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The ~c-Topology on Abelian p-Groups (*).

G. D’ESTE

Introduction.

In this paper we investigate the topology of an abelian p-group G which
admits as a base of neighborhoods of 0 all the subgroups X of G such that
GIX is a direct sum of cyclic groups. We call this topology the ffic-topology
of G. If G with the (D,-topology is a complete Hausdorff topological group,
then G is said to be ffic-complete. The Hausdorff completion of G with
respect to the (D,-topology is called the (D,-eompletion of G and is denoted by G.

In section 1 we prove that the EÐc-completion G of a p-group G is a
EBc-complete group; moreover the completion topology of G and its own
(D,-topology are the same. The group G coincides with the completion of G
with respect to the inductive topology if and only if G is thick.

In section 2 we study the class of (D,-complete groups. This class of

separable p-groups is very large, containing the groups which are direct

sums of torsion-complete p-groups, as well as the groups which are the

torsion part of direct products of direct sums of cyclic p-groups. But the

most interesting result in this direction perhaps is that every separable
pO’-projective p-group is EBc-complete. There are a lot of these groups:
in fact Nunke proved in [12] that, for every ordinal a, there exists a

pa-projective p-group which fails to be pc-projective for every  a. More-

over the class of ffic-complete groups has many closure properties typical
of both the classes of pro-projective and pro-injective p-groups.

In section 3 we study the EÐc-completion with respect to basic subgroups
and we prove the inadequacy of the socle in determining the EBc-complete
groups; finally we give some applications in connection with the class of
thick groups.

(*) Lavoro eseguito nell’ambito dei Gruppi di Ricerca Matematica del C.N.R.
Pervenuto alla Redazione il 6 Febbraio 1979 ed in forma definitiva il 18 Giu-

gno 1979.
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1. - The G),-completion.

All groups considered in the following are abelian groups. Notations
and terminology are those of [4]. In particular p is a prime number and the
symbol @c denotes a direct sum of cyclic p-groups. If G is any group and G’
is a pure subgroup of G, then we write G’ G. A p-group G may be equipped
with various topologies. The p-adic topology has the subgroups p,G
with n E N as a base of neighborhoods of 0; the inductive topology has the
family of large subgroups as a base of neighborhoods of 0. Throughout
the paper, for every p-group G, the group G stands for the completion of G
with respect to the inductive topology. If 2 is a limit ordinal, then the
generalization of the p-adic topology is the 2-adic topology. This topology,
studied by Mines in [11], has the subgroups pa G with a  Â as a base of
neighborhoods of 0. In [13] Salce has studied the Â-inductive topology
introduced by Charles in [3]; a base of neighborhoods of 0 for this topology
consists of all subgroups G(u) where G(u) = {x E G: h(pnx»an, n E N}
and U -- (an)neN is an increasing sequence of ordinals an  2 for all n E N.
In the following, unless otherwise indicated, every p-group G is endowed
with the (Bc’topology. If we are dealing with some other topology, then
the group G equipped with its (Dc-topology is denoted by (G, EBe).

Let G be a p-group and let L be a large subgroup of G. Since GIL = EBe
([4] Proposition 67.4), L is open with respect to the E),-topology of G and
so the Oc-topology is finer than the inductive topology. The next statement
immediately follows from this result and the fact that a p-group G is thick
if and only if G/X = @c implies L  X for some large subgroup .L of G.

PROPOSITION 1.1. Let G be a p-group. Then G is thick if and only il the
EB e-topology coincides with the inductive topology and ac thick group G is

(Be-complete if and only if it is torsion -complete.

Since quasi-complete groups are thick ([4] Theorem 74.1, Corol-

lary 74.6; [1] Theorem 3.2), the quasi-complete and non torsion-complete
group constructed by Hill and Megibben in ([7] Theorem 7) is an example
of a group which is not (De-complete. Let us note the following facts.

