the family of all subgroups X of G such that $G/X = \bigoplus_{c}$. Then $\check{G} = \lim_{X \in \mathfrak{B}} G/X$ and \check{G} with the completion topology is a topological subgroup of the group $\prod_{X \in \mathfrak{B}} G/X$ equipped with the product topology of the discrete topologies on every G/X. Thus a base of neighborhoods of 0 for the completion topology of \check{G} consists of all subgroups $U_F = \check{G} \cap \prod_{X \in \mathfrak{B} \setminus F} G/X$ where F is a finite subset of \mathfrak{B} . Since

$$\check{G}/U_F \cong \check{G} + \prod_{X \in \mathfrak{B} \setminus F} G/X \Big/ \prod_{X \in \mathfrak{B} \setminus F} G/X \leq \prod_{X \in \mathfrak{B}} G/X \Big/ \prod_{X \in \mathfrak{B} \setminus F} G/X = \bigoplus_c$$

every U_r is a neighborhood of 0 for the \bigoplus_c -topology of \check{G} , and so (i) is proved.

(ii) G_{λ} is a subgroup of \overline{G} for all λ .

We shall prove by transfinite induction that $G_{\lambda} \leqslant \overline{G}$ for all λ . If $\lambda = 0$ the assertion is obvious. Let $\lambda > 0$ and assume $G_{\sigma} \leqslant \overline{G}$ for every $\sigma < \lambda$. If λ is a limit ordinal, then evidently $G_{\lambda} \leqslant \overline{G}$. If λ is not a limit ordinal and $\lambda = \sigma + 1$, then the hypothesis that $G < G_{\sigma} \leqslant \overline{G}$ implies that $G_{\sigma} < G_{\lambda} < \overline{G}_{\sigma} = \overline{G}$. Since $G_{\sigma} \leqslant G_{\lambda}$, we get $\overline{G}_{\sigma} = \overline{G} < \overline{G}_{\lambda}$ and therefore $G_{\lambda} \leqslant \overline{G}$, as required.

(iii) G_1 is a direct summand of G_{λ} for all $\lambda \ge 1$.

Assume by transfinite induction that G_1 is a summand of G_{σ} for all $1 < \sigma < \lambda$. Write $G_{\sigma} = G_1 \oplus G'_{\sigma}$ for all $1 < \sigma < \lambda$. If λ is a limit ordinal, G_1 is a direct summand of G_{λ} , because $G_{\lambda} = \bigcup_{\sigma < \lambda} G_{\sigma} = G_1 \oplus \left(\bigcup_{1 \leq \sigma < \lambda} G'_{\sigma}\right)$. If λ is not a limit ordinal and $\lambda = \sigma + 1$ then, by the induction hypothesis, $G_{\sigma} = G_1 \oplus G'_{\sigma}$. Let $\pi: (G_{\sigma}, \oplus_c) \to (G_1, \mathfrak{F})$ be the canonical projection where (G_1, \mathfrak{F}) is the \oplus_c -completion of G. To check that π is continuous, let U be an open subgroup of (G_1, \mathfrak{F}) . Then, by property (i), there is some W < U such that $G_1/W = \oplus_c$. Since $G_{\sigma}/\pi^{-1}(W) = G_1 \oplus G'_{\sigma}/W \oplus G'_{\sigma} \cong G_1/W = \oplus_c$, we see that π is continuous. This result guarantees the existence of a homomorphism $\bar{\pi}$ making the following diagram commute

where the vertical maps are the natural ones and $(G_{\lambda}, \mathfrak{C})$ is the \bigoplus_{c} -completion of $(G_{\sigma}, \bigoplus_{c})$. Consequently $G_{\lambda} = G_{1} \oplus \operatorname{Ker} \bar{\pi}$ and so G_{1} is a direct summand of G_{λ} , as claimed.

We can now show that $\check{G} = G_1$ is \bigoplus_c -complete. Suppose this were not true. Then, from Lemma 1.3 and property (iii), we deduce that G_{λ} is not \bigoplus_c -complete for any λ , and therefore the groups G_{λ} are all distinct. But this is clearly impossible, because, by property (ii), they are all subgroups of \bar{G} . This contradiction establishes that \check{G} is \bigoplus_c -complete and the theorem is proved. \Box

The next proposition describes the topological structure of the \bigoplus_{c} -completions.

PROPOSITION 1.5. For every p-group G the \bigoplus_c -topology of \check{G} coincides with the completion topology.

