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Algebraic Theory of Stacks (*)

ISTVÁN FÁRY (**)

dedicated to Jean Leray

1. - Let L be a distributive lattice; L could be, for example, a ring of
sets (i.e., a family .L of sets, such that A, B E Z implies A u B, A f1 BEL,
and  is c). By definition, a stack F over .L associates to every A e Z an
abelian group F(A), and to every inequality A ~ B a homomorphism
~’(A) -~ I’(B) said to be induced by A ~ B; we suppose that A &#x3E; A induces
the identity, and that the composition of induced morphisms is induced.
If a E F(A), we denote Ba the imacge of a under the induced morphism
F(A) -F(B) :

With this notation the properties of the induced morphism are: Aa = a ; if

A ~ B ~ C, then CBa = Ca (see [9], [4]).
Given any two lattice elements A, B, we introduce the morphisms
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as follows:

We observe that (2) is of order two: im r c ker s. We will call a stack F ad-

ditive, if (2) is exact, plus ker r is isomorphic to coker s ; these will be

the most important stacks for us. Of course, for proper definition, we must
have group morphisms

for all pairs A, B in L, which commute with induced morphisms, i.e. all

diagrams

are commutative, and such that all triangles

are exact.

With this ive arrive at our basic definition which will be called an axiom, y
in view of the remarks made later on.

ADDITION AXIOM. The stack F over the distributive lattice L is given
together with morphisms (5) for all ordered pairs of lattice elements, the

diagrams (6) commute, and all triangles (7) are exact, where r, s are defined
in (3), (4) and d is (5).

REMARKS. We considerg the Addition Axiom as a non-categorical axiom
for the algebraic entity ~.F’, d} consisting of a stack F over a distributive
lattice L, plus a family of morphisms d(A, B), Keeping
L fixed, additive stacks over L form a rather « small» subclass of the class
of all stacks over L. Stacks are not to be confused with presheaves or sheaves.
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If L is the lattice of open subspaces of a topological space, a stack over L
is a presheaf, however, in the geometric applications we will use mainly
stacks over the lattice of closed subspaces. A presheaf is a sheaf if (2) pre-
ceded by 0 --? is exact for all pairs of open sets. Roughly stated this gives 0
cohomology, whereas additivity is satisfied by total cohomology, as will

be seen below.

2. - Let b’ be the space of a compact polyhedron, and .L the finite family
of all closed subcomplexes of the given decomposition of ~S. Then L is a ring
of sets, and S is the largest element of L. The constructions a, b, c, d below
will give important additive stacks over L.

2a. - Let be given a cohomology theory A), ...~ satisfying the
Eilenberg-Steenrod axioms with the exception of the Dimension Axiom;
this could be then an exotic theory. Now L being the ring of subpolyhedra,
we set, for all A E L,

and define F(A) -¿. F(B) to be i*, where i : B - A is the injection map.
Then the Mayer-Vietoris coboundary d in (5) is defined (V is now U ), and
the exactness of (7) is the Mayer-Vietoris addition theorem. This construc-

tion gives a family of additive stacks for any distributive lattice L which
is isomorphic to a lattice of subpolyhedra of a compact polyhedron.

2b. - We consider L as in 2a, and suppose given a sheaf A on S (for
notations and specific reference, we use [2], p. 65; q:; is now the family of
compacts of S and will be omitted from formulas). We set

Then coboundaries (5) can be introduced, so that (7) is exact; this is the

Mayer-Vietoris theorem in sheaf cohomology. For the class of L’s indicated
in 2ac we have now another class of additive stacks.

2c. - Let X be a topological space, and f : X -~ S a continuous map.
We replace the argument on the right hand side of (8) by f-iA, thus we set
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provided that the cohomology theory is defined for the spaces f-1A, A c- L.
This will be the case, if X is a polyhedron and f is simplicial, but even in
this case we have a new family of additive stacks over L.

2d. - We use the conventions of 2b, except that A is now a sheaf over X,
where X is as in 2c. We set

This defines a family of additive stacks over the class of L’s indicated at
the end of 2a.

2e. - Let S be a topological space, and L a ring of closed subsets of ~S;
now L need not be finite, it can be the family of all closed subspaces of ~.
Using the continuity axiom, and appropriate restrictions on A), ...},
X, f, A we can repeat all the constructions above. Let us note, however,
the example on p. 177 of [8] showing that the Mayer-Vietoris theorem may
fail to hold true for non-separated spaces.

3. - The author is in the process of writing a monograph in three vol-
umes [5], [6], [7] on the foundations and elements of Algebraic Topology.
The book is based on the Addition Axiom, in the same way as [3] is based on
the Eilenberg-Steenrod axioms. The main difference between the two ap-

proaches is as follows. The Eilenberg-Steenrod axioms, Dimension Axiom
included, are categorical in the sense of Logic for triangulable pairs; exotic
theories are obtained by omitting the Dimension Axiom; sheaf cohomology
is not included. The Addition Axiom, which we also call informally Mayer-
Vietoris axiom, is non categorical in the first place, as already indicated
in 2a-2e. To apply this axiom we have to develop an algebraic theory of
this non-categorical concept. Once the algebraic consequences of the Mayer-
Vietoris axiom are obtained, we can apply them to classical, exotic and
sheaf cohomology.

