HENRYK IWANIEC

The sieve of Eratosthenes-Legendre

<http://www.numdam.org/item?id=ASNSP_1977_4_4_2_257_0>
The Sieve of Eratosthenes-Legendre.

HENRYK IWANIEC (*)

By the sieve of Eratosthenes-Legendre we mean that described by Halberstam and Richert in their beautiful book [1], Chapter 1.

Let be given a finite sequence \mathcal{A} of integers and a set \mathcal{P} of primes. For each real number $z > 2$ let

$$P(z) = \prod_{p < z, p \in \mathcal{P}} p$$

and

$$S(\mathcal{A}, \mathcal{P}, z) = \sum_{a \in \mathcal{A}} 1,$$

the number of elements in the sequence \mathcal{A} which are not divisible by any prime number $p < z$ from \mathcal{P}. The sieve method deals with estimates of $S(\mathcal{A}, \mathcal{P}, z)$ by linear forms in

$$|\mathcal{A}_d| = \sum_{a \in \mathcal{A}} 1,$$

(the number of elements in \mathcal{A} which are divisible by $d|P(z)$)

$$\sum_{d|P(z)} \lambda_d^- |\mathcal{A}_d| < S(\mathcal{A}, \mathcal{P}, z) < \sum_{d|P(z)} \lambda_d^+ |\mathcal{A}_d|.$$

The multipliers λ_d^+, usually called weights, are real numbers satisfying the following conditions

$$\lambda_1^- = \lambda_1^+ = 1,$$

$$\sum_{d|D} \lambda_d^- < 0 < \sum_{d|D} \lambda_d^+ \text{ for all } D > 1, D|P(z).$$

17 - Annali della Scuola Norm. Sup. di Pisa
Next, for each squarefree integer \(d \) we choose \(\omega(d) \) so that \((\omega(d)/d) X \), where \(X \) is a suitable number, approximates \(|\mathcal{A}_d| \), and we write the remainder as
\[
 r_d = |\mathcal{A}_d| - \frac{\omega(d)}{d} X.
\]
Inserting this into (2) we get
\[
 S(\mathcal{A}, \mathfrak{P}, z) < X \sum_{d \in \mathfrak{P}(\epsilon)} \lambda^+_d \frac{\omega(d)}{d} + \sum_{d \in \mathfrak{P}(\epsilon)} |\lambda^+_d r_d|,
\]
and
\[
 S(\mathcal{A}, \mathfrak{P}, z) > X \sum_{d \in \mathfrak{P}(\epsilon)} \lambda^-_d \frac{\omega(d)}{d} - \sum_{d \in \mathfrak{P}(\epsilon)} |\lambda^-_d r_d|.
\]
We want to make these estimates optimal. This requirement determines the parameter \(X \) and the function \(\omega(d) \) almost uniquely. It appears in practice that \(\omega(d) \) is multiplicative and for some \(\kappa > 0 \) satisfies the condition
\[
 -L < \sum_{\omega(p) \leq \kappa} \frac{\omega(p) - \kappa}{p} \log p < A_2,
\]
for all \(2 < \omega < z \), where \(L \) and \(A_2 \) are some constants \(> 1 \). The parameter \(\kappa \) is called the "dimension" of the sieve.

The method of Eratosthenes-Legendre rests on the use of Möbius function \(\mu(d) \) as common value of the weights
\[
 \lambda^+_d = \lambda^-_d = \mu(d).
\]
It turns formula (2) into the Legendre identity
\[
 S(\mathcal{A}, \mathfrak{P}, z) = \sum_{d \in \mathfrak{P}(\epsilon)} \mu(d)|\mathcal{A}_d|
\]
and this identity usually leads to a bad result because, unless \(z \) is very small, the remainder sum
\[
 \sum_{d \in \mathfrak{P}(\epsilon)} |r_d|
\]
has too many terms. It was Viggo Brun who first showed how to construct the sieving weights \(\lambda^+_d \) more effectively. For details see [1], Chapter 1.