PROOF. It is not restrictive to assume $p^{\omega}G = 0$. As before \mathfrak{C} denotes the completion topology of \check{G} . By property (i) of Theorem 1.4 we know that the \oplus_{c} -topology of \check{G} is finer than \mathfrak{T} . On the other hand, by a well known result of general topology ([2] Chapter III §3, No. 4 Proposition 7), a base of neighborhoods of 0 for the completion topology T is formed by the closures in \check{G} with respect to \mathfrak{C} of the neighborhoods of 0 for the \oplus_{c} -topology of G. Therefore, to end the proof, it is enough to show that if U is an open subgroup of (\check{G}, \oplus_c) and $U' = U \cap G$, then the closure V of U' in $(\check{G}, \mathfrak{C})$ is a subgroup of U. To prove this, let $\{g_i\}$ be a Cauchy net in (G, \oplus_c) with $g_i \in U'$ for all *i*. Since the natural embedding $G \to \check{G}$ is continuous with respect to the \bigoplus_c -topologies, $\{g_i\}$ is a Cauchy net in (\check{G}, \bigoplus_c) . Thus, by Theorem 1.4, it converges to some x in $(\check{G}, \bigoplus_{e})$ and clearly $x \in U$, because U is closed in $(\check{G}, \bigoplus_{c})$ and $g_{i} \in U$ for all i. Since \mathcal{C} is smaller than the \oplus_c -topology of \check{G} , the given net converges to x in $(\check{G}, \mathfrak{C})$; so $x \in V$, by the definition of V. This means that $V \leq U$ and therefore the \bigoplus_c -topology of \check{G} coincides with the completion topology, as claimed.

COROLLARY 1.6. Let G be a separable p-group. Then G is a pure topological subgroup with divisible cohernel of $a \oplus_c$ -complete group.

PROOF. By Theorem 1.4 and Proposition 1.5, G is a pure dense topological subgroup of the \bigoplus_c -complete group \check{G} . Consequently G is a dense subgroup of \check{G} equipped with the *p*-adic topology. Hence \check{G}/G is divisible and the proof is complete. \Box

Before comparing the \bigoplus_{c} -completion and the completion with respect to the inductive topology, we prove the following lemma.

^{17 -} Ann. Scuola Norm. Sup. Pisa Cl. Sci.

LEMMA 1.7. Let G be a separable p-group and let $G \leq X \leq \overline{G}$. Then $\check{G} \leq \check{X}$ and $\check{X} \leq \overline{G}$.

PROOF. Since $G \leq X$, we may assume $\overline{G} < \overline{X}$. To show that $\check{G} < \check{X}$, select $\overline{g} \in \check{G}$. Then, by Proposition 1.5, there exists a net $\{g_i\}$ with $g_i \in G$ for all *i* which converges to \overline{g} in (\check{G}, \oplus_c) . Since $\{g_i\}$ is also a Cauchy net in (X, \oplus_c) and all the canonical maps $\check{G} \to \overline{G}$, $\overline{G} \to \overline{X}$, $\check{X} \to \overline{X}$ are continuous with respect to the \oplus_c -topologies, \overline{g} is the limit of $\{g_i\}$ in (\check{X}, \oplus_c) and so $\overline{g} \in \check{X}$. This proves the inclusion $\check{G} < \check{X}$. To see that $\check{X} < \overline{G}$, take $\overline{x} \in \check{X}$. As before, there is a net $\{x_i\}$ with $x_i \in X$ for all *i* which converges to \overline{x} in (\check{X}, \oplus_c) . Since $\{x_i\}$ is a Cauchy net in (\overline{G}, \oplus_c) and all the natural embeddings $\check{X} \to \overline{X}$, $\overline{G} \to \overline{X}$ are continuous with respect to the \oplus_c -topologies, \overline{x} is the limit of $\{x_i\}$ in (\overline{G}, \oplus_c) and so $\overline{x} \in \overline{G}$. Consequently $\check{X} < \overline{G}$ and the lemma is proved. \Box

PROPOSITION 1.8. Let G be a separable p-group. The following facts hold:

- (i) If G is not thick, then the group \overline{G}/\check{G} has uncountable rank.
- (ii) If G is not \bigoplus_c -complete, then the group \check{G}/G may have finite rank.

PROOF (i). We first show that $\check{G} \neq \bar{G}$. Since \bar{G} is thick, it has the same inductive and \bigoplus_c -topologies. Moreover, by ([13] Theorem 2.3), the inductive topology of \bar{G} induces on G its own inductive topology. On the other hand, by Proposition 1.5, the \bigoplus_c -topology of \check{G} induces on G its own \bigoplus_c -topology. Therefore, if G is not thick, then \check{G} must be a proper subgroup of \bar{G} . We now prove that \bar{G}/\check{G} is uncountable. Suppose this were not true. Since \check{G} is a pure subgroup of \bar{G} with countable divisible cokernel, we deduce from ([10] Theorem 3.5) that \check{G} is thick, and this is impossible. In fact \check{G} is \bigoplus_c -complete, but it is not torsion-complete. This contradiction shows that \bar{G}/\check{G} is uncountable.

(ii) Assume the rank of \check{G}/G is not finite. Choose a pure subgroup H of \check{G} such that G < H and $\check{G}/H \cong \mathbb{Z}(p^{\infty})$. Then Lemma 1.7 tells us that $\check{H} = \check{G}$. Since the rank of \check{H}/H is 1, the proof is complete. \Box

2. $- \oplus_c$ -complete groups.

In this paragraph we study the \bigoplus_c -complete groups. As the results of section 1 suggest, the class of \bigoplus_c -complete groups is very large.

First we prove a statement that we shall often use.

