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Some Examples of Singularities in a Free Boundary (*).

DAVID G. SCHAEFFER (**)

’ 

dedicated to Hans Lewy

Let Sz be a domain in Rn with a smooth boundary and let y be a smooth
function on SZ with 1p  0 on the boundary. We consider the following
constrained variational problem (the so-called obstacle problem): Minimize
the Dirichlet integral flgradul2dx over the closed convex subset K of the
Sobolev space H1(Q):

The existence of a unique minimizing function u is trivial, and it is known [1]
that u is C’ with Lipschitz continuous first derivatives. The most interesting
questions here focus on the contact set

In this paper we construct examples where aI is singular even though the
obstacle function is super-harmonic and real analytic or C°°. In the real

analytic case (§1) al has an isolated singularity of the form illustrated in
Fig. 1 or 2. We think it noteworthy in Fig. 1 that at the double point 01
consists of two tangent curves, not two curves intersecting at a non-zero
angle as is the generic situation for the level sets of a smooth function at a
saddle point, and in Fig. 2 that at the cusp point not the i power
one might have expected. In the C°° case ( § 2) al may have more or less
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arbitrary behavior along a subspace of codimension 1; in particular I may
contain an infinite number of components. To our mind these examples
show the need for a generic theory.

Figure 1

Figure 2

It is readily seen that the minimizing function u is harmonic in 
and vanishes at 8Q. Moreover u on I and is C’ across 37 so we have
the free boundary conditions

Conversely, suppose that leD is a closed set with a piecewise C1 boundary
and that u is a harmonic function on 92 - I which vanishes at aS2 and
satisfies (1); we claim that the minimizing function is given by

provided on Q - I and on I. In the notation of variational

inequalities (see [2]) the minimizing function may be uniquely characterized
by the relation

where fl is the maximal monotone graph



135

The reader may easily verify that f is a solution of (2), thereby proving the
claim. To construct our examples we introduce a set I with a singularity
of the type desired and then determine a harmonic function satisfying (1).

1. - Examples with a real analytic obstacle.

Both examples of the present section are two dimensional, and their
construction is greatly simplified by the use of complex notation, z = x -~- iy.
Let y be an obstacle function on an open set S2 and let leg be a closed
set with a piecewise C’ boundary. Suppose fez) is a (complex) analytic func-
tion on Q - I such that

Consider the indefinite integral of f,

In principle u need not be single-valued, because Q - I is not simply con-
nected. However we observe that

as i1p1l) dz is the differential of 1p. Thus the integral of f around any
closed curve is pure imaginary or zero, so u is well defined. Of course u is

harmonic and It follows from (1.1) that grad u = grad 1p on aI,
and by an appropriate choice of the constant of integration in (1.2) we may
also arrange that u == 1p on al. In conclusion, given an analytic function on
Q-I satisfying (1.1), equation (1.2) defines a harmonic function there

which satisfies (1).
In this paragraph we define the contact set Ii, j = 1 or 2, for our two

examples. Consider the analytic function

where s is a real parameter and P(z) is chosen as follows:



136

If lzl = 1 then z-1 = z, so we have the relations

It follows from these relations that for example 1

Therefore if s &#x3E; 0 then 0 maps the unit circle S onto a curve 01 of the form
shown in Fig. 1, the inverse image of the double point being ± i. It may
be seen similarly that in example 2, the curve of Fig. 2 displays the quali-
tative features of the image O2 of S under 0; the derivative of 0 is non-zero
on ~S except at z = 1. For E = 0, observe that 0 is a conformal map of

~z : onto the plane cut along the real axis from -1 to 1. By choosing
E &#x3E; 0 small, we may arrange that, in either example 1 or example 2, 0 maps
the circle ~z : Izl = 2~ onto a Jordan curve which contains Cj in its in-
terior. Let I, be the (closed) region inside OJ and let SZ~ be the (open) region
inside It follows from the principle of the argument that 0 maps the
annulus

one-to-one onto as we have the formula

the variation being computed with z moving counter-clockwise around the
outer circle of aA and clockwise around the inner circle. (The variation
around both circles vanishes if ~ is outside S2j, and the two contributions
cancel for I in provided E &#x3E; 0. ) In our subsequent calculations we sup-
press the subscript j ; I will denote one of the sets it not mattering for the
argument which.