The aim of this paper is to show that the Eratosthenes-Legendre sieve yields an asymptotic formula for the sifting function \(S(\mathcal{A}, \mathfrak{P}, z) \) in the case of the dimension \(\kappa < \frac{1}{2} \) and the sequence \(\mathcal{A} \) with elements not too large:
\[
 x = \max_{a \in \mathcal{A}} |a| < A_2 X
\]
for some $A_4 > 1$. It is assumed that the remainders r_d are also not too large:

\[(9) \quad |r_d| < A_4 o(d)\]

for some $A_4 > 1$.

Suppose that

\[(10) \quad 0 < \frac{o(p)}{p} < 1 - \frac{1}{A_4}\]

for all $p \in \mathcal{P}$ and put

\[W(z) = \prod_{p \in \mathcal{P}(o)} \left(1 - \frac{o(p)}{p} \right). \]

The result reads as follows:

THEOREM. Under the assumptions (7)-(10) we have

\[S(\mathcal{A}, \mathcal{F}, z) = \frac{e^{\gamma y}}{I(1-\gamma)} W(z) X \left\{ f(s) + O\left(\frac{(s + 1) L}{1 - 2\kappa} (\log z)^{s - 1} \right) \right\}, \]

where $\gamma = 0.577 \ldots$ is the Euler constant, $s = \log x / \log z$. The function $f(s)$ is defined in Section 2. For $0 < s < 1$ we have

\[f(s) = s^{-\kappa}. \]

The constant in the symbol O depends only on A_1, A_2, A_3 and A_4.

In his thesis, Sullivan proved the asymptotic formula

\[S(\mathcal{A}, \mathcal{F}, z) \sim W(z) X \]

under the condition

\[\sum_{p < z} \frac{o(p)}{p} \log p = o(\log x) \]

instead of (7). His method is based on Halberstam-Richert’s Fundamental Lemma [2] (oral communication).

A comparison of our method with Brun’s method will be given elsewhere.

Keeping the notations introduced above we have

\[S(\mathcal{A}, \mathcal{F}, z) = \sum_{d \in \mathcal{P}(o)} \mu(d) |\mathcal{A}_d| = \sum_{d \in \mathcal{P}(o), d < z} \mu(d) |\mathcal{A}_d| = X \sum_{d \leq x} \mu(d) \frac{o(d)}{d} + \sum_{d \leq x} \mu(d) s_d. \]
1. – An estimate of the remainder sum.

From (9) we get

\[\sum_{d \leq x \atop d \mid P(x)} |r_d| \ll A_i \sum_{d \leq x} \omega(d). \]

With \(\omega \) we associate the generalized Mangoldt’s function \(\lambda \) as usual by Dirichlet’s convolution

\[\omega(d) \log d = \sum_{n \mid d} \omega(n) \lambda(d/n). \]

Since \(\omega \) is multiplicative, the support of \(\lambda \) is contained in the set of powers of primes. It is easily seen that \(\lambda(p) = \omega(p) \log p \), so

\[\sum_{d \leq x \atop d \mid P(x)} \omega(d) \log d = \sum_{n \leq x \atop n \mid P(x)} \omega(n) \sum_{m \leq x/n \atop m \mid P(x)} \lambda(m) \]

\[< \sum_{n \leq x \atop n \mid P(x)} \omega(n) \sum_{p \leq x/n} \omega(p) \log p. \]

Using partial summation, from the upper bound (7) we get

\[\sum_{p \leq x} \omega(p) \log p \ll x \]

and

\[\sum_{p \leq x} \omega(p)/p < x \log \log x + O(1). \]

Hence

\[\sum_{d \leq x \atop d \mid P(x)} \omega(d) \log d \ll x \sum_{d \leq x \atop d \mid P(x)} \frac{\omega(n)}{n} < x \prod_{p \leq x} \left(1 + \frac{\omega(p)}{p} \right) < x \exp \left(\sum_{p \leq x} \omega(p)/p \right) \ll x (\log x)^{\omega-1}. \]

Using partial summation again we get the final result

\[\sum_{d \mid P(x), d \leq x} \omega(d) \ll x (\log x)^{\omega-1} \]

and thus we have the same estimate for the remainder sum (12).
2. The function $f(s)$.

