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An Inversion of the Obstacle Problem
and its Explicit Solution.

HANS LEWY (*)

dedicated to the memory of Guido Stampacchia

The obstacle problem in its simplest form for functions in Rn is this:
Given are a smooth domain of Rn and a smooth function V(x),

x E S2 u 8Q with V(x)  0, x E aS2. Minimize the Dirichlet integral of a

function u(z)

among all functions u(x) which vanish on 8Q and which do not exceed V(x).
Existence, uniqueness of u(x) and continuity of its first derivatives are

well established for the solution. 
’

A more difficult problem is the nature of the set

For n = 2, under the hypothesis of convexity of Q and analyticity and
strong concavity of V(x), it was shown in [2], [3] that co is simply connected
and has an analytic boundary. For n &#x3E; 2 it is not known whether or not

the same hypotheses imply the same conclusion. However it was proved
in [1] that if P is a point of aco where m has positive density, then 8m is
smooth near P..

Consider together with ip(x) all obstacles V(x) + c with positive constant c,
and for which max V(x) = 0, while, say, 1p(0153) == - o0 on ôil. The solu-

0

tions u of the above problem become functions u, of the parameter c and so
does the set co = We. As c varies from 0 to 0o the set We increases mono-
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tonely. For it is known that the solution u,(x) is the smallest continuous

superharmonic compatible with the imposed inequality and boundary
condition. It follows that

because (u, + c- c) n u,, is also superharmonic and competes with u,,.

Hence if at x, 1p(x) + c = u,,(x), then also u,,(x) - 1p(x) + c’. This observa-

tion suggests the problem inverse to that of the determination of a),:
Given a smoothly increasing set wc, determine the function 1p(x), i.e. the

obstacle 1p(0153) + c which gives rise to the coincidence set Wc. Contrary to
the difficulty of characterization of wc, given V, this inverse problem admits
of an easy explicit solution. That is the first part of this paper.

The second part, motivated by the first, gives examples in which the
obstacle problem is solved by the inverse method. In particular we prove

3

that if D = R3 7 aQ the point at oo, and V(X) I x2lbi, b j &#x3E; 0, then (o,
3 1

is a solid ellipsoid ’I X2 i laj  const. , aj&#x3E; 0.
1

It is to be expected that the stability of aw, under « small changes of Q
could be established by the method of [4], but we have not carried out its

application to the equation (1.2) below.

1. - The inverse problem.

In order to derive the relation for the recovery of y from the assignment
of wc, we assume that ao), can be represented by

where S(x) is sufficiently smooth. This is a working hypothesis which restricts
the topological behavior of Wc and which essentially limits the nature of the
obstacle and also that of ôQ.

Denote by G(x, y) Green’s function of the Laplacian for the domain Q,
and consider 

-

If G(x, y) is properly normed, this integral represents a function of x which
vanishes on aS2, is C’ in Q, and which is harmonic in Q - cco, while in S ; c
its Laplacian equals that of y. These properties characterize a function
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uniquely and are shared by Ue(X). Thus

we know

whence

Thus

Denote by w the length of the normal at y on OWe as it pierces aco,,. As

el -&#x3E; c, we obtain

Now lim
c’c

grad and

Evidently Ve(x) is continuous in Q, harmonic in Q - We and = 0 on 8Q.
Thus Ve(x) is the so-called conductor potential of We relative to Q. It is

well known how to obtain the factor f (y) in a surfaces integral ff (y) G(x, y) dy
through the jump of the normal derivative. We find, with y a constant
depending on the dimension number n,

y is computed from V’ = - IXB2, Q = R-. We find ue(x) == k(c)BxB2-n for

Ixl&#x3E; Ix. I and ue(x) == C - IXB2 for ]z] Ixol. 01 continuity of u,(x) gives
(2 - n)klxoI1-n = - 21xol I and c _IXOB2 = klxoB2-n = 2(n - 2)-1IxoB2. Thus c =

= n(n - 2)-1IxoB2, ]grad S I - (2n[(n - 2 )) IxoB I and igrad Vel I = 12 - n I Ix,, 1-1 re-
sult in y = 1. Since on 8a), we have S(x) = c and Ve(x) == 1 we can write
this also .
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This relation determines, y together with (1.1) or

the obstacle for all x E Weo if (1.2) holds for all c in 0  c  c,,. It is not neces-

sary to know beforehand that Sex) = const. gives the boundary of the coin-
cidence sets in an obstacle problem; in other words the indeterminacy of
a 1p whose Laplacian obeys (1.2) is removed by (1.3) in a way which does
not depend on c. To see this put 1p(x) - 1pc(x),

with

and compute (ô/ôco)1pco(x) for x in S(s)  co . We find by differentiating
(1.3) at c = Co and substituting (1.2) under the integral

But

as right hand is the evaluation of dy with under-

stood in the sense of distributions. Hence

as required.

2. - Homogeneous S.

Suppose now and , With

w(x) from (1.4) we find
whence Moreover with y’ a constant depending
only on n,
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3. - We apply the foregoing to the case n = 3,

Here the conductor potential of S(x) 1 with respect to R3 is explicitly
known in terms of the elliptic coordinates A,, A,, A.,, solutions of

with - a,  A,  oo, - a,  A2  - a,, - a.,  A3  - a2. This potential V,
is a function only of Â1, li&#x3E; 0, remaining constant on the surface of each
confocal ellipsoid. Its precise value, which incidentally plays no role in the
present investigation, is

with

Accordingly

To obtain aA,Iaxj at S(s) = 1, we put A = Âl in (3.2), take derivatives with
respect to Xi and put Â1 = 0:

Thus (1.2) becomes

From § 2 we gather Hence

We remark that even if any two successive ai are equal and of course also
if all three a, are equal, the conductor potential of Sl still depends only
on A,, the largest of the roots of (3.2), and (3.3) holds good also in these cases.

