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An Embedding Theorem for Real Analytic Spaces (*).

F. ACQUISTAPACE (**) - F. BROGLIA (**) - A. TOGNOLI (**)

Introduction.

Let TT be a real analytic, paracompact connected manifold of dimension n.
H. Grauert has proved (see [4]) that V is isomorphic to a closed sub-

manifold of R2n+1. 

If (X, (9x) is a paracompact connected coherent real analytic space and
N = sup dim zx, N &#x3E; n, where 7:ae is the Zariski tangent space, then (X, C9g)

xc-X

can be embedded in Rn+N (i.e. is isomorphic to a closed real analytic sub-
space of Rn+N) (see [16]).

The purpose of this paper is to prove that if (X, 19x) is a (reduced) real
analytic space, paracompact and connected and if N = sup dim T  + o0

x EX

then (X,l9x) can be embedded in an euclidean space Ra.
Using the above result one can prove that the embeddings X - Rn+N

are dense in the space of the 000 maps of X into Rn+N.

1. - Definitions and preliminary remarks.

In this paragraph we shall recall some definitions and well known facts
that we shall.use in the following.

DEFINITION 1. Let (X, 19x) be a ringed space, (X, 19x) is called a real

(complex) coherent analytic space iff locally (X,l9x) is isomorphic to a local
model (8,l9u/eØ) where U is open in R,(Cn) 7 (9u = sheaf of germs of analytic
functions (holomorphic functions), , f is a coherent ideal sheaf of (9u such
that = support of (9ulf.

(*) This paper was written while the authors were members of G.N.S.A.G.A.
(**) Istituto di Matematica, Universita di Pisa.
Pervenuto alla Redazione 1’ll Aprile 1978.
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DEFINITION 2. Let (X, (9X) be a ringed space, (X, 9x) is called a reduced
real (complex) analytic space iff locally (X, (9x) is isomorphic to a local

model (8,l9u/.ø) where U, 19u are as above, S is an analytic closed subset
of U and f is the subsheaf of 19u of the germs of all the analytic functions
that are zero on S.

In the following the analytic spaces are considered as ringed spaces, the
morphisms of ringed spaces are often called analytic (or holomorphic) maps.

It is well known that any reduced complex analytic space is a coherent
complex analytic space, but there exist reduced real analytic spaces that
are not coherent.

Let (X, Ox) be a reduced real analytic space, we shall say that X is
coherent in the point x if there exists an open set U 9 x such that ( U, (QXIU)
is a coherent real analytic space.

Let (X,l9x) be a real analytic reduced space and let us suppose there
exists a coherent real analytic space (X’, (9x,) such that (X,l9x) is the re-

duced space associated to (X’,l9x,). In this hypothesis we have (see [11]): :

i) the set Sx of the singular points of X is contained in a proper real

analytic subspace of X,, .

ii) the set of the points where X is not coherent is a semianalytic
subset (contained in Sx) of codimension at least two in X.

DEFINITION 3. Let (X, 19x) be a coherent real analytic space and (X, 19xJ
a complex analytic space.

We shall say that (X, 19i) is a complexification of (X, (9x) if (X, (9X) is

a closed real analytic subspace of the real analytic space associated to X
and for any x E X we have: (9.i,x - (9x,xo C (if F is a sheaf -9--x means the
stalk of IF at x). 

R

In the following all the real or complex analytic spaces we shall consider
are paracompact and hence metric spaces.

We remember that for a connected reduced real analytic space (X, 49x)
such that sup dim ir  + oo, where Tx is the Zariski tangent space, the

x EX 
°

following statements are equivalent (see [15]):

a) (X,l9x) is the reduced analytic space associated to a coherent real
analytic space (X’, 19x’) such that sup dim -r,,  + 00.

xc-X’

b) (X, dx) is isomorphic to a closed real analytic subspace Y of some R"
and Y has global equations in Rn.

c) there exists a Stein space ? c C" such that Y n Rn is isomorphic
to X.
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H. Cartan has proved (see [12]) that not any real reduced compact
analytic space satisfies one of the equivalent conditions a), b), c). The aim
of this paper is to prove that also these « patological » real reduced analytic
spaces can be embedded in the euclidean space.