Lemma 1. Let $0 < x < \frac{1}{2}$ and $f(s)$ be the continuous solution of

\[
\begin{cases}
 f(s) = s^{-x} & \text{for } 0 < s < 1 \\
 sf'(s) = xf(s-1) - xf(s) & \text{for } s > 1.
\end{cases}
\]

Then, for $s \to \infty$ we have

\[f(s) = e^{-\pi y} \Gamma(1-x) + O(e^{-s}).\]

Proof. The derivative $f'(s)$ satisfies the equation

\[sf'(s) = -xf(u) du + O(e^{-t}),\]

so $f'(s) = O(e^{-s})$ and thus

\[f(s) = 1 + \int_1^s f'(u) du = c + O(e^{-s}).\]

It remains to calculate the constant c. To this end, let us consider the Laplace transform

\[L(s) = \int_0^\infty e^{-st} f(t) dt = \int_0^\infty e^{-st}(c + O(e^{-t})) dt = cs^{-1} + O(1).\]

It can easily be checked that

\[\frac{d}{ds} (sL(s)) = x(1 - e^{-s}) L(s)\]

and thus

\[sL(s) = c \exp \left(x \int_0^s (1 - e^{-t}) \frac{dt}{t} \right).\]
Now, we calculate in two ways the limit $\lim_{s \to \infty} s^{1-\xi} L(s)$. We have

$$
\lim_{s \to \infty} s^{1-\xi} L(s) = c \lim_{s \to \infty} s^{-\xi} \exp \left(\int_0^s (1-e^{-t}) \frac{dt}{t} \right) = ce^{\gamma}.
$$

On the other hand

$$
\lim_{s \to \infty} s^{1-\xi} L(s) = \lim_{s \to \infty} s^{1-\xi} \int_0^s e^{-st} f(t) dt
$$

$$
= \lim_{s \to \infty} \frac{1}{s} e^{-st} \int_0^1 e^{-tu} du
$$

$$
= \lim_{s \to \infty} \int_0^1 e^{-su} u^{-\xi} du
$$

$$
= \Gamma(1-\xi).
$$

This completes the proof of the Lemma.

Corollary. The function

$$
F(s) = \int_0^s f(u) du, \quad s > 0
$$

is of C^1-class and satisfies the equations

$$
F(s) = \frac{1}{1-\xi} s^{1-\xi}, \quad \text{for } 0 < s < 1,
$$

$$
sF'(s) = (1-\xi)F(s) + \xi F(s-1), \quad \text{for } s > 1,
$$

$$
\frac{d}{ds} \left(\frac{F(s)}{s^{1-\xi}} \right) = \frac{F(s-1)}{s^{2-\xi}}, \quad \text{for } s > 1.
$$

3. – An asymptotic formula for the main term.

Let us put

$$
g(d) = \mu(d) \frac{o(d)}{d}
$$
and define for all \(x > 1, \ z > 1 \)

\[
G(x, z) = \sum_{d \leq \sqrt{x} \atop d \in \mathcal{P}} g(d).
\]

To get an asymptotic formula for \(G(x, z) \) we apply the first step of the Levin-Fainleib's iteration method \([4]\). This method works effectively for sums of positive multiplicative functions, in particular for the one which appears in the Selberg sieve (see \([3]\)). Although our function \(g(d) \) changes sign, it turns out that the method still works in the case \(x < \frac{1}{2} \) considered here. Imitating \([3]\), we shall prove

Proposition 1. For \(x > 2, \ z > 2 \) we have

\[
G(x, z) = C f(s) (\log z)^{-\kappa} + O \left(\frac{(s+1)L}{1-2\kappa} (\log x)^{\kappa-1} \right),
\]

where

\[
s = \frac{\log x}{\log z}, \quad C = \frac{1}{\Gamma(1-x)} \prod_p \left(1 - \frac{\omega(p)}{p} \right) \left(1 - \frac{1}{p} \right)^{-\kappa}
\]

and the constant in the symbol \(O \) depends only on \(A_1, A_2 \).

