Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

MARTIN SCHECHTER

The spectrum of operators on $L^p(E^n)$

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 24, nº 2 (1970), p. 201-207

<http://www.numdam.org/item?id=ASNSP_1970_3_24_2_201_0>

© Scuola Normale Superiore, Pisa, 1970, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE SPECTRUM OF OPERATORS ON $L^{p}(E^{n})^{(1)}$

MARTIN SCHECHTER

1. Introduction.

Let P(D) be a partial differential operator on E^n with complex constant coefficients. If C_0^{∞} denotes the set of infinitely differentiable complex valued functions with compact supports on E^n , then P(D) on C_0^{∞} is a closable operator in $L^p = L^p(E^n)$ for $1 \le p \le \infty$. Let $P_0 = P_{0p}$ denote its closure in L^p . It is the purpose of this note to describe the spectrum of P_0 under certain assumption on P(D).

In describing our results, we shall need to define the polynomial $P(\xi)$ associated with P(D). If we set

$$(1.1) D_k = \partial/i\partial x_k, \ 1 \le k \le n,$$

we can consider P(D) as a « polynomial » in D_1, \ldots, D_n . If we replace D_1, \ldots, D_n by real variables ξ_1, \ldots, ξ_n , we obtain a polynomial $P(\xi)$ called the polynomial associated with P(D).

Our first result is

THEOREM 1.1. Let P(D) be an operator of order m such that the associated polynomial $P(\xi)$ satisfies

(1.2)
$$1/P(\xi) = 0 (1/|\xi|^b) \text{ as } |\xi| \to \infty,$$

where b > 0 and $|\xi|^2 = \xi_1^2 + \ldots + \xi_n^2$. Let p satisfy 1 and

(1.3)
$$|1/p - 1/2| < b/n (m - b).$$

Pervenuto alla Redazione il 10 Novembre 1969.

⁽¹⁾ Research supported in part by NSF Grant GP-9571.

Then

202

(1.4)
$$\sigma(P_0) = \{P(\xi), \xi \in E^n\},$$

where $\xi = (\xi_1, ..., \xi_n)$. Thus (1.4) holds for all p satisfying 1 when

$$(1.5) b \ge mn/(n+2).$$

COROLLARY 1.2. If P(D) is such that

(1.6)
$$|P(\xi)| \to \infty \ as \ |\xi| \to \infty,$$

then there is an $\eta > 0$ such that (1.4) holds when

(1.7)
$$|1/p - 1/2| < \eta$$
.

In describing our next result we let $\mu = (\mu_1, \dots, \mu_n)$ denote a multiindex of non-negative integers and put

$$P^{(\mu)}(\xi) = \partial^{|\mu|} P(\xi) / \partial \xi_1^{\mu_1} \dots \partial \xi_n^{\mu_n},$$

where $|\mu| = \mu_1 + ... + \mu_n$.

THEOREM 1.3. Assume that $1 and that <math>P(\xi)$ satisfies (1.2) and

(1.8)
$$P^{(\mu)}(\xi)/P(\xi) = 0 (1/|\xi|^{a \mid \mu \mid}) \text{ as } |\xi| \to \infty, |\mu| \le l,$$

for real $a \leq 1$ and

$$(1.9) b > (1-a) n | 1/p - 1/2 |,$$

where l is the smallest integer greater than $n \mid 1/p = 1/2 \mid$. Then (1.4) holds.

Balslev [6] proved (1.4) for elliptic operators. In a and Schubert [4, 5] proved that for $1 and any operator satisfying (1.6) either <math>\sigma(P_0)$ is the whole complex plane or (1.4) holds. They also proved a theorem slightly weaker than Theorem 1.1. They give an example of a fourth order operator for which (1.4) does not hold when

$$|1/p - 1/2| > 3/8.$$

Our Theorem 1.3 applied to this operator shows that (1.4) does hold for

$$|1/p - 1/2| < 2/9.$$

It would be of interest to know the exact point of demarcation. I would like to thank F.T. Iha and C.F. Schubert for informing me about their work.

2. A. Multiplier Theorem.

Let S denote the set of all complex valued functions $v \in C^{\infty}(E^n)$ such that

$$|x|^k |D^{\mu}v|$$

is bounded on E^n for each integer $k \ge 0$ and multi-index μ , where

$$D^{\mu} = D_1^{\mu_1} \dots D_n^{\mu_n}.$$

If F denotes the Fourier transform, then both F and F^{-1} map S into itself. A function $m(\xi)$ on E^n is called a multiplier in L^p if there exists a constant C such that

(2.1)
$$\| F^{-1}[m(\xi) Fu] \|_p \leq C \| u \|_p, u \in S_{2}$$

where ξ is the argument of the Fourier transform and the norm is that of L^p .

The following is a special case of a theorem due to Littman [1].