Consider the obstacle function 1p(x, y) = - (x2 + y2)/2, for which equa-
tion (1.1) takes the form
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Using the identification of and A provided by 0, we may re-write
this equation as

But O(z) = 0(~), and for lzl = 1 we have z = so the right hand side

of (1.4) equals - O(llz). Thus

is analytic on Q-I and satisfies (1.1 ), where ~-1: ,i2 ~ I -~ A is the in-

verse function Hence (1.2) defines a harmonic function u on 
which verifies (1). We will prove below that

Let v be the harmonic function on S~ (not just S2 -I, the domain of u)
such that v = u on 8Q. The obstacle function y~’ = y~ - v is real analytic
and super-harmonic, and by (1.5) y’ 0 on aS2. Moreover u’ = u - v is har-
monic on vanishes at aS2, verifies (1) for the obstacle y’, and by (1.5)
satisfies u’&#x3E; 1p’ on ,S~ ~ I. As discussed above, I is therefore the region of
contact for the obstacle problem with y’ as data.

It remains to prove (1.5). Using the change of variable formula for in-
tegrals,

we see that (1.5) is equivalent to

where ~’ _ ~ V { ~z ~ = 2~. Note that the left hand side of (1.6), which we
denote by U(z), may be written

the contour here may be started anywhere on the unit circle as the integrand
vanishes identically there. We first show that U(z) is non-negative on aA.
Of course vanishes for iz =1, and we need only consider iz = 2.
We write the two terms in (1.3) as
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the notation being chosen because == :l: ~(z). Now U(z) depends
quadratically on 8, say

A simple calculation shows that

and hence

In particular a(z) is positive on = 2} except at z = ::f:: 2. For the next

term, we may derive from (1.6a) the formula

from which we conclude that b(2) &#x3E; 0, as the integrand is non-negative.
Similar analysis shows that b(- 2) &#x3E; 0. (This computation may also be re-
duced to an inspection of signs if the contour in (1.6a) is started at z = - 1.
As noted above, we are free to do so.) It follows that U(z) &#x3E; 0 for Izl = 2,
provided s is chosen sufficiently small and positive.

We see from (1.6a) that

Since 0 is a conformal map of A, the second factor on the right in (1.8) is
non-vanishing on A. It is readily computed that the first factor vanishes if
and only if

By (1.7), 1m Ø+(z) is non-zero on the (open) annulus A except for z real,
where RI 0-(z) is non-zero. Thus the first factor in (1.8) is also non-vanishing.
Since the gradient of U is non-zero on A, the minimum of U(z) for

must be assumed for z E aA. By the computation of the preceding
paragraph, this minimum is zero, and (1.6) just expresses the fact that U
cannot assume its minimum at an interior point. This completes the proof
that I is a possible contact set for the obstacle problem.

The intuitive origin of these singularities is presumably the following.
Let and "P2 be two obstacle functions whose regions of contact consist of
one and two components respectively, the components being bounded by
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non-singular Jordan curves. Consider the one parameter family of obstacle
functions + (1- with contact sets 1(a.). As a varies from zero

to one, it seems that either one of the two components of 1(0) must shrink
to zero and disappear or else the two components must flow towards one
another and unite. The singularity of Fig. 1 surely arises when two compo-
nents join one another. As we mentioned above, at the double point 01
consists of two tangent curves. It can be shown that two curves intersecting
at a non-zero angle is not a possible singularity of al if ip is super-harmonic
the proof is by a localization of the conformal mapping argument of Lewy-
Stampacchia [4] as is done for example in [3] or [3’].