Let (X, tPx) be a complex reduced analytic space and (1: C --&#x3E; C the
usual conjugation. A function f : X - C is called antiholomorphic if aof is
holomorphic.

If (Xj, (gx,) i = 1, 2 are two complex, reduced, analytic spaces and

cp : X, ----&#x3E; X2 is a continuous map then Q is said to be antiholomorphic if

locally 99 is described by antiholomorphic functions (for the details see [15]).
Let (X, QX) be a complex analytic space. Then a map a: X - X is

called an antiinvoZution if:

1) aoa = id.

2) a is antiholomorphic.

DEFINITION 4. Let (X, tPx) be a complex, reduced, analytic space and
J : X - X an antiinvolution.

The couple {(X, (9,), o-} is called a complex, reduced, analytic space defined
on the real numbers (briefly defined on R).

Given two complex, reduced, analytic spaces defined on the real numbers

{(Xi, (9x,), ail and a morphism (p: (Xl, QY) -+ (X2, (f)x2) we shall say that Q
is defined on R iff : a2°f{J = Qgoorl.

If f (X, C9g), o’} is as above the set X6 = fx E Xla(x) = s) has a natural
structure of reduced real analytic space. Xa is called the real part of X.

Clearly if Q: (Xl, Ox,) --&#x3E; (X2, (!)x2) is defined on R then Q induces a

morphism qj : X10, ---&#x3E;- X2Q .

2. - Preliminary results.

In this paragraph we shall expose some facts that are necessary to prove
the main result.

These lemmata can be found, in a similar form, in [1], [2].

LEMMA 1. Let Vi, i == 1, 2 be two real analytic, closed submanifolds of the
open sets Ai of Rn.

Let p : Vi --&#x3E; V2 be a real analytic isomorphism and let U8 suppose Rn canon-

ically embedded in Rn+q for any q.
In these hypotheses there exist two open neighbourhoods A.2 of V, in Rn+n

such that q can be extended to an analytic isomorphism q’: A1 -+ .A.2 .
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PROOF. Let F # V2 be a vector bundle, then we shall denote by
q;*(F) # V, the inverse image of F.

It is well known that if F is an analytic vector bundle the same is true
for q;*(F) and we have the following commutative diagram:

where is an analytic isomorphism of vector bundles.
In the following we shall denote by TVi’ NVi the tangent and the normal

bundle of Vi c Ai, i = 1, 2.
It is known (see [9]) that the zero section of Nv, has a neighbourhood

analytitically isomorphic to a neighbourhood Uvt of Vi in A i .
In the following Uv, is called a tubular neighbourhood.
We have the relations (see [9]) :

(we remember that if two analytic vector bundles are C- isomorphic then
they are also analytically isomorphic, see [10]). In the following -- shall

mean analytically isomorphic (as vector bundles, as manifolds, as analytic
spaces... ).

Let us consider the commutative diagram:

From (2) we deduce the commutative diagram:

Now we remark that Q is an analytic isomorphism hence Tv1= q;*(Tv,) ~ TVl
and Nvs r-J q;*(Nvs) and the isomorphism V defined in (3) gives:
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The relation (4) can be written

Relation (5) and the existence of the tubular neighbourhood prove the
assertion of the lemma.

Let X be a real analytic space and X = XI U .X2 an open covering.
Suppose Qi: Xi c.¿. Ai, i = 1, 2 are two proper embeddings of XZ into

open subsets A i of Rn.
Then we have the diagram:

that defines the analytic isomorphism q = ozoog : Y1 -+ Y2 .

LEMMA 2..Let us suppose that cp: Yi - Y2 can be extended to an analytic
isomorphism q3: Ql -¿. Q2 of a neighborhood o f Y1 in Al onto a neighbourhood Q2
o f Y2 in A2. Then the real analytic space X = Xi U .X’2 can be embedded

in a euclidean space Rq.