:L) A p-group G is discrete in the EBe-topology if and only if G == @c
and G is Hausdorff if and only if proG == 0.
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2) Every homomorphism f: G ---&#x3E;. H with G and H p-groups is con-

tinuous with respect to the EBc-topologies. In fact if HIX
the same holds for Glfl-(X).

3) For every p-group G the EBc-topology of G/proG coincides with the
quotient topology of the EBc-topology of G. By property 2, it is

enough to observe that the natural homomorphism G - G/proG
is open.

Therefore in the study of the G),-eompletion it is not restrictive to con-
fine ourselves to separable non thick groups. In order to show that the

(D,-eompletion of a p-group is :Bc-complete, we need two lemmas.

LEMMA 1.2. Let G be a p-group. Then the EBc-completion G of G is a

p-group.

PROOF. By definition G = lim G/X where X ranges over the subgroups X
of G such that GIX - Let G denote the p-adic completion of G.

Since lim GIP, G where n E N, there is a canonical homomorphism
cp: G  G such that gg((gx + X)x) == (gpn + pnO)n for all (gx + X)x E G.
Since the completion of G in the inductive topology is the group G lim G/L
with L running over the large subgroups of G, there exists a natural homo-

morphism y : 6 -&#x3E; 0 that takes (gX -)- X)X to (gL + ’)L for all (gx + X)x E G.
To show that G is a p-group, it suffices to check that y is an embedding,
and this clearly holds if 99 is injective. We shall now prove that if

(gx + X)x E Ker 99, then gx E X for all X. To see this, fix X. Let mEN;
if Y = X n p- G, then G/Y === EBc. By hypothesis gpmG E pmG and, by the
choice of Y, g, -E- pm G = gpmG + pm G; consequently g, E pm G. On the other
hand gx + X == g, + X and so the height of gx + X in G/X is at least m.
Since m is any natural number and GIX - (D,, we conclude that gx E X,
as claimed. This completes the proof that 0 is a p-group. D

From now on we shall identify G with the subgroup 1p( G) of G and, if G
is separable, then we shall view G as a subgroup of G.

LEMMA 1.3. D2rect suwzwzands of EBc-complete groups are EBc-complete.

PROOF. Let G’ be a direct summand of a EBc-complete group G. Since

the inclusion G--* G is continuous, every Cauchy net in G’ is a Cauchy
net in G. Therefore the hypothesis that G is @c-complete and the con-

tinuity of the projection of G onto G’ assure that G’ is EBc-complete. 0

We are now ready to establish the main result of this section.

THEOREM 1.4. Let G be a p-group. Then the EBc-completion y of G is

EB c -complete.
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PROOF. Without loss of generality we may assume that G is separable.
For every ordinal A we define a group Ga, as follows: if A - 0, then Gl - G ;
if 1 &#x3E; 0 and A is not a limit ordinal, then Gi is the Oc’completion of Gi i ;
if A is a limit ordinal, then G;. U Gj. To prove the theorem, we shall
use three facts: aÂ.

(i) The (D,-topology of 0 is finer than the completion topology.
Let -% be the family of all subgroups X of G such that GIX - :Bc.

Then G = lim G/X and 0 with the completion topology is a topological«

subgroup of the group equipped with the product topology of the

discrete topologies on every GIX. Thus a base of neighborhoods of 0 for
the completion topology of G consists of all subgroups
where F is a finite subset of %. Since

every UF is a neighborhood of 0 for the EBe-topology of G, and so (i) is proved.
(ii) Gi is a subgroup of G for all A.

We shall prove by transfinite induction that GA  0 for all A. If 2 - 0

the assertion is obvious. Let Â &#x3E; 0 and assume G,,  G for every a  A.
If A is a limit ordinal, then evidently Ga, * G. If A is not a limit ordinal and

2 - a + 1, then the hypothesis that G  Ga * G implies that G,,  Ga  G6 = G.
Since GaGJ., we get Oa - 0  OTt and therefore Giyl, as required.

(iii) G,, is a direct summand of Gl for all A &#x3E; 1.