THEOREM 2.1. Let m_1 , m_2 be non-negative integers and suppose θ , p satisfy $0 \le \theta \le 1$, 1 and

(2.2)
$$(1-\theta) m_1 + \theta m_2 > n | 1/p - 1/2 |.$$

Suppose $w(\xi)$ is a function in $C^m(E^n)$ satisfying

(2.3)
$$\max_{R < |\xi| < 2R} |D^{\mu}w|^{1-\theta} \max_{R < |\xi| < 2R} |D^{\nu}w|^{\theta} \le C/R^{(1-\theta)|\mu| + \theta|\nu|}$$

for all μ , ν such that $|\mu| \leq m_1$ and $|\nu| \leq m_2$, where $m = \max(m_1, m_2)$. Then w is a multiplier in L^p .

We shall use this theorem to prove

THEOREM 2.2. Suppose $1 , and let l be the smallest integer greater than <math>n \mid 1/p = 1/2 \mid$. Assume that $w(\xi)$ is a function in $C^{1}(E^{n})$ such that

(2.4)
$$|D^{\mu}w(\xi)| \leq C/|\xi|^{a|\mu|+b}, |\mu| \leq l,$$

for real $a \leq 1$ and

(2.5)
$$b > (1-a) n | 1/p - 1/2 |.$$

Then w is a multiplier in L^p .

PROOF. First assume that $b \ge (1 - a) l$. In this case we take $m_1 = m_2 = l$ and $\theta = 0$. Inequality (2.4) implies

(2.6)
$$\max_{R < |\xi| < 2R} |D^{\mu} w(\xi)| \le C/R^{a |\mu| + b}$$

Since $b \ge (1-a)l$, $b \ge (1-a)|\mu|$ for $|\mu| \le l$, and consequently $a|\mu| + b \ge |\mu|$. Thus (2.6) implies (2.3). Since all of the hypotheses are satisfied, we obtain the desired conclusion from Theorem 2.1.

Next assume b < (1 - a) l. In this case we must have a < 1. By (2.5) and the definition of l we have

$$0 < l - \frac{b}{1-a} < l - n \left| \frac{1}{p} - \frac{1}{2} \right| \le 1,$$

and consequently there is a θ satisfying $0 < \theta < 1$ such that

$$0 < l - \frac{b}{1-a} < \theta < l - n \left| \frac{1}{p} - \frac{1}{2} \right| \le 1.$$

In particular we have

$$(2.7) n \left| \frac{1}{p} - \frac{1}{2} \right| < l - \theta < \frac{b}{1-a}.$$

We now take $m_1 = l$, $m_2 = l - 1$ and θ satisfying (2.7). Note that (2.6) implies

(2.8)
$$\max_{R<|\xi|<2R} |D^{\mu}w|^{1-\theta} \max_{R<|\xi|<2R} |D^{\nu}w|^{\theta} \leq C/R^{a[(1-\theta)|\mu|+\theta|\nu|]+b}.$$

If $|\mu| \le m_1 = l$ and $|\nu| \le m_2 = l - 1$, then

$$(1-\theta) \left| \mu \right| + \theta \left| \nu \right| \le l - \theta < b/(1-a)$$

by (2.7). This is equivalent to

$$a\left[\left(1-\theta\right)\left|\left.\mu\right|+\theta\left|\left.\nu\right.\right|\right]+b\geq\left(1-\theta\right)\left|\left.\mu\right|+\theta\left|\left.\nu\right.\right|\right]$$

for such μ and ν . Thus (2.8) implies (2.3) and all of the hypotheses of Theorem 2.1 are satisfied. This completes the proof.

The connection between multipliers and the spectrum of a partial differential operator is given by

THEOREM 2.3. For $1 \leq p < \infty$, a point λ is in $\varrho(P_{0p})$ if and only if $1/[P(\xi) - \lambda]$ is a multiplier in L^p .

PROOF. We may take $\lambda = 0$. If $0 \in \rho(P_{0p})$, then there is a constant C such that

(2.9) $||u||_{p} \leq C ||P_{0p} u||_{p}, \quad u \in D(P_{0p}).$

In particular we have

$$(2.10) || v ||_{p} \leq C || P(D) v ||_{p}, \quad v \in S.$$

Now (2.10) implies that

$$(2.11) | P(\xi) | \ge 1/C, \xi \in E^n.$$

To see this, let ξ be any vector in E^n and let ψ be any function in C_0^{∞} such that $\|\psi\|_p = 1$. Set

(2.12)
$$\varphi_k(x) = \exp \{i (x_1 \xi_1 + ... + x_n \xi_n)\} \psi(x/k)/k^{n/p}, \quad k = 1, 2, ...$$