PROOF. It is enough to prove that X can be embedded in a paracompact
real analytic manifold (any such manifold is isomorphic to a closed sub-

manifold of some Rq (see [4])).
The space X is paracompact; hence there exists an open covering

X = Xi U X2 such that XZ c Xi and therefore Xl , n X2 c Xl n X2.
Let Ai c A.i, i == 1, 2 be open sets of Rn such that: X = Ai n Xi,

X = Ai n Xj and let us denote Yi( = ei(XI n X2 ) .
By hypothesis cp can be extended to q3: Ql -+&#x3E; Q2 where Ql is open and

contains YI. 
Let QI c QI be an open set such that: QI r1 YI = YI, 8i r1 Yl = YI,

Szi c Q I . We have the analytic isomorphism q3: Q§ - §5(Q§) © Q§ .
By the fact that §3 is an omeomorphism we obtain: Q§ r1 Y2 = Y2 .
Let now A§ U A2 be the disjoint union of h§ and A2 and *§3 the equiv-

alence relation s - y &#x3E; x E Ai, y E A2 and y = §3(z) .
We claim that the quotient space 1( U 1§j9#- = X’ is Hausdorff be-

cause the gluing map Q is defined on closed sets of Az . Let x, y be points
of X’ and let us denote by p : h§ U h§ - 8’ the canonical projection.

If there don’t exist open, disjoint neighbourhoods Uae 3 x, U" 3 Y it
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means that we may construct xn -+x’, Yn -+y’, Xn, Yn, x’, y’ E .El l U A2 such
that: p(x’) = x, p(y’) == Y, p(xn) = P(Yn), Sn # Yn .

From the fact that the homeomorphism q3 is defined on a closed set we
deduce that §3(s’) = y’ and hence x = y. So we have proved that 0l’ is T2.

Now we remark that if we take a subset A c A§ U A2 then the topology
of A/PJlIA = A is finer than the topology induced by X’ on p(A). Hence A
is a Hausdorff space.

By the above remark it follows that is a Hausdorff

space.
From the fact that q is an homeomorphism and the A z are open it fol-

lows that the equivalence relation MIA,]LIA, is open and hence X is an

analytic Hausdorff manifold containing canonically X.
Clearly the A have a countable base of open sets, hence X has the same

property and therefore is paracompact. The lemma is now proved.

LEMMA 3. Let X be a real analytic space and X = Xi U X2 be an open
covering.

Let us suppose there exist two analytic embeddings (!i: Xi -&#x3E; A i , Ai i open
set of Rnt, (!(Xi) closed in Ai.

Let us suppose Q,Oel = 99: o1(X1 n X2) -¿. A2 can be extended to an

embedding Q: Ql -&#x3E; A2 o f an open neighbourhood ill of (!1(Xl n X2) in A,
into the open set Å2.

In these hypotheses the space X can be embedded in an euclidean space.

PROOF. Using lemma 1 we prove that the conditions of lemma 2 are

satisfied and hence the thesis follows.

DEFINITION 5. Let X = Xi V X2 be an open covering of a reduced real

analytic space. We shall say that the covering has the extension property
if there exist two embeddings ei: Xi ---&#x3E; Ai c R", satisfing the condition of

the lemma 3.

Lemma 3 can now be written: if X = Xl U X2 has the extension pro-
perty then the real analytic reduced space X can be embedded in an

euclidean space RN.

3. - The embedding theorem.

To prove the embedding theorem we need some criteria to ensure that
a covering X = X, U X2 of a reduced real analytic space has the extension
property (see definition 5).
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PROPOSITION 1. Let (X, C9g) be a real, reduced, analytic space and X =
-- X1 U X2 an open covering of X.

Everyone of the following conditions is sufficient to ensure that the covering
X = X 1 u X 2 has the extension property:

(I) there exist two embeddings (2i:.L&#x3E; i -¿. A i , Ai i open set of Rni, i = 1, 2
and (Xl n X2, (9xlx, nX2) is a reduced coherent real analytic space.