Assume by transfinite induction that Gl is a summand of G (1 for all

1  cr  A. Write Gr == GI EÐ GQ for all 1-  a  A. If A is a limit ordinal,
G, is a direct summand of GA, because

is not a limit ordinal and 2 - o + I- then, by the induction hypothesis,
G, = G, (D G’. Let x : (G, 7 (D,) - (GI, ’6) be the canonical projection where
(Gi, 13) is the (D,-completion of G. To check that yr is continuous, let U
be an open subgroup of (G,, ’6). Then, by property (i), there is some W  U
such that GI/W == (D,. Since Gln-I (W) -- G1 Q+ G/W EÐ G I"J Gl/ W = EÐc’
we see that n is continuous. This result guarantees the existence of a homo-

morphism ,7r’ making the following diagram commute
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where the vertical maps are the natural ones and (Ga,, 1J) is the (D,,-comple-
tion of (GO’, E),). Consequently G,; = GI (f) Ker ði and so G1 is a direct sum-
mand of Ga, as claimed.

We can now show that G = Gl is @c-complete. Suppose this were not
true. Then, from Lemma 1.3 and property (iii), we deduce that Gi is not
E),-eomplete for any A, and therefore the groups GA are all distinct. But

this is clearly impossible, because, by property (ii), they are all subgroups
of 0. This contradiction establishes that 6 is (D,-eomplete and the the-
orem is proved. D

The next proposition describes the topological structure of the EÐe-com-
pletions.

PROPOSITION 1.5. For every p-group G the EÐe-topology 01 a coincides
-w2th the completion topology.

PROOF. It is not restrictive to assume po)G - 0. As before 1J denotes

the completion topology of 0. By property (i) of Theorem 1.4 we know

that the G),-topology of G is finer than ’G. On the other hand, by a well
known result of general topology ([2] Chapter III §3, No. 4 Proposition 7),
a base of neighborhoods of 0 for the completion topology 13 is formed by
the closures in G with respect to ’G of the neighborhoods of 0 for the

@c-topology of G. Therefore, to end the proof, it is enough to show that if U
is an open subgroup of (a, :Be) and U= U r1 G, then the closure Tr of U’

in (G, 1J) is a subgroup of U. To prove this, let {gi} be a Cauchy net in
(G, EÐe) with gi E U’ for all i. Since the natural embedding G --&#x3E;- G is con-
tinuous with respect to the Oc-topologieSy {gi} is a Cauchy net in (a, Q+).
Thus, by Theorem 1.4, it converges to some x in (G, (D,) and clearly x E U,
because U is closed in (6, E),) and gi E U for all i. Since 1J is smaller than

the @c-topology of G, the given net converges to x in (f, ’6); so x E V, by
the definition of V. This means that F U and therefore the @ topology
of G coincides with the completion topology, as claimed. D

COROLLARY 1.6..Lct G be a separable p-group. Then G is a pure topological
subgroup with divisible cokernel of a (f) c-complete group.

PROOF. By Theorem 1.4 and Proposition 1.5, G is a pure dense topo-
logical subgroup of the EÐc-complete group 0. Consequently G is a dense

subgroup of G equipped with the p-adic topology. Hence 6’IG is divisible
and the proof is complete. D

Before comparing the EÐc-completion and the completion with respect
to the inductive topology, we prove the following lemma.
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LEMMA 1.7. Let G be a separable p-group and let G  X  G. Then G  X
and 

PROOF. Since G , X, we may assume 0  X. To show that G,, 
select g c- 6. Then, by Proposition 1.5, there exists a net fgi} with gi E G
for all i which converges to g in (0,, Since {gi} is also a Cauchy net in
(X, EBc) and all the canonical maps f - G, 0, , X7 -X --* X- are continuous
with respect to the (3),-topologies, g is the limit of fgil in (D,) and so
g E X. This proves the inclusion G  X. To see that  0, take x E .f.
As before, there is a net txjl with xi E X for all i which converges to x in
(X, (Be). Since fxi} is a Cauchy net in (G, G),) and all the natural embeddings
1l - X, G - X are continuous with respect to the EBc-topologies, x is the

limit of {xi} in (0, G),) and so X E G. Consequently 1  0 and the lemma
is proved. D

PROPOSITION 1.8. Let G be a separable p-group. The following facts hold:

(i) I f G 2s not thick, then the group G/G has uncountable rank.
(ii) I f G is not EBc-complete, then the group G/G may have finite rank.

