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RETURNS TO THE ORIGIN

FOR A RANDOMIZED RANDOM WALK

by A. E. GIBSON(1) and B. W. CONOLLY (2)

Introduction.

The expression « randomized random walk &#x3E;&#x3E; seems to have been

introduced by Feller (1966) to describe an unrestricted linear random walk
performed by a particle which moves unit positive or negative amounts X
at randomly distributed time intervals. In the simplest case the intervals

between successive positive steps are i. i. d. with d. f. 1- similarly,
those between negative steps have d. f. 1- It will immediately be

seen that this is a generalization of the mechanism which generates the

fundamental process S (t) for the queue, in which connexion S (t)
has the physical interpretation of the number present in the system, wai-

ting and in service, at time t. But for the queue, S (t) cannot become nega-
tive, and a modification of the underlying mechanism takes place when

S (t) = 0, which can be thought of as the erection of a barrier at the origin.
It is of practical interest to the operators of queueing systems and

their relatives (e. g. inventory, population models) to understand the statistics
of returns to the origin, i.e. the occasions 0, because they
may imply an idle server, or an empty stock room, for example. In addition
the return to the origin problem is of interest in its own right for R. R. W.
because asymptotically the statistics display a similar surprising behaviour
to that obtaining when there is no time dependence betveen steps in the

walk, and the fundamental problem is that of describing S,,, the position
of the particle at the nth step.
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This paper deals with both practical and theoretical aspects and the

method used provides a unified treatment from which both the iVIM11 and
R. R. W. results can be deduced immediately. Some of the results have been
quoted without proof in a review paper by one of us (Conolly 1971).

2. The Problem.

The integer valued stochastic process S (t) represents the position of

the particle describing R. R. W. at time t. The initial condition will always
be S (0) = 0, so that the walk begins at the origin. A return to the origin
is said to take place at epoch t (t -) ~ 0, S (t) = 0. Because of

the lack of memory property of the negative exponential distributions invol-

ved, a subsequent return to the origin recaptures the initial condition. Our

main interest resides in the interrelated random variables Tk, the epoch
of the kth return to zero, and N (t), the number of returns to zero during (0, t).

Unification of treatment for and R. R. W. consists in this.

Whenever S (t) # 0 the d. f. s. of intervals between successive positive-
negative steps are 1- ewt / 1- ewt. When S (t) = 0, the time interval to

the next positive-negative step has d. f. 1- e-4 t / 1 - t. For R. R. W.,

MIM/1, Ào = 11 IAO = 0.
Let

with corresponding (assumed existing) p. d. f. fk (t). These may be defective.
Also let

It is obvious and well known from renewal theory, that for n = 0,1, 2, ~..,

with the definition ~a (t) =1.
Since the walk has to begin with a positive or negative step away

from zero it follows that

where * denotes convolution of the functions it separates and is the

(assumed existing) first passage p. d. f. from m to n at epoch t. Since paths
from ± 1 allowing a first return to the origin do not, by definition, include
the origin except at the last step it follows that flo (t) and f-io (t) have the
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known R. R. W. expressions (cf. Conolly (loc. cit.) for example) :

with Laplace transforms (LTs) (1)

where

Application of the Laplace transformation to (2.4) and use of (2.6) gives
the of fl (t), viz.

where

Since ’l1k is the sum of lc independent random variables each having the
d. f. it follows that

the bracketed superscript denoting k-fold convolution, and hence that

A return to the time domain can be achieved by using Erd6lyi et al.

(1954). Thus

for k = 1, 2, 3,... Tk (z) is the modified Bessel function of the first kind,
order k.

(1) As an example, 
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Integration of (2.11) gives the d. f. Fk (t) in a form containing an in-

complete gamma function under the sign of integration.

3. R. R. W.

In this case we put 20 = Â, and yo = It.
The most interesting situation accurs VBThen )1. = p, :

otherwise there is a non-zero probability that no return to zero occurs.

From the preceding analysis with I = p. we obtain

These formulae are easily obtained from application of the Laplace trans-
formation to (2.3), manipulation and final return to the time domain via

Erd6lyi et al. (loc. cit.), p. 240, entry (30). It is not immediately obvious, but

and kn (t) decreases steadily as it increases, for fixed t.

In particular, for quite moderate at the second term in (3.2) becomes
negligible, after which time it is virtually as likely that there is no return
to zero as it is that there is a single return to zero.

Numerical values of kn (t) have been given by one of us (Gibson (1968)),
but it is more instructive to examine the mean number of returns to zero

over a long time interval. From (2.3) and (2.10) the L. T. of is

1 - 4lj which leads, after manipulation, to 4~, ttlzr (Z + R) for

the L. T. of E [N(t)]. Returning to the time domain, we have

This formula provides the means of exact calculation but tells little as it

stands. The asymptotic behaviour is more interesting and may be obtained
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by utilizing the asymptotic expression of the Bessel function. Thus, as t --~ oo,

where Lo = Alu and

The case p =1 is of greater interest and shows, as is the case where time

dependence between steps is ignored (see Feller (1957)), that the mean
1

number of returns to zero behaves like t 2 for large t instead of like t, as
intuition might suggest. This means that if S (t) were plotted against t for

e =1 one would be surprised to observe that S (t) held either positive
or negative values for longer and longer periods.

To conclude this section we note that fr (t) can be expressed in terms
of the generalised hypergeometric function 2F3 ~a~ , follows :

From the asymptotic properties of 2F3 (see, e. g., Luke (1962)) it follows

that as t -+ 00

whence, by integration,

2. Annali della Scuola Sup. Pisa.
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where

It should be pointed out that the theory of stable distributions is applicable
when to =1 and is consonant with the second part of (3.7).

Gibson (loc. cit.) gives extensive numerical tabulation of fr (t) both from
the exact and asymptotic formulae to indicate the usefulness of the latter

for easy practical calculation.

4. M/M/1.

2’he analysis of the preceding section can now be repeated for the

queueing process M/M/1 using the substitution Ao = = 0 in the general
formulae. The details are left to the interested reader. Here we confine our

remarks to the asymptotic forms. Note that Tr is defective unless g =

- 1, and that the theory of stable distributions can be shown to

predict the form of the result when p = 1. By the same methods as for

R. R. W. we find that as t --~ oo,

Similarly we can show that when ). = ft

which gives the asymptotic result that as t --~ o0
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Thus, even when traffic is heavy (mean arrival rate A equal to mean service
rate a), and when, as can be seen from 01 (z), a return to zero is a persi-
stent but null recurrent event, the mean number of times that the server

becomes idle in a long period of time is proportional to as was the

case for R. R. W.
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