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REGULARITY RESULTS FOR NON-LINEAR ELLIPTIC
SYSTEMS IN TWO DIMENSIONS

JANA STARÁ, Praha

The purpose of this paper is to prove the regularity of the weak so-
lution of Dirichlet problem for non linear elliptic systems in two dimen-

sions. This problem is considered in the following form :
Let Q be a bounded domain in .EN, u be a weak solution of the

system

with a boundary condition u0 i. e.

for every
The regularity means that ur belongs to
This result was proved by

1. Ch. B. Morrey (1937) for
2. E. De Giorgi (1957) for
3. 0. A. Ladyzenskaja - T

4. Ch. B. Morrey (1960)
5. J. (1966)
6. J. Necas (1967)

Pervenuto alla Redazione il 23 Gingno 1970.
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In this paper, the regularity is proved for N = 2, 1, 1~ kh2.
For N &#x3E; 2 there was proved a partial regularity (see Morrey, [12]) as

follows: for every Do, 7 Doc D there exists an Q1 so that u is regular on
0, and the Lebesgue’s measure of Do - Q1 is equal to zero. A stronger
result concerning the Hausdorfi measure of Do - Q1 and under weaker

conditions, was proved by E. Giusti, M. Miranda (see [7]). The regularity
in this case (N ~ 2) cannot be proved; there exist counter-examples (De
Giorgi [4], Giusti-Miranda [6]) of non-regular solutions of the equations with
coefficients analytical in u. For the present we do not know a counterexample
satisfying the stronger Morrey’s conditions of the growth of coefficients.

Let us put the problem considered here in the following way :
S~ is a bounded domain in EN with infinitely smooth boundary

OS2; b = £2 U N~ are linear defferential operators with constant coef-

ficients.

Let us denote and suppose

for 0).
As a special case we may take

for every 7

The functions Fi (x~ ~) (for i = 1, ... , h) are defined and continuous

with all their first derivatives on S~ X Eh (*) and are nonlinear with poly.
nomial growth (of the order k -1) in ~.

Let us denote

- 

(*) They are differentiable on f) and the derivatives may be continously extended

on b 
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for

Let us suppose that there exists C &#x3E; 0 such that for every

We shall consider a weak solution of the equation

for r = 1, ... , 7 M, which may be written in a divergent form

We shall suppose that the operator on the left represents a monotone ope-

In Case A operators Ni which consist only of their main parts, i. e.

will be considered. In this case it is sufficient to suppose that

(4) there exist two positive constants 1’1’ 1’2 so that

for every 1
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Case B : Let us decompose Ni in the main part Ni and

(the corresponding notation = w’ .,. v ’ · z~" = (i~ " .., v " · v = (v’ v") E .E~h ).
- 

Pi (x, v) are defined and continuous with all their first derivatives on

f2 X .E2h . The conditions of growth are the same as in A. Instead (4) let
us suppose

(4’) there exist C, , 02 positive so that

(4") there exist two positive constants y1, y2 so that

for every.., , --- , , 
.-

(5) Suppose that for the regularity conditions (0) - (4) (in case A) or
(0) - (4"~ (in case B) are satisfied uniformly with regard to an orthonormal
transformation of a coordinate system in EN.

(6) The right part the boundary

condition , 

§ 1 consists of some lemmas on .Lp-estimates of solutions of the linear
equations. Lemma 1.4 gives such estimates for an equation with measurable

coefficient, whose bilinear form is the following

Here and every

This condition is weaker than the usually required condition of ellipti-
city which, in this case, has the form
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For example, for

is i) evidently satisfied,

is regular for non-vanishing ~. But ii) has the form

and such constant C does not exist.

§ 2 contains some remarks on existence of solution and continuous

dependence on f and uo and a proof of the main theorem. A homotopy is
used there between a linear equation with constant coefficients with well-
known properties and the investigated non linear equation.

The proof is based on a priori estimate denoted as «property of

the equation and having this form :
Let us suppose the solution u belongs to

m

Then u belongs to II ()] and its norm is bounded by a constant which
r=l

depends only on f, 
Several cases of operators which possess the above property, are

investigated in § 3.

The author is indebted to Professor J. Necas for much valuable advice

concerning the paper.

N01.’ATIONS. D" denotes the partial derivatives where a =

= (ot 1 , .. ~ aN) ~ all (Xi are integers, non-negative numbers, I

The functional spaces

(with k integer, nonnegative, 0 1) are denoted as usually

(See for example [15]).
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Let u be a vector-function

integer for means

that each

1. Properties of the operators N~ .

We shall be concerned with linear differential equation which may be
written as follows :

consist only of their principal parts Ni’, i. e.

and satisfy condition 

LEMMA 1.1 : The linear differential operator given by (1.2) is uniformly
elliptic and strongly elliptic.

PROOF : (17 2) can be written in the form

where

Let us denote for ~ E EN :
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Now we shall prove the uniform ellipticity, i. e.

and strong ellipticity, i. e.