PROOF (i). We first show that OT=A G. Since G is thick, it has the same
inductive and EBc-topologies. Moreover, by ([13] Theorem 2.3), the induc-
tive topology of G induces on G its own inductive topology. On the other
hand, by Proposition 1.5, the EBc-topology of 61 induces on G its own

Oc’topology. Therefore, if G is not thick, then G must be a proper sub-
group of G. We now prove that GIG is uncountable. Suppose this were
not true. Since G is a pure subgroup of G with countable divisible cokernel,
we deduce from ([10] Theorem 3.5) that G is thick, and this is impossible.
In fact 0 is EBc-complete, but it is not torsion-complete. This contradic-

tion shows that G/G is uncountable.

(ii) Assume the rank of G/G is not finite. Choose a pure subgroup H
of 61 such that G  H and f/H g_ Z(p 00). Then Lemma 1.7 tells us that # = G.
Since the rank of iÍ/H is 1, the proof is complete. D

2. - (@,-complete groups.

In this paragraph we study the EBc-complete groups. As the.results of
section 1 suggest, the class of EÐc-complete groups is very large.

First we prove a statement that we shall often use.

PROPOSITION 2.1. Direct sums of EBc-complete groups are EBc-complete.
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PROOF. Let G = Q Gi where Gi is (D,-eomplete for all i. To show that G
is (D,-complete, we notice the following properties:

(i) The groups X === EB Xi where Xi  Gi and Gï/Xi === EBc f or every i
tel

are a base of neighborhoods of 0 for the (@,-topology of G.

This assertion is obvious.

(ii) G is a closed topological subgroup of the group Gi equipped
iEI

with the box topology of the (D,-topology on each component.

We recall that the box topology considered on n Gi admits the sub-
2EI

groups of the form n Xi i with Xi : Gi and GdXi === EBc for all i as a base
ieI

of neighborhoods of 0. Thus the conclusion that G is a topological sub-
group of fl Gi follows from (i). To complete the proof, , let g === (g2)iEI with

ic-I

gi E Gi for every i be an element of the closure of G in Fl Gi. Let S be the
iEI

support of g, that is let S == {i E I: gi *- O}. Then for each i E S we can

choose a subgroup Xi of Gi such that gi 0 Xi and GilXi - EBc. Our assump-
tion on g assures that consequently S is finite

and so g E G. This proves that G is a closed subgroup of fl Gi , as required.
iEI

The hypothesis that every Gi is Oc-complete implies that n Gi with
ieI

the box topology is complete ([4] Proposition 13.3). Hence, by property (ii),
G is (D,-eomplete. D

COROLLARY 2.2. Direct sums of torsion -complete p-groups are (Bc-complete.

PROOF. Since torsion-complete p-groups are @c-completCy the corollary
follows from Proposition 2.1. D

We shall obtain another large class of EÐc-complete groups by means
of the next lemmas. 

LR,,MMA 2.3. Let G be a separable p-group and let G’ be a subgroup of G
with bounded cokernel. Then G is EÐc-complete if and only if G’ is ffic-complete.