PROPOSITION 2.1. Direct sums of \bigoplus_c -complete groups are \bigoplus_c -complete.

PROOF. Let $G = \bigoplus G_i$ where G_i is \bigoplus_c -complete for all *i*. To show that G is \bigoplus_c -complete, we notice the following properties:

(i) The groups $X = \bigoplus_{i \in I} X_i$ where $X_i < G_i$ and $G_i/X_i = \bigoplus_c$ for every i are a base of neighborhoods of 0 for the \bigoplus_c -topology of G.

This assertion is obvious.

(ii) G is a closed topological subgroup of the group $\prod_{i \in I} G_i$ equipped with the box topology of the \bigoplus_c -topology on each component.

We recall that the box topology considered on $\prod_{i \in I} G_i$ admits the subgroups of the form $\prod_{i \in I} X_i$ with $X_i < G_i$ and $G_i/X_i = \bigoplus_c$ for all i as a base of neighborhoods of 0. Thus the conclusion that G is a topological subgroup of $\prod_{i \in I} G_i$ follows from (i). To complete the proof, let $\overline{g} = (g_i)_{i \in I}$ with $g_i \in G_i$ for every i be an element of the closure of G in $\prod_{i \in I} G_i$. Let S be the support of \overline{g} , that is let $S = \{i \in I : g_i \neq 0\}$. Then for each $i \in S$ we can choose a subgroup X_i of G_i such that $g_i \notin X_i$ and $G_i/X_i = \bigoplus_c$. Our assumption on \overline{g} assures that $\overline{g} \in G + (\prod_{i \in S} X_i + \prod_{i \in I \setminus S} G_i)$; consequently S is finite and so $\overline{g} \in G$. This proves that G is a closed subgroup of $\prod_{i \in I} G_i$, as required.

The hypothesis that every G_i is \bigoplus_c -complete implies that $\prod_{i \in I} G_i$ with the box topology is complete ([4] Proposition 13.3). Hence, by property (ii), G is \bigoplus_c -complete. \Box

COROLLARY 2.2. Direct sums of torsion-complete p-groups are \oplus_c -complete.

PROOF. Since torsion-complete *p*-groups are \bigoplus_c -complete, the corollary follows from Proposition 2.1. \Box

We shall obtain another large class of \bigoplus_c -complete groups by means of the next lemmas.

LEMMA 2.3. Let G be a separable p-group and let G' be a subgroup of G with bounded cokernel. Then G is \bigoplus_c -complete if and only if G' is \bigoplus_c -complete.

PROOF. We first show that G' is a topological subgroup of G. Let X be a subgroup of G' such that $G'/X = \bigoplus_c$. Since $(G/X)/(G'/X) \cong G/G'$ is bounded and $G'/X = \bigoplus_c$, we have $G/X = \bigoplus_c$. This proves that the restriction to G' of the \bigoplus_c -topology of G is finer than the \bigoplus_c -topology of G'. Therefore the two topologies coincide, because the natural injection $G' \to G$

G. D'ESTE

is continuous. Assume now that G is \oplus_c -complete. Since G' is a closed topological subgroup of G, we conclude that G' is \oplus_c -complete. Converselv. suppose G' is \oplus_c -complete. Since G' is an open complete topological subgroup of G, evidently G is \oplus_{c} -complete and the proof is finished. Π

LEMMA 2.4. Let G be a separable p-group and let P be a bounded subgroup of G with separable cohernel. Then G is \oplus_{e} -complete if and only if G/P is \oplus .-complete.

PROOF. Assume first G/P is \oplus_c -complete and choose $n \in \mathbb{N}$ such that $p^n P = 0$. Let us verify that $\check{G} \leq G + \bar{G}[p^n]$. Take $\bar{g} \in \check{G}$; then there is a net $\{g_i\}$ in G which converges to \overline{g} in \check{G} . The hypothesis that G/Pis \bigoplus_{c} -complete guarantees that $\{g_i + P\}$ has a limit $g + P \in G/P$. Since the canonical homomorphisms $G/P \to p^n G$ and $p^n G \to G$ are continuous. $\{p^n q_i\}$ converges to $p^n q$ in G and obviously $p^n \bar{q} = p^n q$. Thus $\bar{q} \in G + \bar{G}$ $[p^n]$ and therefore $\check{G} \leq G + \bar{G}[p^n]$. By Theorem 1.4 and Lemma 2.3, this implies that G is \oplus_c -complete. Conversely, suppose G is \oplus_c -complete; then Lemma 2.3 says that $p^n G$ is \bigoplus_c -complete. Since $(G/P)/(G[p^n]/P) \simeq p^n G$. the first part of the proof assures that G/P is \oplus -complete and the lemma follows.

Observe that the class of \oplus_c -complete groups is a full p^{ω} -class in the sense of [6]. Indeed, by Proposition 2.1 and Lemma 2.3, the class of \oplus_c -complete groups is a p^{ω} -class. Moreover, if G is separable and G/P is \oplus_{e} -complete for some $P \leq G[p]$, then, by Lemma 2.4, G is \oplus_{e} -complete.