Theorem will follow from

Corollary. For \(x > 2, \ z > 2 \) we have

\[
G(x, z) = \frac{e^{\kappa \gamma}}{\Gamma(1-x)} W(z) \left\{ f(s) + O \left(\frac{(s+1)L}{1-2\kappa} (\log z)^{\kappa-1} \right) \right\}.
\]

The constant implied in the symbol \(O \) depends only on \(A_1 \) and \(A_2 \).

To derive Corollary from Proposition 1 we have to show

\[
W(z) = e^{-\kappa \gamma} \Gamma(1-x) C (\log z)^{-\kappa} \left\{ 1 + O \left(\frac{L}{\log z} \right) \right\}.
\]

But this is a simple consequence of the Mertens formula

\[
\prod_{p \leq z} \left(1 - \frac{1}{p} \right) = \frac{e^{-\gamma}}{\log z} \left(1 + O \left(\frac{1}{\log z} \right) \right)
\]

and of the estimate

\[
\Gamma(1-x) C = \prod_{p \leq z} \left(1 - \frac{\omega(p)}{p} \right) \left(1 - \frac{1}{p} \right)^{-\kappa} \left\{ 1 + O \left(\frac{L}{\log z} \right) \right\}.
\]

For details see \([1]\), Lemma 5.3.
Before we prove Proposition 1 we shall show a few auxiliary lemmas. Let

$$T(x, z) = \int_1^x \frac{G(t, z)}{t} \, dt = \sum_{d \leq x \atop d \mid F(x)} g(d) \log \frac{x}{d}$$

for $x > 1$ and $z > 1$. For $0 < x < 1$ we put $T(x, z) = 0$.

Lemma 2. For $x > 2$ and $z > 2$ we have

$$G(x, z) \log x = (1 - \kappa) T(x, z) + \kappa T \left(\frac{x}{z}, z \right) + O(L \log^* x).$$

The constant in the symbol O depends only on A_1 and A_2.

Proof. We start with the definition of generalized Mangoldt’s function χ associated with g:

$$g(d) \log d = \sum_{n \mid d} g(n) \chi(d/n).$$

Since g is multiplicative, the support of χ is contained in the set of powers of primes. It is easily seen that $\chi(p) = - (\omega(p)/p) \log p$, so

$$\sum_{d \leq x \atop d \mid F(x)} g(d) \log d = \sum_{d \leq x \atop d \mid F(x)} g(d) \sum_{n < x/d \atop n \mid F(x)} \chi(n) = - \sum_{d \leq x \atop d \mid F(x)} g(d) \sum_{p < x/d \atop p \nmid d} \frac{\omega(p)}{p} \log p.$$

Since

$$\sum_{p < y} \frac{\omega(p)}{p} \log p = \kappa \log y + O(L), \quad \sum_{d < x \atop d \mid F(x)} |g(d)| < \prod_{p < x} \left(1 + \frac{\omega(p)}{p}\right) \ll (\log x)^\kappa,$$

we obtain

$$\sum_{d < x \atop d \mid F(x)} g(d) \log d = - \kappa \sum_{d < x \atop d \mid F(x)} g(d) \log \left(\min \left(z, \frac{x}{d} \right) \right) + O(L \log^* x).$$

If we add the sum $\sum_{d < x \atop d \mid F(x)} g(d) \log x/d$ to both sides, we arrive at (14).
Lemma 3. For \(x > y > 2 \) and \(x > 2 \) we have

\[
\frac{T(x, z)}{(\log x)^{1-x}} = \frac{T(y, z)}{(\log y)^{1-x}} + \int_y^z \frac{T(t, z)}{(\log t)^{1-x}} \, dt + O\left(\frac{L}{1 - 2x}\right)(\log y)^{2x-1}.
\]

The constant in the symbol \(O \) depends only on \(A_1 \) and \(A_2 \).