PROOF. We first show that G’ is a topological subgroup of G. Let X

be a subgroup of G’ such that G’/X = EBc. Since (G/X ) /(G’/X ) -- G/G’ is

bounded and G’/X = Ocy we have G/X = (Dc. This proves that the restric-

tion to G’ of the EBc-topology of G is finer than the EBc-topology of G’.
Therefore the two topologies coincide, because the natural injection G’ - G
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is continuous. Assume now that G is EBe-complete. Since G’ is a closed

topological subgroup of G, we conclude that G’ is EÐe-complete. Conver-

sely, suppose G’ is Oc-complete. Since G’ is an open complete topological
subgroup of G, evidently G is @c-complete and the proof is finished. 0

LEMMA 2.4..Let G be a separable p-group and let P be a bounded subgroup
01 G with separable cokernel. Then G is (Be-complete if and only if GIP is
(@,-complete.

PROOF. Assume first G/P is Oc-complete and choose n E N such that
pn P = 0. Let us verify that G  G -{- G[pn]. Take g E G; then there is a

net fgi} in G which converges to g in G. The hypothesis that G/P
is EBc-complete guarantees that {gi + jP} has a limit g -f-- P E GIP. Since

the canonical homomorphisms GIP -+ pnG and pnG -+ G are continuous,
lp-gi} converges to png in G and obviously png = png. Thus g E G + G [pl]
and therefore 0  G + G[pn]. By Theorem 1.4 and Lemma 2.3, this im-

plies that G is Oc-complete. Conversely, suppose G is (D,-complete; then
Lemma 2.3 says that p,G is G),-complete. Since (GIP)/(G[pn]IP) I"J pnG,
the first part of the proof assures that G/P is U+ -complete and the lemma
follows. D

Observe that the class of (De-complete groups is a full pro-class in the
sense of [6]. Indeed, by Proposition 2.1 and Lemma 2.3, the class of

©,,-complete groups is a pro-class. Moreover, if G is separable and G/P is

(D,-complete for some PG[p], then, by Lemma 2.4, G is EBe-complete.
We can now prove the following

THEOREM 2.5. Let a be any ordinal. If G is a pa-projective separable
p-grooup, then G is EBe-complete.

PROOF. The proof is by induction on 0’. If a  (o the assertion is ob-

vious, because G = EBe. Let or &#x3E; o-) and assume the assertion is true for all

),  a. By ([4] §82 Ex. 13), G is a summand of the group Tor (Ha, G),
where Ha is the generalized Priifer group of length or. To see that G is

EBc-complete, we first suppose cr is a limit ordinal. Then, by ([4] § 82 Ex. 2
and 8; Lemma 64.1) and by the induction hypothesis, G is a summand of
a direct sum of EBe-complete groups. Hence the conclusion that G is

EBc-complete follows from Lemma 1.3 and Proposition 2.1. Assume now (J

is not a limit ordinal. From the exact sequence
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one obtains the long exact sequence

Thus the following sequences are exact:

Evidently in (2) the group Tor (Ha-l’ G) is E),-eomplete, by the induction
hypothesis, and 1m "p is bounded; therefore, by Lemma 2.3, Im cp is EBc-com-
plete. From Lemma 2.4 and the exactness of (:I), we deduce that Tor (g6, G)
is EBc-complete and, by Lemma 1.3, the same applies to its summand G. F-1

Proposition 2.1 indicates that the class of 6),-complete groups has a
closure property analogous to a closure property of the class of direct sums
of cyclis groups. This projective property can be regarded as dual of the
following injective property, which is similar to a closure property of the
class of torsion-complete groups ([4] Corollary 68.6).

PROPOSITION 2.6. The torsion part of a direct product of EBc-complete
groups is EBc-complete.

PROOF. Let G = t(n Gi) where Gi is (Bc-complete for all i. Since Gi"i:Gi
iel 

for every i, it is easy to check that G is a pure subgroup of the torsion-

complete group T = t (U 0i). Therefore, by the first part of Lemma 1.7,
iel 

_

we may assume G c T. Let now t = (ti)iel E G with ti E Oi for all i. Then t

is the limit of a net {gj}jeJ where gj = (gii)iel E G and gij E Gi for all i E I,
j c- J. Fix i c 1; to end the proof, it is enough to show that ti c- Gi Since

G: T and the canonical projection T  Gi is continuous, {gii}ieJ converges
to ti in Gi . From the hypothesis that Gi is @c-complete and gij E Gi for
all j, we get ti E Gi. This completes the proof. 0

As the next corollary shows, Proposition 2.6 gives some information
about EBc-complete gTOUpS which is not contained in Corollary 2.2 and

Theorem 2.5.