Let us denote N*~ the adjoint matrix to N~. Then det ~ Ilr8 (~) ~ = det I
and so it is the Gramm’s determinant of column vectors of N*8. Therefore
it is equal to zero only in the case of linear dependence of column vectors
of N*$, i. e. for $ = (0, ... , 0) and it is positive for non vanishing $.

The quadratic form in (1.5) is positively defined if and only if all the
main subdeterminants of its coefficients are positive (according to Silvestr’s
theorem). But they have the same form as det I lrs (~) I .

Let us suppose that for every n there exists a real vector ~n E EN ;
$n =1= (0, ... , 0) such that 

-tn.

Let us consider the sequence We may choose a

1 11 1

convergent subsequence (let us denote also r¡n) such that

Then det  lrs I = 0 for non vanishing vector n and that is a contradiction
with condition (0). In the same way (1.5) may be proved.

0

The equation (1.2) has a solution Using the esti-

mates of Agmon, Douglis, Nirenberg (see [1]) and continuous dependence
0 

on the right part, we see that u E for If.a E Lp and there exists (7 ;&#x3E; 0
so that



170

The functions satisfy the equation

for every (p E [D (I?)]- and there exists C &#x3E; 0 so that

That means that the right part of any equation may be written in the

form and the Ep-norms of f and g are equivalent.
uo

Next, let us write (1.2) in the form

and let us interest in the dependence of the estimates of 2i on p.

be a solution of (1 ’. Then

there exists a positive constant C, (e) such that

PROOF : According to the foregoing remarks

From (1.7) we obtain immediately
I c , . /0

The result follows according to the interpolation theorem of Riesz-Thorin

(see [22]).

satisfy condition (0). Then

0

is an equivalent norm in W p n(0).
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PROOF : For p = 2 the result is an immediate consequence of Lemma

1.1. For p # 2 we may use the method of J. Necas (see [14]), consisting
of applying the Lizorkin’s theorem on multiplicators (see [10]) to this spe-
cial case. F ( f ) denotes the Fourier transformation of the function f E Lp
(in the sense of distributions).

THEOREM 1 (Lizorkin) : Let 0 (~) be a function defined and continuous
with all its derivatives Dao (a = (a1, ... , aN ), a~ = 0 or 1) for every ~ _
= ($i, ---, ~N); . ~-~0 for~=1~...,N.

Let all such derivatives satisfy condition .

Then ) is a linear and bounded mapping from

Zp (EN) into Zp (EN) for 1  p  oo.

0
We shall use the equivalent norm in W p (S~) ;

We obtain immediately

On the contrary, we may suppose u E [D (S~)~’~. Using Fourier transform we
may write

Let us denote f = ( f1 , ... , = 
... , gm) with pj = (- i)Xj F (uj). Then

Moreover, let [Aj) be set of all the determinants (m X m) of N~,
For arbitrary $ =1= (0, ... , 0) there exists (at least one) 4j (~) =1= 0. Let
be its subdeterminants of the orders (m - 1) X - 1). (We may de-

fine djre = 0 if Nre does not belong to Aj). Let us write (from Cramer’s
rule)

and also
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But for every therefore

It remains to prove the estimate (1.5) for

In the same way as in the proof of Lemma (1.1) it may be shown that

Thus the assumptions of Theorem 1 are satisfied and hence

Let us now consider the equation

and

-J r 
-

and every q E Eh .

0

LEMMA 1.4 : Let solution of (1.14) with Aij satisfying
(1.15), 2 s p S 2 -f - e. Then there exist two positive constants y3 (e) &#x3E; 1



173

and y4 (e) &#x3E; 1 such that

for p satisfying

PROOF : It is sunicient to prove (1.16) for (i, j =
=1, ... , h) as Lemma 1.4 is the easy corollary of continuous dependence

Such a solution ’It E is also a solution of

We shall estimate the Lp-norm of the first term on the right.

Now, according to Lemma 1.2 we obtain

Let us denote
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The p satisfying (1.17) satisfies also

Therefore it follows from (1.19)

0

The equivalence of the norms in Wpx (Q) (Lemma 1.3) implies the result.

§2.

The existence and unicity of the solution of (1.1) follows immediately
from a special case of the Lerray-Lions Theorem :

THEOREM 2. Let V be a reflexive Banach-space, A (v) a bounded ope-
rator from V to V’ which is weakly continuous from all finitely dimensio-
nal subspaces of V to V’. (Let us denote (F, cp) the value of the functional
F in the point Let the following assumptions be satis6ed :

A is strictly monotone, i, e.

Then A is a one-to-one mapping on V’ and A-’ is a bounded mapping
from Y’ to V.

0

In our notations there is V = W’ (S~) and

The boundedness aud continuity is proved in [2], [20], [21] in the theo-
rem of Nemyckij’s operators. Conditions 1,2 follow immediately from assum-

ptions A, B (see [21], [16]). Moreover, we obtain 2) in the form
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in case A and therefore A-1 is a continuous mapping’; the solution depends
continuously on the right part and the boundary condition.