Then $\varphi_k \in C_0^{\infty}$ for each k and $\|\varphi_k\|_p = 1$. Furthermore by Leibnitz's formula

$$P(D) \varphi_{k} = \sum_{\mu} P^{(\mu)}(\xi) \psi_{\mu}(x/k) \exp \{i (x_{1}\xi_{1} + ... + x_{n}\xi_{n})\}/\mu ! k^{|\mu|+(n/p)},$$

where $\psi_{\mu}(x) = D^{\mu} \psi(x)$ and $\mu ! = \mu_1 ! ... \mu_n !$. Since

 $\|\psi_{\mu}(x/k)/k^{n/p}\|_{p} = \|\psi_{\mu}\|_{p}$,

We see that

$$\| P(D) \varphi_k \|_p \longrightarrow | P(\xi) | \text{ as } k \longrightarrow \infty.$$

But by (2.10)

$$1 = \| \varphi_k \|_p \le C \| P(D) \varphi_k \|_p, \quad k = 1, 2, \dots$$

This gives (2.11). Let f be any function in S, and set

(2.13)
$$u = F^{-1} \left[\frac{1}{P} F f \right].$$

By (2.11) we know that $u \in S$. Furthermore P(D) u = f. Thus (2.10) implies

(2.14)
$$\left\| F^{-1} \left[\frac{1}{P} F f \right] \right\|_p \leq C \left\| f \right\|_p.$$

This shows that $1/P(\xi)$ is a multiplier in L^p .

Conversely, suppose $1/P(\xi)$ is a multiplier. Thus (2.14) holds. Since all multipliers are bounded, (2.11) holds for some constant C. Thus for each $f \in S$ there is a $u \in S$ such that P(D) u = f and

$$\|u\|_p \leq C \|f\|_p$$

by (2.14). Since S is dense in L^p , this shows that $0 \in \rho(P_0)$. This completes the proof.

3. Proofs of the Theorems.

We first give the

PROOF OF THEOREM 1.3. It is well known that

(3.1)
$$\sigma(P_0) \supset \{P(\xi), \xi \in E^n\}$$

(see [3, 4]). (Thus it suffices to show that each λ satisfying $P(\xi) \neq \lambda$ for $\xi \in E^n$ is in $\varrho(P_0)$. We may take $\lambda = 0$. By Theorem 2.3 it suffices to show that $1/P(\xi)$ is a multiplier in L^p . Since $a \leq 1$, we must have b > 0 and consequently (1.6) holds. This means that there is a constant C such that (2.11) is satisfied. Now for each μ the derivative $D^{\mu}(1/P)$ consists of a sum of terms of the form

(3.2) constant
$$P^{(\mu^{(1)})}(\xi) \dots P^{(\mu^{(k)})}(\xi)/P(\xi)^{k+1}$$
,

where $\mu^{(1)} + ... + \mu^{(k)} = \mu$ (this is easily verified by a simple induction argument). Thus

$$(3.3) | D^{\mu}(1/P) | \leq C/ |\xi|^{a |\mu| + b}, |\mu| \leq l.$$

We may apply Theorem 2.2 to conclude that $1/P(\xi)$ is an L^p multiplier. This completes the proof.

Next we give the

206

PROOF OF THEOREM 1.1. Since $P(\xi)$ is of degree m, $P^{(\mu)}(\xi)$ is of degree at most $m - |\mu|$. Hence

(3.4)
$$P^{(\mu)}(\xi)/P(\xi) = 0 \left(\left| \xi \right|^{m-|\mu|-b} \right) \text{ as } \left| \xi \right| \to \infty.$$

For $|\mu| \ge 1$ we have $m - |\mu| - b \le (m - b - 1) |\mu|$. Hence (3.4) gives

$$(3.5) P^{(\mu)}(\xi)/P(\xi) = 0 \left(\left| \xi \right|^{(m-b-1)|\mu|} \right) \text{ as } |\xi| \to \infty.$$

This shows that (1.8) holds with a = b + 1 - m. If we now apply Theorem 1.3 we see that (1.4) holds provided (1.3) is satisfied. If (1.5) holds, then the right hand side of (1.3) is $\geq 1/2$. This allows p to take on all values between 1 and ∞ .

PROOF OF COROLLARY 1.2. We merely note that (1.6) implies (1.2) for some constant b > 0. Thus by Theorem 1.1 we may take $\eta = b/n (m-b)$.

BIBLIOGRAPHY

- 1. WALTER LITTMAN, Multipliers in L^p and interpolation, Bull. Amer. Math. Soc. 71 (1965) 764-766.
- 2. MARTIN SCHECHTER, Partial differential operators on $L^{p}(E^{n})$, ibid. 75 (1969) 548-549.
- 3. MARTIN SCHECHTER, The spectra of non-elliptic operators, Israel J. Math. 6 (1968) 384-397.
- 4. F. T. IHA, Spectral theory of partial differential operators, Thesis, University of California, Los Angeles, 1969.
- 5. F. T. IHA and F. C. SCHUBERT, The spectrum of partial differential operators on $L^{p}(\mathbb{R}^{n})$, Trans. Amer. Math. Soc., to appear.
- 6. ERIK BALSLEV, The essential spectrum of elliptic operators in $L^{p}(\mathbb{R}^{n})$, ibid 116 (1965) 193-217.

Belfer Graduate School of Science Ycshiva University