COROLLARY 2.7. There is a EBc-complete groúp which is not a direct sum
of torsion-complete p-groups and pa-projective separable p-groups.
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PROOF. Let G : for all n. By Proposi-

tion 2.6, G is @c’complete. We observe now the following facts:

(i) G is not a direct sum of torsion-complete p-groups.

This can be easily proved.

(ii) A proper pcr-projective separable p-group G’ with y &#x3E; w cannot

be a direct summand of G.

Assume the contrary. Then where for all n

([9] Theorem 3). Since or &#x3E; oi, there is no kEN such that pkCn = 0 for
almost all n. Hence, by ([Sl Proposition 1.6 ), G’ has an unbounded torsion-
complete group T as a summand, but this is impossible. Indeed, by ([12] Pro-
position 6.7), a p6-projective p-group cannot contain an unbounded tor-
sion-complete group. This contradiction shows that (ii) holds.

The corollary is now obvious. D

Let us note that the group G defined in the proof of Corollary 2.7 is

pure-complete ([9] Theorem 2). Another application of Proposition 2.6

enables us to characterize all the EÐc-complete groups.

THEOREM 2.8. Let G be a p-group. The following statements are equivalent :

(i) G is (D,-eontplete.

(ii) G is a closed topological subgroup of the torsion part of a direct

product of a direct sums of cyclic p-groups.

PROOF (i) =&#x3E; (ii). By hypothesis where % is a base of

neighborhoods of 0 for G and G/X === EBc for all

and let T = t(II). If G and T are equipped with the EBc-topology and II
is regarded as the topological product of the discrete groups G/X, then all

the natural inclusions in the commutative diagram

are continuous. Evidently the groups of the form j-’(U) where U ranges
over the open subgroups of II are a base of neighborhoods of 0 for G. Thus
the same holds for the groups i-’(V) with V running over the open subgroups
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of T. Hence G is a topological subgroup of T. Since G is EBc-complete,
G must be closed in T and (ii) is proved.

(ii) =&#x3E; (i). This immediately follows from Proposition 2.6. Q

It is ’now clear that the class of EBc-complete groups is the smallest class
of separable p-groups C with the following properties:

(1) 0 e C and a group isomorphic to a member of C belongs to C.

(2) If S  G[p] and G/SEe, then G c- C.

(3) C is closed under direct sums and the torsion part of a direct

product of groups of C belongs to C.

(4) C contains every group that, endowed with its EBc-topology, is a

closed topological subgroup of a group determined by the above
conditions.

3. - Some applications.

In this last section we discuss some consequences of the preceding results.
The next proposition investigates the connection between EBc-complete

groups and basic subgroups.

PROPOSITION 3.1. The following facts hold :

(i) If two separable p-groups have isomorphic EBc-completions, then they
have isomorphic basic subgroups.

(ii) There exist 2o pairwise nonisomorphic EBc-complete groups with

isomorphic basic subgroups.

PROOF (i). Let G and H be separable p-groups such that If. Since G
is isomorphic to H, we conclude that G and H have isomorphic basic
subgroups.

We want to prove that there exist 24, pairwise

nonisomorphic CD,-eomplete subgroups of B whose basic subgroup is B.

To see this, let I be a set of cardinality 2No and let txi}icl be a family of
subsets of positive integers such that if i =X-- j then (X,BXj) U (Xj"’-Xi)
is not finite. Let for all i ; then every Gi is

a E),-complete group admitting B as a’basic subgroup. To complete the

proof, it is enough to show that if IX,BXJ I =,No, then Gi is not isomorphic