(II) there exist two embeddings (!i: Xi --&#x3E; Ai, Ai i op en set o f RniC Cny, two

Stein spaces Yi c A i contained in two open sets A C cni and defined
on R with respect to the antiinvolutions ai i given by the usual conjuga-
tion of Cni, such that:

i) i n Rni = (!i(Xl U X2);
ii) the isomorphism ’P = Q2oQl 1: (!1(X1 U X2) -+&#x3E; O2(X1 U X2) can be ex-

tended to an isomorphism cp : Yi -&#x3E; Y2 de f ined on R of two open
. neighbourhoods Yi o f (2i(X1 U X2) in Yi.

PROOF:

(I) Let oi : Xl -+ A i c Rni be the embeddings given by the hypotheses
and let us denote 99 == (22 O1 1: (!1(X1 r1 X2) -¿. O2(Xl n X2). We may suppose
n2 &#x3E; 2nl + 1 (otherwise we take Rl-’ = Rnz x RII). From a result of H. Whitney

(see [13]) we have that ’P can be extended to a 000 embedding if;: (!1(Xl n X2)

-+ A2 c Rns where (!1(Xl n X2) is an open neighbourhood of (!1(Xl n X2)
in AI.

From the fact that X’1 r’1 X2 is a coherent real analytic space we deduce,
using the results of [14], that if; can be approached by an analytic em-

bedding cp : Q,(Xl n X2) --&#x3E;- A2 C Rn:a and we may suppose 13 extends ’P.
Part (I) is now proved.

(II) In [3 ] the following result is proved:
Let (X, Ox) be a reduced Stein space, Y a closed analytic subspace and

cp: Y - C’ an embedding. Let us suppose l &#x3E; 2n + 1, n = dim X. Then

the set of all analytic maps 1p: X --&#x3E; C’ that are proper, one to one, regular
on the regular points of X and extend 99 are dense in the space of the

analytic maps that extend 99.
If we suppose that ((X, (9X), a) is defined on R, 0’( Y) = Y and ’P is a

morphism defined on R then we have: the proper, one to one, regular in
the regular points, extension of 99 defined on R are dense in the space of

the extensions of ’P defined on R.

Going back to the proof of this result one checks that if ’P is an em-
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bedding, not necessarily proper, then the one to one, regular in the regular
points, analytic extensions V: X --&#x3E; C’ are dense in the extensions of 99.

The same result is true for mapping defined on R.
Now we can apply these results to our case.

’ We can suppose n2&#x3E;2nl + 1, then there exists an embedding 1jJ: Ai -- A2
of a neighbourhood A1 of Y1 in cn1 into cn2 and hence into A2 that extends Q
(if Y’:.jf -&#x3E; C" is an extension of 99 we take 1jJ = y’],-&#x3E; zj».
We may suppose that y is defined on R and hence defines an embedding

of a neighbourhood of !?1(Xl n X2) in A1 into Rn2. The proposition is now
proved.

Now we can prove the main results:

THEOREM 1. Let (X, (9x) be a real, reduced, connected analytic space and
let us suppose sup dim rx,  -E-- 00, 2x = Zariski tangent spacee at x.

xEX

In these hypotheses (X, (9o) is isomorphic to a closed real analytic subspace
of some euclidean space Rq.

PROOF:

i) We wish to prove the following topological fact: let us suppose
n = topological dimension of X, &#x26; == I Uilic, be an open covering of X.
In this hypothesis there exists an open refinement v’ == tviijej of W
such that:

a) Y’ is locally finite;

b) J is the disjoint union of n + 1 subset J. ..., Jn+1 such that
any connected component of Vk = U Vi is contained in some Ui, ,
k == 1, ..., n + 1. i eJk

The space X is metric and has a countable base of open sets hence the

usual definitions of topological dimension coincide on X (see [6]).
The space X is paracompact of dimension n hence we can suppose,

eventually refining &#x26;, that ó/t == {UiliSI is locally finite and that any
z E X is contained, at most, in n + 1 open sets Ui. From the fact that X
has a countable base of open sets we may also suppose I = N.