In the present paper we indicate some algebraic results on additive stacks;
the proofs and additional results will be published in [5]. We will indicate
the method of [6] and [7] in forthcoming papers.

4. - For given integer we consider the index set 0, ê == ê1." Ek,
Ea = 0, 1, 1~ = 1, ... , m, and a system ~G~ ; f Eo , f ~° , f ~1~, where the are

abelian groups, 1:0: Gg --*Geo, ... are morphisms, such that for any fixed 8
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the triangle of the morphisms be exact. For m = 1, we have a
single triangle

f’I

as in (7). For m = 2, we have a diagram

We call these systems interated extension diagrams.
If F is an additive stack over the distributive lattice L, and oc: Ao, ..., Am ,

Aic-Li is a given indexed family of lattice elements, we define an addition
diagram

of F relative to a by an induction with respect to m. For m = 1, (14) is (7),
by definition. We identify (7) to (12), and we call G = F(AovAi) its top
vertex, and the other two vertices bottom vertices. We suppose (14) de-
fined for m -1, to be an iterated extension diagram with top vertex

G = and consider the display

where EB F(Am) means adding directly the group to all vertices G~,
8 = 0 ... 0. This defines then (14) by induction on m. It is easy to see that
if we take the direct sum of the bottom vertices of (14), we obtain the direct
sum of all groups

we denote this direct sum by C(a; F) == ! 4?. With further discussion
of (14) we obtain a differential ð: C C, C c C + 1.
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In the author’s manuscript [5] concepts of Algebraic Topology and
Homological Algebra are not presupposed, but some notions are introduced
in connection with (14) and are motivated by the study of this diagram.
Such concepts are differential group (an abelian group X plus a morphism
~ : X --~ X, ~ 2 = 0 ; hence H(X), and f * : H(X ) -~ H( Y), for differential

f (f = f ), or anti-differential f (f 6 + f = 0)), Leray-Cech group (7(cx; F),
spectral sequence, and related concepts. We omit presently the discussion
of this motivation, and use the concepts.

For m = 2, the diagram (14) is (13), and gives a spectral sequence
E2, E,,I. Here EI = (7(oc; F), dl = 3 thus E2 = H(C(a; F)). The differ-

ential d2 is obtained from (13): to apply it, we go from the vertex 00 up to 0,
over to 1, and down to 11; this gives E2 ~ E2 . The group E3 contains .E3o
such that GdF(Ao V Al V A2) (graded group Gd) is an extension of E3o by 

5. - In the study of stacks and additive stacks the following definition
and result are useful.

DEFINITION. Let F be a stack over the distributive lattice L. We say that

~X ; A coordinate (group system) of F, if X is a differential group,
N~ c X differential subgroup, NAcNB if A ~ B, and

If X, XIN., are free abelian groups for every A E L, we say that {X} is a free
coordinate group system.

THEOREM 1. Over a finite, distributive lattice L, every stack has a free
coordinate group system.

In view of this result, we can use some known constructior -1 Af Algebraic
Topology in the algebraic theory of stacks.

6. - Given a distributive lattice L with smallest element 0, we can form
the lattice of pairs P = {(A, B) : A, BEL, A ~ B~ ; A - (A, 0 ) defines P as
a lattice extension of L. Given a stack .F over L, = 0, the question
arises whether it can be extended to a stack over P.

THEOREM 2. I f L is finite, any staelc .I’ over L can be extended to a stack

over P, in such a way that all sequences

be exact. (Here F(A, 0) = F(A) is the originally given stack.)
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Any such extension will be called exacct extension of I’ ; the F(A, B )’s
are called relative groups. Over P we have the class of exact stacks (F with 6
as in (19)) such that all sequences (19) are exact. One exact extension is

obtained by where is a coordinate

of F. With an exact extension all morphisms F(A) - F(B) of the original
stack are included in an exact sequence

this is simply the case C = 0 in (19).
In case .L is a ring of sets, we are particularly interested in subtractive

stacks, i.e., exact stacks over P such that

SUBTRACTION AXIOM..F’ is given over P, lattice of pairs of a ring of sets L,
together with ð’s in (19), is exact, and such that

holds true.

From (22) we obtain .F(C, D) gz F (A u C, F (A, B), thus (21)
follows with a specific isomorphism this time. We agree to call a stack F
over a ring of sets L subtractive, if it has an extension to pairs which satisfies
the Subtraction Axiom, i.e. which is subtractive.