Proof. Let us write (14) with \(x \) replaced by \(t \) and divide throughout by \(t(\log t)^{2-x} \). Integrating with respect to \(t \) from \(y \) to \(x \), we obtain

\[
\int_y^x \frac{G(t, z)}{t(\log t)^{1-x}} \, dt = (1 - \kappa) \int_y^x \frac{T(t, z)}{t(\log t)^{1-x}} \, dt + \int_y^x \frac{T(t, z)}{t(\log t)^{1-x}} \, dt + O\left(\frac{L}{1 - 2x}\right)(\log y)^{2x-1}.
\]

If we integrate the identity

\[
\frac{\partial}{\partial t} \left(\frac{T(t, z)}{t(\log t)^{1-x}} \right) = \frac{G(t, z)}{t(\log t)^{1-x}} - (1 - \kappa) \frac{T(t, z)}{t(\log t)^{1-x}}
\]

and add the result to the formula above, we arrive at (14).

Lemma 4. For \(x > 2 \), we have

\[
T(x, z) = \frac{C}{1 - \kappa} (\log x)^{1-x} + O\left(\frac{L}{1 - 2x}\log^x x\right).
\]

The constant in the symbol \(O \) depends only on \(A_1 \) and \(A_2 \).

Proof. For \(x > t > 2 \) we have

\[
G(t, z) = G(t, t) = G(t),
\]

\[
T(t, z) = T(t, t) = T(t)
\]

and by Lemma 2

\[
r(t) = G(t) \log t - (1 - \kappa) T(t) \ll L \log^x t.
\]

If we divide (16) throughout by \(t(\log t)^{2-x} \) and integrate with respect to \(t \)
from 2 to \(x \), we obtain

\[
\int_2^x \frac{G(t)}{t^{(\log t)^{1-\kappa}}} dt - \left(1 - \kappa\right) \int_2^x \frac{T(t)}{t^{(\log t)^{1-\kappa}}} dt = \int_2^x \frac{r(t)}{t^{(\log t)^{1-\kappa}}} dt = c_1 + O\left(\frac{L}{1 - 2\kappa} (\log x)^{\kappa - 1}\right).
\]

But

\[
\frac{d}{dt} \left(\frac{T(t)}{t^{(\log t)^{1-\kappa}}}\right) = \frac{G(t)}{t^{(\log t)^{1-\kappa}}} - \left(1 - \kappa\right) \frac{T(t)}{t^{(\log t)^{1-\kappa}}},
\]

so integration by parts leads to

\[
\frac{T(x)}{(\log x)^{1-\kappa}} - \frac{T(2)}{(\log 2)^{1-\kappa}} = c_1 + O\left(\frac{L}{1 - 2\kappa} (\log x)^{\kappa - 1}\right)
\]

and finally

\[
T(x) = c_2 (\log x)^{1-\kappa} + O\left(\frac{L}{1 - 2\kappa} \log \kappa x\right).
\]

It remains to calculate the constant \(c_2 = c_1 + \log^x 2 \).

From (16) we get

(17) \quad G(x) = (1 - \kappa) c_4 (\log x)^{-\kappa} + O\left(\frac{L}{1 - 2\kappa} (\log x)^{\kappa - 1}\right)

for \(x >> 2 \). Hence, for \(s > 0 \) we have

\[
\prod_p \left(1 - \frac{\omega(p)}{p^{s+1}}\right) = \prod_{n=1}^{\infty} \frac{g(n)}{n^{s+1}} = s \int_1^\infty \frac{G(x)}{x^{s+1}} dx = s \int_1^2 + s \int_2^\infty = O(s) + (1 - \kappa) c_2 s.
\]

\[
\cdot \int_2^\infty \frac{\log^{-\kappa} x}{x^{s+1}} dx + O\left(\frac{L s^x}{1 - 2\kappa} \int_2^\infty \frac{\log x}{x^{s+1}} dx\right) = (1 - \kappa) c_2 s x^x \Gamma(1 - x) + O\left(\frac{L}{1 - 2\kappa} x^{1-x}\right).
\]