We can now prove the following

THEOREM 2.5. Let σ be any ordinal. If G is a p^{σ}-projective separable p-group, then G is \oplus_c -complete.

PROOF. The proof is by induction on σ . If $\sigma \leq \omega$ the assertion is obvious, because $G = \bigoplus_{c}$. Let $\sigma > \omega$ and assume the assertion is true for all $\lambda < \sigma$. By ([4] § 82 Ex. 13), G is a summand of the group Tor (H_{σ}, G) , where H_{σ} is the generalized Prüfer group of length σ . To see that G is \oplus_{e} -complete, we first suppose σ is a limit ordinal. Then, by ([4] § 82 Ex. 2 and 8; Lemma 64.1) and by the induction hypothesis, G is a summand of a direct sum of \bigoplus_c -complete groups. Hence the conclusion that G is \oplus_{c} -complete follows from Lemma 1.3 and Proposition 2.1. Assume now σ is not a limit ordinal. From the exact sequence

$$0 \to p^{\sigma-1} H_{\sigma} \simeq \mathbb{Z}(p) \to H_{\sigma} \to H_{\sigma}/p^{\sigma-1} H \simeq H_{\sigma-1} \to 0 ,$$

one obtains the long exact sequence

$$0 \to \operatorname{Tor} \left(\mathbb{Z}(p), G \right) \cong G[p] \to \operatorname{Tor} \left(H_{\sigma}, G \right) \stackrel{\varphi}{\to} \operatorname{Tor} \left(H_{\sigma-1}, G \right) \stackrel{\psi}{\to} \\ \to \mathbb{Z}(p) \otimes G \cong G/pG \to H_{\sigma} \otimes G \to H_{\sigma-1} \otimes G \to 0 \ .$$

Thus the following sequences are exact:

(1)
$$0 \to G[p] \to \operatorname{Tor}(H_{\sigma}, G) \to \operatorname{Im} \varphi \to 0$$
,

(2)
$$0 \to \operatorname{Im} \varphi \to \operatorname{Tor} (H_{\sigma_{-1}}, G) \to \operatorname{Im} \psi \to 0$$
.

Evidently in (2) the group Tor $(H_{\sigma-1}, G)$ is \bigoplus_c -complete, by the induction hypothesis, and Im ψ is bounded; therefore, by Lemma 2.3, Im φ is \bigoplus_c -complete. From Lemma 2.4 and the exactness of (1), we deduce that Tor (H_{σ}, G) is \bigoplus_c -complete and, by Lemma 1.3, the same applies to its summand G.

Proposition 2.1 indicates that the class of \oplus_c -complete groups has a closure property analogous to a closure property of the class of direct sums of cyclis groups. This projective property can be regarded as dual of the following injective property, which is similar to a closure property of the class of torsion-complete groups ([4] Corollary 68.6).

PROPOSITION 2.6. The torsion part of a direct product of \bigoplus_c -complete groups is \bigoplus_c -complete.

PROOF. Let $G = t\left(\prod_{i \in I} G_i\right)$ where G_i is \bigoplus_c -complete for all i. Since $G_i \leq \overline{G}_i$ for every i, it is easy to check that G is a pure subgroup of the torsioncomplete group $T = t\left(\prod_{i \in I} \overline{G}_i\right)$. Therefore, by the first part of Lemma 1.7, we may assume $\check{G} < T$. Let now $t = (t_i)_{i \in I} \in \check{G}$ with $t_i \in \overline{G}_i$ for all i. Then tis the limit of a net $\{g_i\}_{i \in J}$ where $g_i = (g_{ii})_{i \in I} \in G$ and $g_{ii} \in G_i$ for all $i \in I$, $j \in J$. Fix $i \in I$; to end the proof, it is enough to show that $t_i \in G_i$. Since $\check{G} < T$ and the canonical projection $T \to \overline{G}_i$ is continuous, $\{g_{ii}\}_{i \in J}$ converges to t_i in \overline{G}_i . From the hypothesis that G_i is \bigoplus_c -complete and $g_{ii} \in G_i$ for all j, we get $t_i \in G_i$. This completes the proof. \Box

As the next corollary shows, Proposition 2.6 gives some information about \bigoplus_{c} -complete groups which is not contained in Corollary 2.2 and Theorem 2.5.

COROLLARY 2.7. There is a \bigoplus_c -complete group which is not a direct sum of torsion-complete p-groups and p^{σ} -projective separable p-groups.

PROOF. Let $G = t(\prod_{n \in \mathbb{N}} G_n)$ where $G_n = \bigoplus_{k>n} \mathbb{Z}(p^k)$ for all n. By Proposition 2.6, G is \bigoplus_c -complete. We observe now the following facts:

(i) G is not a direct sum of torsion-complete p-groups.

This can be easily proved.

(ii) A proper p^{σ} -projective separable *p*-group G' with $\sigma > \omega$ cannot be a direct summand of G.

