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A Note on a Paper by Andreotti and Hill
Concerning the Hans Lewy Problem.

OLLE STORMARK (*)

1. - Introduction.

Let S be a portion of a smooth real (2n - 1)-dimensional hypersurface
in an n-dimensional complex analytic manifold M. If the Levi form of S

does not vanish at a point zo, then by H. Lewy’s extension theorem smooth
solutions of the tangential Cauchy-Riemann equations on a sufficiently small
neighborhood of zo in S can be extended to at least one side of the hyper-
surface. In [2] and [3] Andreotti and Hill generalize this theorem in

the following way: Let U be a neighborhood of S in M such that

for a smooth function e with and let

W:!: = U : 0}. Then cohomology groups are defined by
means of the Dolbeault sequence for (p, q)-forms on W~ which are smooth
up to S, and certain boundary cohomology groups Hpq(S) on S are also in-
troduced. The generalization of Lewy’s phenomenon consists in showing
that given a boundary cohomology class Hpq(S), there exists a co-

homology class $ E (or Hpq(W+)) such that ~o is the restriction of $
to S. The following problem is also considered: Given try to
find and such that ~o is the jump between ~+
and $- across S.

In [2] Andreotti-Hill first show the existence of a nontrivial Mayer-
Vietoris sequence, and by means of this the problems above are reduced to
showing certain vanishing theorems for Hpq(W:!::). Since these cohomology
groups are not the usual ones (because they involve the behavior at part of
the boundary), the proofs of the vanishing theorems are not standard; they
are to be found in [3].

(*) Royal Institute of Technology, Stockholm.
Pervenuto alla Redazione il 19 Maggio 1975.
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In this note it is shown that if one is ready to accept arbitrary boundary
values (and not just smooth), the arguments of Andreotti-Hill are simplified
a lot: the Mayer-Vietoris sequence here is just the long exact sequence for
local cohomology, y and the vanishing theorems that we need are nothing
but the classical theorems of Andreotti and Grauert. We also use some results

due to Andreotti and Norguet about the infinite dimensionality of certain
cohomology groups. In order to make the (arbitrary boundary values
more concrete, we show in § 3 how they at least locally can be interpreted
as hyperfunctions satisfying the tangential Cauchy-Riemann equations for S.

There is also a connection between this work and (a special case of) a
theorem due to Martineau in [11] (see also [9]), which says that a hyper-
plane in Cn is purely 1-codimensional relative to the sheaf 0 of germs of
holomorphic functions in Cn. In fact the methods of Andreotti-Hill make it
possible to investigate this question for arbitrary smooth hypersurfaces, and
it turns out for instance that Martineau’s theorem is no longer valid if the
Levi form of ~’ is non-degenerate at some point.
Finally we remark that the questions treated here are but very special

cases of a deep theorem due to Kashiwara and Kawai in [7] (see in particular
example 3) and [8]. However, the methods used in this note are quite
elementary-which unfortunately is more than one can say about the work
of Kashiwara and Kawai-and hence it might nevertheless be justified.

2. - The Mayer-Vietoris sequence.

Consider a connected complex analytic manifold M of complex dimension n
and an open connected subset U of M (M and U are assumed to be para-
compact). Let 8 be a smooth real hypersurface of U defined by
~S = U: = 01, where e E C°°(!7) and 0. Define U- = {z E U:
e(z)  0} and U+ = {z E U: e(z) &#x3E; 0}. For a locally free analytic sheaf Y
on U, we then have the usual exact sequence for local cohomology:

Now by the unique continuation property for holomorphic
functions, and
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for all r since = U+ u U- and U+ n U- = 0. Hence we arrive at the

following exact «Mayer-Vietoris sequence &#x3E;&#x3E; :

The idea now is to use ~F) as boundary cohomology groups. In par-
ticular, if S2’ denotes the sheaf of germs of holomorphic p-forms, HS+ 1 ( U, 
corresponds to H»Q(S) in [2].

3. - Interpretation of the cohomology classes in 0) as hyperfunctions
satisfying the tangential Cauchy-Riemann equations.