A shorter proof of the existence of the singularity in Fig. 1 is available.
Let C be an analytic curve with the qualitative features displayed in Fig. 1

(Formula (1.3) provides such a curve.), and let I be the region inside C.
By the Cauchy-Kowalewsky theorem, the Cauchy problem 4 U = 1 with
homogeneous data on C may be solved in some neighborhood of C. That

is, there is a neighborhood Q of I and a solution u of the Cauchy problem
on S2 ~ I. We may assume, by shrinking S~ if necessary, that u &#x3E; 0 on

Then u is the solution of a variational inequality

with the constraint u &#x3E; 0, and one may solve a Dirichlet problem as above to
reduce to the case of an inhomogeneous constraint u ~ y~ with a homogeneous
equation as in (2). Indeed this is essentially the construction of § 2, although
in that section the fact that C is only C°’ necessitates some modifications.

We have presented the example given above because it gives a singularity
of the type illustrated in Fig. 1 on a domain which is not itself pinched
to a near figure eight.

Our understanding of the singularity in Fig. 2 is as follows. Let 1pj, j == 1
or 2, be chosen as above; that is, the contact set for 1pj has j non-singular
components, and as 1p2 is deformed continuously to 1pl the two components
of I flow together and unite. Choose a third function 1po whose contact set

has one non-singular component and such that as 1p2 is deformed continuously
to 1po, one of the two components of I shrinks to zero and disappears. Con-

sider the two parameter family of convex combinations of . Among
the contact sets for this family there will be some which consist of a very
small component joining a much larger one. In particular we interpret Fig. 2
as a component of diameter zero joining a component of finite size. This

interpretation suggests that in any neighborhood of the given obstacle there
will be obstacles which produce two separate components.
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We recall the somewhat surprising 2/5 power that characterized the cusp
point in Fig. 2. It can be proved that a 3 power cusp cannot occur as a
singularity of al, assuming that y is super-harmonic. Suppose one attempts
to imitate the construction of the present paper by defining a proposed
contact set I analogous to Fig. 2 but with a 3 power cusp. Although it is
possible to find a harmonic function u on which satisfies (1), a simple
power series calculation shows that the condition u&#x3E; y is violated in any

neighborhood of the cusp point.

2. - Examples with a C°° obstacle.

Let S~ be a convex subset of Rn with smooth boundary such that S~ is
symmetric with respect to the reflection (x’, xn) ~ (x’, - xn). Here we use

the standard notation X = (x’, xn) for x E Rn, and we will identify Rn-1 with
the subspace 0) : In the following theorem, the main result
of this section, we show that, given any subsets E and F of with .E open,
F closed, and

there is a smooth, super-harmonic obstacle for which the region of con-
tact I satisfies

In the theorem we use the notation .E = UEj for the decomposition of E
into connected components, with similar notation for F, I, and J, where J
is the interior of I.

THEOREM 2.1. - If E and I’ are open and closed, respectively, and satisfy (2.1),
then there is a C°°, super-harmonic obstacle 1jJ whose contact set I has the following
property : The components of I (resp. J) may be put in one-to-one correspond-
ence with the components of F (resp. E) and

LEMMA 2.2. For any open set 0 c Rn there is a non-negative Goo function
a(x) such that
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PROOF. Let be a countable basis for the topology of Rn, where Bi
is an open ball of radius ri and center xi . Let ~(x) be a non-negative C°° func-
tion on R" such that C(x) &#x3E; 0 if and only if Ixl  1. Consider a series of

the form

where and ci &#x3E; 0 if and only if B; c 0. We may arrange that the
coefficients tend to zero so rapidly that this series and all its derived
series are uniformly convergent. The limit function a(x) satisfies (2.4), and
the proof is complete.

Let E be an open subset of Rn-1. Choose «(x’), a non-negative C°° func-
tion on Rn-1 such that .E = {x’: «(x’) &#x3E; 0}. Let

and let 1-~- be the image of 1’+ under the reflection (x’, xn) » (x’, - 

By scaling a(x’) if necessary we may arrange that F, c Q. The C°° surfaces
-V+ and F- divide Q into three regions 92+ 7 17 03A9, a point 
belonging to one of these sets according as

Note that E = Int(I) r1 Rn-1.
Consider the Cauchy problem

Of course the Cauchy problem for an elliptic equation is ill-posed, but the
following approximate solution of (2.5), (2.6) will be sufficient for our purposes.