Assume the contrary. Then $G' = t\left(\prod_{n \in \mathbb{N}} C_n\right)$ where $C_n = \bigoplus_c$ for all n ([9] Theorem 3). Since $\sigma > \omega$, there is no $k \in \mathbb{N}$ such that $p^k C_n = 0$ for almost all n. Hence, by ([8] Proposition 1.6), G' has an unbounded torsion-complete group T as a summand, but this is impossible. Indeed, by ([12] Proposition 6.7), a p^{σ} -projective p-group cannot contain an unbounded torsion-complete group. This contradiction shows that (ii) holds.

The corollary is now obvious. \Box

Let us note that the group G defined in the proof of Corollary 2.7 is pure-complete ([9] Theorem 2). Another application of Proposition 2.6 enables us to characterize all the \bigoplus_c -complete groups.

THEOREM 2.8. Let G be a p-group. The following statements are equivalent:

- (i) G is \oplus_c -complete.
- (ii) G is a closed topological subgroup of the torsion part of a direct product of a direct sums of cyclic p-groups.

PROOF (i) \Rightarrow (ii). By hypothesis $G = \lim_{\overline{X} \in \mathfrak{B}} G/X$ where \mathfrak{B} is a base of neighborhoods of 0 for G and $G/X = \bigoplus_c$ for all $X \in \mathfrak{B}$. Let $\mathbf{\Pi} = \prod_{X \in \mathfrak{B}} G/X$ and let $T = t(\mathbf{\Pi})$. If G and T are equipped with the \bigoplus_c -topology and $\mathbf{\Pi}$ is regarded as the topological product of the discrete groups G/X, then all the natural inclusions in the commutative diagram

are continuous. Evidently the groups of the form $j^{-1}(U)$ where U ranges over the open subgroups of Π are a base of neighborhoods of 0 for G. Thus the same holds for the groups $i^{-1}(V)$ with V running over the open subgroups of T. Hence G is a topological subgroup of T. Since G is \bigoplus_{c} -complete, G must be closed in T and (ii) is proved.

(ii) \Rightarrow (i). This immediately follows from Proposition 2.6.

It is now clear that the class of \bigoplus_c -complete groups is the smallest class of separable *p*-groups C with the following properties:

- (1) $0 \in \mathbb{C}$ and a group isomorphic to a member of \mathbb{C} belongs to \mathbb{C} .
- (2) If $S \leq G[p]$ and $G/S \in \mathbb{C}$, then $G \in \mathbb{C}$.
- (3) C is closed under direct sums and the torsion part of a direct product of groups of C belongs to C.
- (4) C contains every group that, endowed with its \bigoplus_c -topology, is a closed topological subgroup of a group determined by the above conditions.

3. – Some applications.

In this last section we discuss some consequences of the preceding results. The next proposition investigates the connection between \bigoplus_{c} -complete groups and basic subgroups.

PROPOSITION 3.1. The following facts hold:

- (i) If two separable p-groups have isomorphic \bigoplus_c -completions, then they have isomorphic basic subgroups.
- (ii) There exist 2^{\aleph_0} pairwise nonisomorphic \bigoplus_c -complete groups with isomorphic basic subgroups.

PROOF (i). Let G and H be separable p-groups such that $\check{G} \simeq \check{H}$. Since \bar{G} is isomorphic to \bar{H} , we conclude that G and H have isomorphic basic subgroups.

(ii) Let $B = \bigoplus_{\substack{n \ge 1 \\ n \ge 1}} \mathbb{Z}(p^n)$. We want to prove that there exist 2^{\aleph_0} pairwise nonisomorphic \bigoplus_c -complete subgroups of \overline{B} whose basic subgroup is B. To see this, let I be a set of cardinality 2^{\aleph_0} and let $\{X_i\}_{i \in I}$ be a family of subsets of positive integers such that if $i \ne j$ then $(X_i \setminus X_j) \cup (X_j \setminus X_i)$ is not finite. Let $G_i = t\left(\prod_{\substack{n \in X_i \\ n \notin X_i}} \mathbb{Z}(p^n)\right) \oplus \left(\bigoplus_{\substack{n \ge 1 \\ n \notin X_i}} \mathbb{Z}(p^n)\right)$ for all i; then every G_i is

a \oplus_c -complete group admitting *B* as a basic subgroup. To complete the proof, it is enough to show that if $|X_i \setminus X_j| = \Re_0$, then G_i is not isomorphic

to G_j . Suppose this were not true. Then, by ([4] Theorem 73.6; Lemma 71.1), there exist an isometry $\varphi: G_i[p] \to G_i[p]$, a finite subset $F \subseteq \mathbb{N} \setminus X_j$ and some $k \in \mathbb{N}$ such that $\varphi\left(p^k\left(\prod_{n \in X_i} \mathbb{Z}(p^n)\right)[p]\right) \leq t\left(\prod_{n \in X_j} \mathbb{Z}(p^n)\right) \oplus \left(\bigoplus_{n \in F} \mathbb{Z}(p^n)\right)$. Consequently there is a finite subset $F' \subseteq X_i$ such that $X_i \setminus F' \subseteq F \cup X_j$, while, by hypothesis, $X_i \setminus X_j$ is not finite. This contradiction proves that G_i is not isomorphic to G_j , as claimed. \Box

The following statement shows that socles, viewed as valued vector spaces, do not give much information in the study of \bigoplus_{c} -complete groups.