To simplify the exposition we consider only the sheaf 0 of germs of holo-
morphic functions in this section. The sheaf Je; is determined by the presheaf

where V are open sets in U. Je2 = 0 by the unique con-
tinuation property, and hence for each open
set V in U. By means of a spectral sequence argument (cf. theorems 1.7
and 1.8 in [10]) one can moreover show that for

r c p if R§ = 0 for So in order to understand the cohomology
groups H;( U, 0), we take a closer look at the sheaf Je~.

Let Near zo we can find local coordinates such that

near zo. With this choice of coordinates the tangent vectors ..., 

span the holomorphic tangent space at zo . By shrinking U, if neces-
sary, y we may assume that ... , are coordinates in all of U and that

to each zes one can find n-I holomorphic tangent vectors which

span such that these together with alaz, span the holomorphic
tangent space of U at z. U can be considered as an open set in C’ X R2n-2

by the identification (Zl 7 Z2 ... , zn ) ~ (ZI x2 , y2 , ... , yn ), where zk = xk + iyk .
Then U is imbedded in 

C2n-1 by

where iu2, ..., are the coordinates in 2R2n-2.

If now S is considered as a submanifold of the complex manifold w~,
we see by the choice of coordinates that the tangent space at each point
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in S inherits no complex structure from W. Thus ~’ is a totally real sub-
manifold of yY in the sense of [5] and [6]. Following Harvey (see [5] and [6])
we can therefore introduce the sheaf of hyperfunctions = 

determined by the presheaf {H 2n- I (V, 2n-1é»)}, where V is open in Wand 2n-10
is the sheaf of germs of holomorphic functions on ~. Then 2n-1 % is a flabby
sheaf supported on S and so we identify with its restriction to S.

For each compact set K c S there is an isomorphism 
and there is also an injection

that is, the compactly supported distributions are injected into the com-
pactly supported hyperfunctions which in their turn are identified with the
analytic functionals on S (we refer to [5] and [6] for the details).

Next consider the following result proved by Martineau [11] and Ko-
matsu [9]: Let U be an open set in Rp X iRq c Rp X iRp = 0 and let PO
be the sheaf of germs of holomorphic functions on (X Then HHv(Cp, »0 ) = 0
if and is isomorphic to the space of hyperfunctions
defined on U and holomorphic in the q complex variables of U, so in particular
U is purely (p - q)-codimensional with respect to PO(Le. = 0

for q). We write = and regard this as a sheaf on U.
We also need the following theorem on local cohomology (theorem 1.9

in [10]): Let W be a topological space, let Y be a sheaf on W, let U be a
locally closed set in W purely m-codimensional with respect to Y and let S
be a subset of U. Then

for any open set V in W, and

So in our situation (where m = 2n - 2)

and in particular
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On U we have two sheaves : nO coming from the imbedding U c 
_g 0 X R2n-2 and 2n-2,% 10 coming from U c C X R2n-2 X iR2n-2 ,~, C2n-y and
clearly "0 - 2n-21B 10. If the sheaf A is defined by the exact sequence

we get the exact sequence

Now J6~-~0)~je~) by the unique continuation property for "0 (ac-
tually ~~( 2n-2~ 10) = 0 thanks to the choice of coordinates and the unique
continuation property for 2n-~93 10, as proved in [9], lemma 5.’l, but we don’t
need this), and therefore there results an injection Hence

for each open subset V in U, so the cohomology classes in H’(U, can

be interpreted as hyperfunctions on S.
Next we want to characterize those hyperfunctions on S that belong to

H$( U, Being totally real in W, S is purely (2n -1)-codimensional with
respect to 2n-lO, and by above U is purely (2n - 2)-codimensional with
respect to Therefore

2n-1 c) 1B~H2nS (w, 2n-1 cu) ," je2n- 2 (2n- 1 (9)) ~ HS1 (U’ 2n-2c B(10)’, = s , = s , u = s , ,

so we shall characterize the subset of 2n-2B y ). By our
choice of coordinates in U, n -1 anti-holomorphic vector fields 
inducing ..., ~oy span the anti-holomorphic tangent space
at each point of S, when ~S’ is regarded as a subset of U. Thus the induced

Chauchy-Riemann equations on S are for k = 2, 3,..., n. The

action of on 2n-2~%lo) is defined by first letting exten-

sions Xk of them to U act on the sheaf 2,n-2~% 10 de ned on U c C-.’ Rn-2
and then taking cohomology. But each germ in 2"-21S 10 is holomorphic
in and since Xk together with span the anti-holomorphic tangent
space at each point of U, if U is small enough, 2"-21S 10: Xkg = 0,
k = 2, ..., Hence

and the inverse inclusion is trivial.