THEOREM 3. A subtractive stack is additive, i. e., if F over L has an ex-
tension to P which is subtractive, then d can be introduced so that {F, d} be
acn additive stack over L.

It can be proved that an appropriate extension is also additive over P,
thus we have (7), (14) for pairs.

The results above are clearly motivated by the Eilenberg-Steenrod
axioms. Let us emphasize, however, that we do not consider only data for P,
but we start with L and use Theorem 2 to get exact extensions, if needed.

We do not have separate Exactness Axiom, but we may consider the class
of exact stacks over P. The Subtraction Axiom is a combination of

Exactness Axiom and Excision Axiom, but of course (22) could be considered
for arbitrary stacks over P. This should indicate how the Eilenberg-Steenrod
conditions can be discussed separately, and hopefully justifies our calling
axioms the definitions of additive, subtractive and simply additive stacks
(see below). Of course, many of the results obtained are known (Theorem 3
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is stating that the Mayer-Vietoris addition theorem follows from the agioms,
and the remark after it can be paraphrased by saying that the Mayer-Vietoris
theorem holds for pairs), nevertheless, it is also correct to say that the

algebraic results are more general as they also apply to sheaf cohomology.

7. - If the lattice L consists of {A, B, A A B, and we fix the

groups F(A), F(AAB), as well as the morphisms between them, the
family of all additive stacks over L is Ext (ker s, coker s ) by (7). If the

lattice L is generated by the indexed family oc: Ao, ..., Am, we seek to find
a similar representation of the family of all additive stacks over L, and we
may also ask whether this family has an algebraic structure as the group
structure of Ext. We will have unified representation of stacks and additive
stacks in forms of spectral sequences to be discussed below. We have no
results on algebraic structure on the family of all additive stacks with

prescribed C(oc; F). This is an open problem, concerning relations between
various cohomology theories, sheaf cohomology included.

7a. - Let P be the lattice of pairs of a distributive lattice L, and F
an exact stack over P. Given a sequence 0 = B_1 c Bo c ... c Bm = S of
lattice elements, there is a spectral sequence

All other data of this spectral sequence can be explicitly described.

7b. - In addition to the conditions of 7a, we suppose that F is sub-
tractive, and that a family (8f) of lattice elements is given, such that

2 if Then for a term in (23) we have

Thus we have a more « local » Ei term.
If the stack F is given over L only, we can extend it to pairs as in

Theorem 2, and introduce the spectral sequence 7a or 7b for the extension.
In this sense, we have a spectral sequence for any stack over a finite distribu-
tive lattice. However, this spectral sequence is not «local » in the sense (25)
can be considered  local ».
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8. - In some applications it is preferable to avoid the device of extension
to pairs. For additive stacks another spectral sequence can be introduced.
We will call this the addition spectral sequence (see [9], p. 88). It is entirely
based on the diagrams (14) and does not involve relative groups. We will
not describe the general case, just the case of simply additive stacks to be
introduced below. This is a subclass of the class of additive stacks. The

construction 2 b always gives such stacks (however, y this statement will not
be amplified in the present paper).

Let F be an additive stack and a coordinate group

system of F. For given we define

which is a differential map of (AV B ) X into 
if we take this group with the differential

We have then a diagram

(i, j being identities). The top row here is exact by the Addition Axiom,
and the bottom row is exact, being induced by an exact sequence of dif-
ferential groups. The square on the right in (28) is of course commutative,
but the square on the left need not be commutative. Requiring commuta-
tivity of (28) amounts to restrict d = d(A, B) given with the structure of F.

AXIOM OS SIMPLE ADDITION. The stack F over the distrib2ctive lattice L

is additive, and has a coordinate group system (X) such that (28 ) is ac com-

mutative diagram for every pair A, B in L.
In [9] Leray generalized the Mayer-Vietoris addition theorem from two

sets to m+1 sets, and to sheaf cohomology (see p. 88), obtaining a spectral
sequence. For simply additive stacks we have a formally identical spectral
sequence below, in fact the study of this spectral sequence led us to the
subject of this paper.

8a. - Let F be a simply additive stack over the distributive lattice L,
and a : Ao , ... , Am a given indexed family of lattice elements. These data
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determine a spectral sequence

where E2 and the differentials have the usual degree properties. Consequently, y
we may say that all simply additive stacks over the sublattice generated by
Ao, ..., Am and for which the groups (16) and the induced morphisms between
them are fixed, are expressed by the single group (29) and by a « variable »
set of differentials d2, ..., dm .

8b. - We suppose that the are A-vector spaces and all morphisms
are A-linear (11. being a field). Now top and bottom rows in (28) are iso-
morphic for arbitrary additive stacks (of A-vector spaces), however the

diagram (28) still may not commute. But in this case, the addition spectral
sequence (which is defined for arbitrary additive stacks, but was not described
above) has good properties and (29), (30) hold true even for additive stacks
which are not simply additive.
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