PROPOSITION 3.2. The following facts are true:

- (i) There exists a \bigoplus_c -complete group whose socle is isometric to the socle of a non \bigoplus_c -complete group.
- (ii) There exist nonisomorphic \bigoplus_c -complete groups with isometric socles.

PROOF (i). Let G be a separable p-group which is neither \bigoplus_c -complete nor thick (for instance, let G be an infinite direct sum of quasi-complete non torsion-complete p-groups) and let $S = \check{G}[p]$. Singe $\check{G} \leqslant \bar{G}$, we can choose $x \in \bar{G}[p] \setminus \check{G}$. Let y be an element of order p^2 of \check{G} and let z = x + y. Take a subgroup A of \bar{G} such that $\langle G, z \rangle \leqslant A$ and $A/G \cong \mathbb{Z}(p^{\infty})$. Since $A \leqslant \bar{G}$ and $A[p] \leqslant S$, there exists a pure subgroup H of \bar{G} such that $A \leqslant H$ and H[p] = S. We want to prove that H is not \bigoplus_c -complete. Assume the contrary. Since $G \leqslant H \leqslant \bar{G}$ and, by hypothesis, H is \bigoplus_c -complete, Lemma 1.7 implies that \check{G} is a pure subgroup of H. Using this fact and the equality $H[p] = S = \check{G}[p]$, one obtains $\check{G} = H$. This is a contradiction, because $x \notin \check{G}$, $y \in H$ and $z = x + y \in H$. Hence H is not \bigoplus_c -complete and (i) is proved.

(ii) A result of ([5] Corollary 1) guarantees the existence of two nonisomorphic groups G_1 and G_2 with isometric socles such that G_1 is a direct sum of torsion-complete *p*-groups and G_2 is a $p^{\omega+1}$ -projective *p*-group. On the other hand, by Corollary 2.2 and Theorem 2.5, G_1 and G_2 are \bigoplus_c -complete. Therefore (ii) holds and the proof is finished. \square

Now we point out some relations between \bigoplus_c -complete groups and thick groups. As Proposition 1.8 suggests and as we shall see in the following, these two classes have completely different properties.

PROPOSITION 3.3. Let G be a separable p-group which is neither \bigoplus_c -complete nor thick. The following facts hold:

(i) There exists a thick group K such that $K + \check{G} = \bar{G}$; $K \cap \check{G} = G$ and $K \subseteq \bar{G}$.

(ii) Condition (i) does not necessarily determine the group K up to isomorphisms.

PROOF (i). By Corollary 1.6 we can choose a subgroup K of \overline{G} such that $\check{G}/G \oplus K/G = \overline{G}/G$. Therefore $K + \check{G} = \overline{G}$; $K \cap \check{G} = G$ and $K \leq \overline{G}$. It remains to check that K is thick. Since $G \leq K \leq \overline{G}$, Lemma 1.7 implies that $\check{G} \leq \check{K}$ and clearly $\overline{G} = \overline{K}$. Consequently $\check{K} = \overline{K}$ and so, by Proposition 1.8, K is thick, as required.

(ii) Let $G = G_1 \oplus G_2$ where $G_1 = \bigoplus_{n \ge 1} \mathbb{Z}(p^n)$ and G_2 is a quasi-complete non torsion-complete group whose basic subgroup is G_1 ([4] § 74 Example). Then G is neither \bigoplus_{o} -complete nor thick, $\check{G} = G_1 \oplus \overline{G}_2$ and a suitable choice for K is that of $K = \overline{G}_1 \oplus G_2$. We shall prove that there exist 2^{\aleph_0} pairwise nonisomorphic subgroups of \overline{G} satisfying condition (i). To see this, let I be a set of cardinality 2^{\aleph_0} . Take a subgroup H of \overline{G} with G < H and elements x_n , $y_{in} \in \overline{G}/G$, where $n \in \mathbb{N}$, with the following properties:

$$\begin{array}{ll} (1) \quad \check{G}/G \ = \langle x_n \colon n \in \mathbb{N} \rangle \oplus H/G \quad \text{ where } \langle x_n \colon n \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty), \ px_0 = 0 \ \text{ and} \\ px_{n+1} = x_n \ \text{for all } n \in \mathbb{N} \,. \end{array}$$

(2)
$$K/G = \bigoplus_{i \in I} \langle y_{in} : n \in \mathbb{N} \rangle$$
 where $\langle y_{in} : n \in \mathbb{N} \rangle \cong \mathbb{Z}(p^{\infty}), py_{i0} = 0$ and $py_{in+1} = y_{in}$ for all $n \in \mathbb{N}; i \in I$.