Since \(\lim_{s \to 0} s^x (s + 1) = 1 \), by the Euler product formula we obtain

\[
(1 - \kappa) c_4 \Gamma(1 - \kappa) = \lim_{s \to 0} s^x \prod_p \left(1 - \frac{\omega(p)}{p^{s+1}}\right) = \prod_p \left(1 - \frac{\omega(p)}{p}\right) (1 - \frac{1}{p})^{-\kappa}.
\]

This completes the proof of Lemma 4.
Now, we are ready to prove the general result

PROPOSITION 2. For \(x > 2 \) and \(z > 2 \) we have

\[
T(x, z) = CF(s)(\log x)^{1-x} + O\left(\frac{(s + 1)L}{1 - 2x} \log^x x\right).
\]

The constant in the symbol \(O \) depends only on \(A_1 \) and \(A_2 \).

PROOF. The proof will proceed by induction. Putting

(19)

\[
T(x, z) = CF(s)(\log x)^{1-x} + R(x, z)
\]

we have to prove

(20)

\[
R(x, z) \ll \frac{(s + 1)L}{1 - 2x} \log^x x,
\]

for all \(x > 2 \) and \(z > 2 \). This has already been proved in Lemma 4 for all \(z > x > 2 \). In this range \(R(x, z) = R(x, x) \).

If we introduce (19) into (15) we find out that the leading terms disappear throughout and we are left with a relation between the remainder terms only, namely

(21)

\[
\frac{R(x, z)}{(\log x)^{1-x}} = \frac{R(y, z)}{(\log y)^{1-x}} + \int \frac{R(t/z, z)}{(\log t)^{1-x}} d(\log \log t) + O\left(\frac{L}{1 - 2x} (\log y)^{x-1}\right)
\]

for all \(x > y > 2 \) and \(z > 2 \).

Let us assume for a moment that \(y = z \) and

(22)

\[
z < x < z^2.
\]

Accordingly, we can use (20) to the right-hand side of (21) and in the result we arrive again at (20) but now for the range (22). Therefore, we already have

(23)

\[
R(x, z) \ll \frac{BL}{1 - 2x} (s + 1) \log^x x,
\]

for all \(z > 2 \) and \(2 < x < z^2 \). The constant \(B \) depends only on \(A_1 \) and \(A_2 \).

Now, we shall show by induction that if \(B \) is sufficiently large then (23) holds for all \(z > 2 \) and \(x > 2 \). For that, it is enough to prove the implication: if (23) holds for all \(x < x^u \) then it holds for \(x = x^{u+1} \), where \(u \) is real number \(> 1 \).
After putting
\[y = z^u, \quad x = z^{u+1} \]
in (21), we get by the inductive assumption

\[
\frac{R(x, z)}{(\log x)^{1-\alpha}} < \frac{BL}{1-2\alpha} \left(u + 1 (\log x)^{3\alpha-1} + \frac{\log x}{\log z} \left(\log \frac{t}{2} \right)^\alpha d (\log \log t) \right) + \\
+ O \left(\frac{L}{1-2\alpha} (\log x)^{3\alpha-1} \right) < \frac{BL}{1-2\alpha} \left(u + 1 + \frac{u+1}{u} \right)^{1-\alpha} + \varepsilon (\log x)^{3\alpha-1}.
\]

If \(B \) is sufficiently large then \(\varepsilon < 1 - 1/\sqrt{2} \) and thus the term in the bracket is less than \(u + 2 \). This completes the proof of Proposition 2.

5. – Completion of the proof of Proposition 1.

Putting \(F'(s) = 0 \) for all \(s < 0 \) we find out from (14) and (18) that

\[
G(x, z) = C s^{-1} [(1-x) F(s) + x F(s-1)] (\log x)^{-\alpha} + \\
+ O \left(\frac{(s+1)}{1-2\alpha} (\log x)^{\alpha-1} + L (\log x)^{\alpha-1} \right) = CF'(s) (\log x)^{-\alpha} + \\
+ O \left(\frac{(s+1)}{1-2\alpha} (\log x)^{\alpha-1} \right)
\]

for all \(x > 2 \) and \(z > 2 \). This completes the proof of Proposition 1.

REFERENCES