LEMMA 2.3. There is a f unction v E satisfying (2.6) such that Jv - 1
vanishes to infinite order along r + . Moreover we may arrange that

PROOF. By repeated differentiation we may determine all derivatives

on 1~+ from the data in (2.5), (2.6). Of course substitution of these
derivatives into a power series would yield a divergent series in general.
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Instead we interpret the result of this computation as a 000 Whitney func-
tion vo on the closed set 7~.. (See [5] for definitions and for the extension
theorem.) If v is a C°° extension of vo to S~+ , then vanishes to in-

finite order on 

To show that (2.7) may be satisfied we recall the proof of the extension
theorem, appropriately simplified for the case at hand. If vk(x’) is the k-th
derivative of v with respect to Xn on 7~ as discussed above, one defines

This differs from a power series in xn- a(x’) by the presence of the cut-off
factors involving ~. Here ~ is a C°° function of one variable with compact
support which is identically one in some neighborhood of the origin. If {Ck}
tends to 0o sufficiently rapidly, (2.8) will converge in the C°° topology.

Let us suppress the convergence factor in the first term T2 of (2.8), so that
we have

A simple calculation shows that v2 = {1 + (V’cX)2}-1. Observe that T2 is posi-
tive on 92+ * By increasing ck in the remaining terms in (2.8) we may ar-
range that

and in this way satisfy the first inequality in (2.7). For the second inequality
of (2.7) we re-write T2 in the form

The Laplacian of the first term here is 1 while that of the second can be
made small by scaling a by a small positive constant. We may therefore
arrange by such a scaling that d T2 &#x3E; 0 in ,~+. We then argue as above
that T2 is the dominant term in (2.8), or can be made so by the choice of Ck.
In this way we may arrange that d v &#x3E; 0 in S~+ . * The proof is complete.

We extend the domain of v from Sz+ to S~ by defining
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If f is defined by

then by Lemma 2.3 we see that f E and f &#x3E; 0. Let 1p be the solu-

tion of the Dirichlet problem

Observe that is harmonic on Q- I, vanishes at aS2, and satis-
fies (1) at aI. As discussed in the introduction, it follows that u is the solu-
tion of the obstacle problem with data y. We have already arranged that
E = Int(l) r1 Rn-11, and to satisfy the second half of (2.2) we modify the
data very slightly as follows.

Let 0153(0153’) be a non-negative C°° function such that

such a function exists by Lemma 2.2. We claim that u defined above is
also the solution of the obstacle problem with data y’ = y - a ; indeed {u = 1jJ}
and {u = differ only by a set of measure zero, namely (Rn-1 r~ S~) ~ F,
and hence (2) will continue to hold almost everywhere. Moreover it follows
from Lemma 2.3 and (2.9) that y0 on 8Q with equality only on
8Q r~ Rn-1 and it follows from (2.1) and (2.10) that a &#x3E; 0 on 8Q 
hence v 0 on Finally, since d y~ ~- E  0 for some E, we may ar-

range by scaling a, if necessary, that 0. The relations (2.3) are readily
verified and the proof of Theorem 2.1 is complete.

It is instructive to consider these examples in the light of the regularity
results of Caffarelli and Rivière [3]. Let us call a point p E al exceptional if
any neighborhood of p intersects an infinite number of components of I.
One conclusion of these authors is that any component of I contains at most
a finite number of exceptional points. (More precisely, one should replace I
by the closure of its interior.) In our examples, if n = 2, the exceptional
points all lie along the real axis with at most two exceptional points per
component. One’s appreciation of the delicacy of the arguments of [3] may
be enhanced by the observation that in our examples the exceptional points
from di f f erent components may have limit points, and that these limit points
may themselves have limit points, etc. The examples also indicate the
problems in extending these results to higher dimensions.
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