For every $J \subseteq I$, let K_J be the subgroup of \overline{G} such that $G \leq K_J$ and

$$K_J/G = igoplus_{i \in J} \langle y_{in} + x_n : n \in \mathbb{N}
angle \oplus igoplus_{i \in I \smallsetminus J} \langle y_{in} : n \in \mathbb{N}
angle \;.$$

We claim that every K_J satisfies condition (i). In fact let J be any subset of I. Since $K_J/G + \check{G}/G = \langle x_n, y_{in} : n \in \mathbb{N}, i \in I \rangle + H/G = K/G \oplus \check{G}/G = \bar{G}/G$, evidently $K_J + \check{G} = \bar{G}$. The definition of K_J guarantees that $K_J \leq \bar{G}$, because $G \leq K_J$ and K_J/G is a divisible subgroup of \bar{G}/G . To verify that $K_J \cap \check{G} = G$, select $z \in K_J/G \cap \check{G}/G$. Then there exist $v \in H/G$; $n, n_i \in \mathbb{N}$ and $a, a_i \in \mathbb{Z}$ where $0 < a, a_i < p$ and $a_i = 0$ for almost all i such that

$$z = \sum_{i \in J} a_i (y_{in_i} + x_{n_i}) + \sum_{i \in I \setminus J} a_i y_{n_i} = a x_n + v.$$

Since $K/G \cap \check{G}/G = 0$, we get $a_i = 0$ for all *i*; hence z = 0. Therefore $K_J/G \cap \check{G}/G = 0$ and so $K_J \cap \check{G} = G$. Consequently every K_J satisfies condition (i) and it is easy to show that the groups K_J are all distinct. To end the proof, we apply an argument similar to that used in the last part of ([4] Theorem 66.4). Let B be a basic subgroup of G; then B is countable.

Since $|\text{Hom}(K, \overline{G})| \leq |\text{Hom}(B, \overline{G})| = 2^{\aleph_0}$, the subgroups of \overline{G} isomorphic to K are at most 2^{\aleph_0} . This means that $2^{2\aleph_0}$ groups of the form K_J are pairwise nonisomorphic and so (ii) holds.

From Propositions 1.8 and 3.3 we deduce that, if G is neither \bigoplus_c -complete nor thick, then there exist a lot of thick groups between G and \overline{G} . The following result indicates that, under the same hypotheses on G, there exist also a lot of \bigoplus_c -complete groups between G and \overline{G} .

PROPOSITION 3.4. Let G be a separable group which is neither \bigoplus_c -complete nor thick and let K be as in Proposition 3.3. The following are true:

- (i) There exists an increasing sequence of \bigoplus_c -complete non thick groups $\{X_n\}$ with $\check{G} < X_n$ for all n such that $\bar{G} = \bigcup_{n \in \mathbb{N}} X_n$.
- (ii) There exists an increasing sequence of non ⊕_c-complete non thick groups {Y_n} with G < Y_n for all n such that K = ∪ Y_n.

PROOF (i). Let $X_0 = \check{G}$ and let $X_n = \check{G} + \bar{G}[p^n]$ for all $n \ge 1$. Then, by Lemma 2.3, every X_n is \oplus -complete and the other properties clearly hold.

(ii) Under the hypotheses of (i), let $Y_n = K \cap X_n$ for all n. Then $\{Y_n\}$ is an increasing sequence, $G \leq Y_n$ for every n and $K = \bigcup_{n \in \mathbb{N}} Y_n$. To prove (ii), fix $n \in \mathbb{N}$. Since $G \leq Y_n$ and $\check{G} \leq Y_n$, Lemma 1.7 assures that Y_n is not \bigoplus_c -complete. Moreover, since Y_n/G is bounded and, by hypothesis, G is not thick, it is easily seen that Y_n is not thick. This completes the proof. \Box

The next statement gives some properties of \bigoplus_c -complete groups and thick groups with respect to intersection and group union.

PROPOSITION 3.5. Let G be a separable p-group. The following facts hold:

- (i) Let X be a pure subgroup of G and let X = ∩ X_i where X_i ≤ G for all i. If every X_i is ⊕_c-complete, then X is ⊕_c-complete; if every X_i is thick, then X is not necessarily thick.
- (ii) Group unions of \bigoplus_c -complete or thick subgroups of G are not necessarily \bigoplus_c -complete or thick.

PROOF (i). Suppose X_i is \bigoplus_c -complete for every *i*. Then, by the first part of Lemma 1.7, $\check{X} < X_i$ for all *i*; hence X is \bigoplus_c -complete, as claimed. Let now X be a \bigoplus_c -complete group which is not thick and let $G = \overline{X}$. Evidently X is the intersection of all $X_i \leq G$ such that $X < X_i$ and $G/X_i \simeq \cong \mathbb{Z}(p^{\infty})$. Since all these groups are thick ([10] Theorem 3.5), (i) is proved.

254

(ii) First assume G is not \oplus_c -complete. Then $G = \bigcup_{n \ge 1} G[p^n]$ and every $G[p^n]$ is \oplus_c -complete. Finally let $G = \bigoplus_{n \ge 1} \mathbb{Z}(p^n)$. Since $G[p^n]$ is thick for all $n \ge 1$ and G is not thick, (ii) follows. \Box

This last proposition shows that in a \oplus_c -complete group the cardinality of nondiscrete \oplus_c -complete subgroups and that of non \oplus_c -complete thick subgroups may be as large as possible.