Thus 0) can be identified with the space of hyperfunctions on S
satisfying the tangential Cauchy-Riemann equations, and c~ ) is the
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corresponding sheaf. In particular 0) contains the distributions on S
which satisfy the induced Cauchy-Riemann equations.

4. - The theorems of Hartogs and Bochner.

Let M be a Stein manifold of complex dimension n ~ 2, and let ~S be any
connected closed real hypersurface (not necessarily smooth) in M, such that
M - S is the union of two connected open sets lVl- and M+ of which say M-

is relatively compact and M- = .lVl- u S. Let Y be a locally free analytic
sheaf on M.

To prepare for the Bochner theorem, we first give Harvey’s proof of the
theorem of Hartogs (see [5]). Let L be the holomorphically convex hull
of in M ; then there are obvious injections

Now

is exact and I for n. Hence

which is the theorem of Hartogs.
To prove the Bochner theorem we use the Mayer-Vietoris sequence in § 2 :

Since we get the desired result:

that is, each boundary cohomology class in B~(M) Y) has a unique extension
as a section in Y over M- .

5. - H. Lewy’s theorem.

We return to the situation in § 2. If U is a Stein manifold (which might
always be assumed if we are only interested in local properties), the Mayer-
Vietoris sequence becomes
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and

for 

The first sequence shows that

which we interpret by saying that each element in Y) is the difference
of boundary values of sections in Y over U+ and (this is analogous to the
case of hyperfunctions in one variable).

Now let Y = 0 and assume that the Levi form of ~S (i.e. the Levi form

of e restricted to the analytic tangent plane of S) has at least one positive
eigenvalue at each point in S. If i9+ denotes the envelope of holomorphy of U+,
the E. E. Levi theorem shows that ~+ = Ù+ f1 U is a two-sided neighbor-
hood of ~S in U. Since

it follows that

is exact. As 0+ u u- = U and 0+ r1 U- is a non-empty open subset of U,
we also have the ordinary Mayer-Vietoris sequence as in [1]:

Comparing these two sequences, we see that

i.e. each cohomology class in H’(U, 0) can be uniquely extended to a holo-
morphic function in the one-sided neighborhood ti+ r1 U- of S in U. The

isomorphism U-, 0) is defined in the following way.
A cohomology is lifted to (1, g) E .H°( U+, c~ ) 0153 HO(U-, 0),
where (f, g) is unique modulo 0), and then the difference f - g gives
the desired function in n U-, 0).

If the Levi form of S has at least one negative eigenvalue everywhere,
it follows in the same way that

38 - Annali della Scuola Norm. Sup. di Pisa
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where CT- is the intersection of U and the envelope of holomorphy of U-, y
and U+ ~ !7’ is a one-sided neighborhood of S in U.

And if the Levi form of S has at least one positive and one negative eigen-
value at each point,

where ti+ n Û- is a two-sided neighborhood of 8 in U.

By making local extensions and then glueing together, we can now for
instance obtain the following result by means of the arguments in § 3:

Let S be a global smooth hypersurface in lVl such that the Levi form

of S everywhere has at least one positive and one negative eigenvalue. Let f
be a distribution on S which satisfies the tangential Cauchy-Riemann equa-
tions for S. Then f can be uniquely extended to a holomorphic function
in an open neighborhood of S in M.

For observe first that if V c U are open sets in S such that

where F c !7 are open in M, then we have a commutative diagram

where the vertical maps are restriction mappings.
So if UI, U2 are open sets in S such that !7is = T71 r1 ZT2 ~ ~ and f; = flu,

has an extension for i =1, 2, has the unique
extension and therefore Fllûu Consequently I’1 and
F2 are holomorphic continuations of each other.