In the case B there is A-’ only demi continuous, i.e. it is continuous
o 0

from the strong topology in (Wk 0 ")’ into the weak topology in li’k 0 H (see [2],
[15], [16]). 

o .-

Let us denote 9,3 a bounded mapping from

into such that % (it) = A (u - ’Lto) and consider the following equation

where J
Let us say 03 has the property nl if and only

r implies u E and

where C is bounded uniformely for k E  2; 

Let us denote

and

Let us define

and

analogously to 93. 
’

THEOREM 3 (ON Let 03 satisfy A or B and 
()3t have property nl.

Then there exists and it is a bounded mapping from [W; (0)) h into
W;+1 ~Q)

Using Sobolev embedding theorem, it follows immediately :

COROLLARY: Let u be a solution of (1.1), where B satisfies A or B

and 03, 038, 03t have property a. Then u E Cx (Q) with fl = 1 - v and’ 

v



176

PROOF : 03, satisfy conditions (0) - (4) or (0) - (4") with s instead k.
Let us denote 9) the subset of s E  2, k ) such that for u E ~s 1 ( f )

holds with C independent on s. 1&#x3E; =t= z for 2 E 9. (see results of Agmon,
Douglis, Nirenberg ~1J). 1&#x3E; is closed:

Let sn E ~ converge to

and there exists a subsequence (let us denote it also usn) such that uSn --~ us
in Wp . But such Us belongs to (llse (2.1)), therefore it solves 
and according to -ci

n n - - , 11 ,

6P is open: Let be an inverse operator to and

then 93-1. 0, is defined on

is weakly continuous on cl9 (see remarks before Theorem 3) and yl c

c c)) for sufficiently small s -- so. According to Schauder’s fixed point
theorem (see [19]) there exists C, (u). Then 038 (u) 
and according to We may All the

p

proceedings may be repeated for C)3t, which completes the proof.

Operators which satisfy d.

THEOREM 4: Let Ni be all the highest derivatives, i. e. Ni = Nr« =

= D« ur m, I = xr , let ~3 satisfy A. Then c)3 has property nl.
The proof is based on the following two estimates
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and

They may be obtained in this way :
All first derivatives of u solve a linear equation with measurable coef-

ficients. In the interior of D or in the directions « parallel with boundary
aS~ « it is sufficient to use the theorems about linear equations (see § 1)
or to choose suitable test-functions. In the normal directions, more precise
theorems about dual norms must be used.

To this purpose, the following description of boundary will be consi-

dered : [see [15]] a neighborhood of every point of aS~ is described by an
infinitely differentiable function a which is defined on the cube

and I in a corresponding coordinate system. The boundary
"-.I. I - --" I 

is covered by a fini te number P of such systems.
Let us suppose

for every sufficiently small r and i = 1, ... , P. Let us denote V,’ 0 the domain
with infinitely smooth boundary

In [13], the existence of the functions

n C ( V/ ) is proved, having the following properties :

In the next lemmas the right part f is supposed in

12. Anntdi della Souola Norm. Sup. Pieac.
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The constant C depends on ] and does not depend on k E

The last term on the left is equal to

Then

and

2) Let us take Integrating in

parts (1.1), we find
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According to the assumptions on and Ni, ji; this equation is satisfied
- 1"’B --

for all y E thereby also for

where R consists of the terms aza yo with smooth

Let us denote

From the ellipticity

Let us estimate the right part of (3.4).
Now,
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Therefore, from i), ii) and iii) it follows

which implies the boundedness of j.
Let us define on Vr the derivatives « parallel with the boundary &#x3E;&#x3E;,

i. e. the derivatives in the plane orthogonal to the direction

The index of the coordinate system will be omitted.

If ¡y! = ~ + denotes such a derivative for l === I,.. , AT - 1,
axl 

~ t ~

then the following conclusion is true :

It allows us to prove the analogue of the foregoing lemma for 01. Let us
denote

LEMMA 3.2 : Let ; then

PROOF : Let us take a test-function in (1.1) in the form
. Then

and

where Ri involves the derivatives of lfi up to the order xi . After integra-
ting in parts, there holds
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where R2 involves the derivatives of ub up to the order xi.

According to remark (3.5) we may take

and conclude

where R3 involves the derivatives of ui up to the order The right part
may be estimated as in Lemma 3.1 and it implies j  0 (f).

then

for sufficiently small

PROOF : Let us denote . We shall esti-

mate the L2-norm of the functions

using the following theorem (see [14], [15]).
Let f E entire, v entire, non-negative. Then
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Let us set

and v =1, otherwise. The second case is quite analogous.

Let us denote

where : Then

where
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The first term is estimated by the second one has the same

form as 2).
Finally, from (3.10) and 1), 2), 3)

As in 2) all the terms

may be estimated by

Therefore I  e (8). V k-2 for sufficiently small s.

From these lemmas it follows immediately :

COROLLARY 3 4 :