PROPOSITION 3.6. There exists a \bigoplus_c -complete group G with the following properties:

- (i) G has $2^{|G|} \oplus_{e}$ -complete nondiscrete non thick subgroups.
- (ii) G has $2^{|G|}$ non \bigoplus_{c} -complete thick subgroups.

PROOF. We claim that the \oplus_c -complete group $G = t \left(\prod_{n \in \mathbb{N}} G_n\right)$ where $G_n = \bigoplus_{k \ge 1} \mathbb{Z}(p^k)$ for all n satisfies the above conditions.

(i) View G as the group of all bounded maps $f: \mathbb{N} \to \bigcup_{n \in \mathbb{N}} G_n$ such that $f(n) \in G_n$ for every $n \in \mathbb{N}$. If $f \in G$, let $Z(f) = \{n \in \mathbb{N} : f(n) = 0\}$. For every free ultrafilter φ on N, let G_{φ} be the \bigoplus_{c} -completion of the group $\Sigma_{\varphi} = \{f \in G \colon Z(f) \in \varphi\}$. Fix φ ; since $\Sigma_{\varphi} \leq G$, the first part of the proof of Lemma 1.7 guarantees that $G_{\varphi} \leq G$ and clearly $G_{\varphi} \neq \bigoplus_{c}$, because $\Sigma_{\varphi} \neq \bigoplus_{c}$. Also note that every G_n is a summand of G_{φ} ; consequently G_{φ} is not thick. The next step is to show that if $\varphi \neq \psi$, then $G_{\varphi} \neq G_{\psi}$. To this end, pick $F \in \varphi \setminus \psi$. Let g be an element of G[p] with the property that Z(g) = Fand $g(n) \in G_n \setminus pG_n$ for every $n \in \mathbb{N} \setminus F$. Obviously $g \in G_{\varphi}$, but we claim that $g \notin G_{\psi}$. Suppose this were not true. Then, from the hypothesis that $g \in G_{\psi}$, we deduce that g belongs to the closure of Σ_{ψ} with respect to the \oplus_c -topology of G. Hence $g = g_1 + pg_2$ for some $g_1 \in \Sigma_{\psi}$ and $g_2 \in G$. Since $Z(g) \notin \psi$ and $Z(g_1) \in \psi$, there exists $n \in Z(g_1) \setminus Z(g)$ and so $0 \neq g(n) = pg_2(n)$, contrary to the choice of g. This contradiction proves that $g \notin G_{\psi}$; thus the groups G_{φ} are all distinct. Since N has $2^{2\aleph_0}$ free ultrafilters and $|G| = 2^{\aleph_0}$, (i) holds.

(ii) This property immediately follows from the proof of (ii) in Proposition 3.3.

Indeed all the groups K_J used in that proof can be embedded in the group $T = t \left(\prod_{n \ge 1} (\mathbb{Z}(p^n) \oplus \mathbb{Z}(p^n)) \right)$ and it is easy to see that G has a direct summand isomorphic to T.

G. D ESTE

REFERENCES

- [1] K. BENABDALLAH R. WILSON, Thick groups and essentially finitely indecomposable groups, Canad. J. Math., 30, no. 3 (1978), pp. 650-654.
- [2] N. BOURBAKI, Topology Générale, Chapitre 1 à 4, Hermann, Paris, 1971.
- [3] B. CHARLES, Sous-groupes functoriels et topologies. Studies on abelian groups, Paris, 1968, pp. 75-92.
- [4] L. FUCHS, Infinite Abelian Groups, Vol. 1 and 2, London New York, 1971 and 1973.
- [5] L. FUCHS J. M. IRWIN, On $p^{\omega+1}$ -projective p-groups, Proc. London Math. Soc., (3), **30** (1975), pp. 459-470.
- [6] L. FUCHS L. SALCE, Abelian p-groups of not limit length, Comment. Math. Univ. St. Pauli, 26 (1976), pp. 25-33.
- [7] P. D. HILL C. K. MEGIBBEN, Quasi-closed primary groups, Acta Math. Acad. Sci. Hungar., 16 (1965), pp. 271-274.
- [8] J. M. IRWIN J. D. O'NEILL, On direct products of abelian groups, Canad. J. Math., 22, no. 3 (1970), pp. 525-544.
- [9] E. L. LADY, Countable torsion products of abelian p-groups, Proc. Amer. Math. Soc., 37, no. 1 (1973), pp. 10-16.
- [10] C. MEGIBBEN, Large subgroups and small homomorphisms, Michigan Math. J., 13 (1966), pp. 153-160.
- [11] R. MINES, A family of functors defined on generalized primary groups, Pacific J. Math., 26 (1968), pp. 349-360.
- [12] R. J. NUNKE, Purity and subfunctors of the identity, Topics in Abelian Groups, Chicago, 1963, pp. 121-171.
- [13] L. SALCE, The λ -inductive topology on abelian p-groups, Rend. Sem. Mat. Univ. Padova, **59** (1978), pp. 167-177.

Seminario Matematico Università di Padova via Belzoni 7 35100 Padova