Let {ai: X --&#x3E; Rlic-N be a continuous partition of the unity associated

to U == {U i} ieN .
Let us state:
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We have from the above construction:

The families

give the required decomposition of the refinement given by

The assertion is now proved.

ii) From the above result there exists an open covering
such that: i=i

1) for any i = 1, ..., n + 1 there exists an embedding o, : Xi --&#x3E;- A i
where A i is an open set of Rnt and (2i(Xi) is a closed analytic
subset of A i ;

2) there exist open sets Ãi of Cni and Stein closed subspace X c Ãi i
such that: A n Rni = Ai, ii n Ai - X and the ii i are defined
on R.

It is sufficient to choose a covering 4Y by local models, to construct

Y’ and then to take

Let us define:

is not coherent in the point x}.

It is know (see § 1) that T is contained in a proper analytic subspace
of X, (and of X2 ) .

If we consider Xl U X2 - T = X 1 then this analytic reduced space is

covered by X1 and X2 - T and the hypothesis (I) of proposition 1 is satisfied.
Following the construction of the previous lemmata we obtain a real
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analytic manifold

From the construction we see that we may suppose that if A2 is open
in Rni then there exists, in an open set of Cn$, a Stein space defined on R
isomorphic to a neighbourhood of X2 - T in X2 .

In fact A2 contains an embedding of an open subset of A2 and this em-
bedding can be extended to an open set of Cn2..

Let us consider the real reduced analytic space Xl U X2 covered by
Vi and X2.

The charts A2 and X2 c A2 are now in the hypothesis (II) of proposition 1
and hence we can construct an analytic manifold W that contains Xl U X2.

We can now repeat the arguments taking Xl U X2 and X3 and after

Pn+l steps we have embedded X into a real analytic manifold.
The theorem is now proved.

Let (X, (9x) be a real reduced analytic space, we shall denote by C°° (X, Rq),
(C’(X, Rq)) the spaces of the 000, (analytic) maps of X into Rq endowed
with the usual C°° topology.

We have

THEOREM 2. Let (X, (9x) be a real reduced, paracompact, connected, analytic
space of dimension n such that: N = sup dim zx  + 00, 2x = Zariski tan-

x EX

gent space, N 0 n. In these hypotheses we have:

(I) The set of proper, analytic, one to one maps q : X ---&#x3E; R2n+1 that are regular
in the regular points of X is dense in Ooo(X, R2n+1) .

(II) The set of the proper embeddings qJ: X C- Rn+N is dense in C°°(X, RntN).

PROOF. Let us suppose that X is a real analytic subspace of RP.
We remark that any 000 map 99: X ---&#x3E; R, can be extended to a C°° map

Rp --&#x3E; Rs and Q; can be approached by analytic maps y: Rp --&#x3E;- Rs.

It follows that it is enough to prove the theorem for the space of analytic
maps q : X -+ R2n+l (or qJ: X -+ Rn+N) that are restrictions of analytic maps
defined on RP.

From theorem 1, the above remark and the fact that the cubes are

Runge’s sets in CP it follows that the theorem is proved by

PROPOSITION 2. Let (X, (9,) be a reduced, real analytic subspace o f Rp c Cp
satisfying the hypotheses of theorem 2.



425

Then the holomorphic maps ip: Cp --* C’2n+1 (§5: Cp --&#x3E;. Cn+N) de f ined on R
and such that:

iplx is proper, one to one, regular in the regular points of X (an embedding)
are dense in the space of the holomorphic maps 1p: CP -&#x3E;. C’2n+1 (1p: Cp ---&#x3E; Cn+N)
def ined on R.

PROOF. The proof is the same as in [7].
We write here some remarks to simplify the adaptation of Narasimhan’s

proof to our case.

1) The admissible systems defined in § 2 of [7] can be constructed

taking the complement of a locally finite family of hyperplanes of Cp.

2 ) n + I admissible systems of CP are enough, if well chosen, to cover X.

3) X, in general, has no good decomposition into irreducible com-

ponents. Hence the argument of taking a point on any irreducible com-
ponent of X (or of an analytic subspace) must be replaced in the following
way: take a stratification of X and a point on any connected component
of the strata of maximal dimension.

4) All the constructions of [7] can be adapted to holomorphic maps
defined on R (for the details see [16]).
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