This result (3.3) yields immediately that y is analytic at the origin where
it must vanish and have a maximum. Since 1p is homogeneous of degree 2
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we have thus that 1p ==I biiXiXi. But it is of interest to know that in
3

this way, as the aj vary, we can obtain 1p(x) = -I x’ilbi with every triple
1

of positive bi in order to prove the claim at the end of the introduction.
Observe that (3.3) implies on S(s)  1

since Similarly

Put then

and
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We intend to show that given positive b,  b2  b. there exist positive a1 
c ac2 c ac3 which solve the proportion (3.4). In view of the homogeneity of

S(x) in al, a2, a3 this means that an arbitrary negative definite form
3

1p(x) = I x 2lbi leads to an ellipsoidal boundary 3coc of the coincidence set We.
1

The first thing to prove is that the map a - b given by (3.4) where

the aj are homogeneous coordinates and so are the b,, can be continuously
extended to the boundary of the a set given by 0  a,  a,  a3. This bound-

ary is the triangle of 3 straight segments: from (0, 0, 1) to (0, 1, 1), from

(0, 1, 1) to (1, 1, 1 ), and from (1, 1, 1 ) to (0, 0, 1 ). Suppose al - 0 while

0 a2  a,, stay fixed. Evidently each of the integrals on the right of (3.4)
increases as ai decreases, tending respectively to

Put Those limit values are

and thus b1, b2 , b3 tend monotonely to limits. The first of these is 0, while
the other two are continuous in a2 , as. By Dini’s theorem the extension of
the map (3.4) to a1 = 0 is continuous as long as 0  a2 c a3 . If now a2 -+ 0
while as == 1, the limit values of the integrals on a, = 0 are b11 = oo,
b2l = oo, but

Hence on we have as
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Unfortunately this is not enough to imply that the map (3.4) of a - b
can be continuously extended to the boundary of the above triangle. We
still must prove that if at = 1  a2 , as-+oo, a2/as-+0, then b1:b2:bs-+0:0:1.

We have with

Because of the symmetries of the integrands it suffices to integrate from 0
to 1 in y3 and from 0 to n/2 in 0. We find with

that

Now uniformly in and

uniformly in as
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Thus, as

Hence

Both of these limits are 0. This would be immediate if the integrations in
numerators and denominators were extended from 8 to n/2 - 8, where 8
is a small positive value, since then sin20 and cos2 8 stay away from 0 and
the ratios of the integrands tends (uniformly) to 0 as a2/as - 0. But inte-

grating from 0 to nl2 increases the denominators while for small 8 &#x3E; 0

since as

log log log log

This completes the proof that the map a-* b has a continuous extension
to the closure of our triangle.
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The next task is to ascertain that there is b in 0  b1 C b2  b3 such
there is an a which is mapped by (3.4) into this b.

Now we have just observed that lim b11= oo, lim b21  oo as al’{,O. Hence
for a small a,ia2 we have bl C b2. Next let a2 = 1, as large and altO.
By (3.5) .

, 
Now if a,/a,, is small, the first limit is large, but the second limit remains

1 2n

below f(I _ Yî)-tdYlflsinOlldO. It follows that if a1 is small, a2 = 1 and as
20131 0

sufficiently large we have b1 1 C b 2  b3 .
Having established the continuous extension of the map a - b to the

closed triangle we note that the vertices are mapped on themselves and so
are the sides whose equations are resp. a1 = 0, a2 = ac3, and a1 = a2. The

order of an interior point b of the triangle with respect to its boundary is 1.
Take for this b a point which is image of an a in the map. Let b’ be another

point, image of another interior point a’ of the triangle. We claim that b’
must lie within the interior of the triangle. Otherwise join a to a’ by the
straight segment whose image in the 6-plane would have to cross the boundary
of the triangle. But at the crossing point b we know that b is image of an
I which lies on the same side of the triangle as b. Now given b there is at
most one ratio al : a2 : ac3 for an ellipsoid 1 x2lai 1 const, boundary of the

coincidence set We. Thus there is a contradiction, and b’ lies within the
triangle. It now follows in familiar fashion that all of the b-triangle is image
of the a-triangle, and the map is one-one and continuous both ways.

4. - An example of the method of this paper in which however the condi-
tion grad S # 0 is not strictly observed in this:

With p &#x3E; 0 a constant put

which is harmonic in R3 - {X,} - {x,} and vanishes at oo.
We take Q == R3 and y == - w2. Then 1p(00) = - oo, max y = 1p(Xl) =

- 1p(X2) - 0. (1.2) suggests putting S = g(w) so that if w = const = a,
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c = g(a). We then find Vc = wla for w(x) c a; grad = g’(a) grad w and
grad Ve = a-1 grad on w = a.

(1.2) becomes

whence

the constant of integration being 0 on account of c = 0 for a == 00 (i.e. for
x = xl or X = x2). On the segment joining x, to x, there is a point
x’ _ Ax, + (1- Â)X2 with 0  1  1 from - (A - j)-2 + pA-2 = 0 for which

grad w(x’) = 0. We observe that this singularity is harmless for the con-

clusion about the solution of the obstacle problem with the present + c.
The value of c for which ao-), has a singular point is easily obtained as
c = 31xl - X2 12p-1. For smaller c, OWe consists of two, for larger c it consists
of one smooth (analytic) surfaces.
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