Next we consider the case with As in [2], we interpret the
isomorphism

by saying that each element in Y) is a jump between a cohomology
class on U+ and a cohomology class on U- across S. From this isomorphism
it follows for instance that the extension theorem



565

is equivalent to the vanishing theorem

If the Levi form of S has at least n - p + 1 positive eigenvalues at
each point, then U- is p-complete (since U is Stein), and by the Andreotti-
Grauert theorems ([1])

6. - Global results.

Following Andreotti-Hill, we now consider a global example:
Let .X be a compact connected manifold of complex dimension n, and

let Y be a locally free analytic sheaf on X. Let e: X - R be a C°° func-

tion, and assume that ~=={.re~:p(~)==0} is a smooth hypersurface
(d~ ~ 0 on S) dividing X into the two regions

We assume that the Levi form of S is nowhere degenerate and has p positive
and q negative eigenvalues ( p -f- q = n -1 ). (An explicit example of such
a situation is to be found in [4], pp. 217-219.)

Then Y) for all r since X is compact,  o0

for and  00 for r =A p by the fundamental theorem
of Andreotti and Grauert in [1]. Moreover, both and HP(X+, Y)
are infinite-dimensional vector spaces over C according to theorem 2 in

the paper [4] by Andreotti and Norguet.
A straightforward application of the Mayer-Vietoris sequence now leads

to the following conclusion:
If p =1= q there are homomorphisms

with finite dimensional kernels and cokernels, and all other cohomology
groups in the Mayer-Vietoris sequence have finite dimension.
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If p = q (which is possible if n is odd), there is a homomorphism

with finite dimensional kernel and cokernel, while the remaining cohomology
groups are of finite dimension over C.

7. - The sheaves 

We use the same assumptions as in § 2. The sheaf is determined

by the presheaf ~Hv ~ S ( Y, ,~ )~ ; we know that = 0, ~ 0 and

want to investigate what happens for r&#x3E;2. Introducing the stalks

where V runs through a fundamental system of open neighborhoods in TI

of a direct application of the Mayer-Vietoris sequence shows that

for Hence (Je~+l(~))0153 is zero if and only if both ~r(,~+, x, Y)
and x, ,~ ) are zero.

Consider first the case when the Levi form of S is zero for all x E S.

In a local coordinate system at x we can choose V as a domain of holomorphy,
and it follows that V+ and Y- are domains of holomorphy too, so that
JU(S :1:, x, Y) = 0 for r &#x3E; 0. Hence the sheaves R§(Y) are zero in this case
except when r = 1.

Next assume that the Levi form of S has p positive and q negative
eigenvalues at x ( p -[- q c n -1 ) . Then the following is proved in [1 ] :

There exists a fundamental sequence of neighborhoods Yk of x in U such
that for any locally free analytic sheaf Y on U we have

and there exists a fundamental sequence of neighborhoods W~ of x in U
such that
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Hence

and

If we moreover assume that the Levi form is nondegenerate at x, so that
p -~- q = n -1, then

and

By proposition 6 in [4], both Y) and 3CP(S+, z, Y) are infinite
dimensional in this case. So if p # q,

and

and

8. - Exactness and non-exactness of certain complexes.

In this section we assume that M = Cn. If Q’ denotes the sheaf of

germs of holomorphic differential forms of the type (j, 0) on Cn, and 
denotes the sheaf of germs of differential forms of the type ( j, k) with hyper-
function coefficients, we have the following flabby resolution of Q’ (the-
orem 142 in [12]) :
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For a real hypersurface S and an open set TT in Cn the following sequence
is induced:

The cohomology groups of this complex are consequently 
So if V is Stein and V - S = V+ U TT-, the inexactness of (I) is measured by

which for r&#x3E; 2 equals

Taking inductive limit in (I), we also have

where is the sheaf associated to the presheaf 
Since the inductive limit is an exact functor, the cohomology groups of (II)
are the sheaves 

If the Levi form of ~S is non-degenerate and has p positive and q negative
eigenvalues everywhere ( p ~-- q = n -1 ), then the results in § 7 show that
the Poinear6 lemma for the complex (II) is not valid in dimensions 1,
p -~--1 and q + 1, but holds in any other dimension.

Conversely one might of course deduce properties of 

JC’s(S2j) from knowledge about the complexes (I) and (II), i.e. knowledge
about systems of partial differential equations.
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