S. Zaidman

An existence theorem for bounded vector-valued functions

<http://www.numdam.org/item?id=ASNSP_1970_3_24_1_85_0>
AN EXISTENCE THEOREM FOR BOUNDED VECTOR-VALUED FUNCTIONS

S. ZAIDMAN (*)

Introduction.

In professor's L. Amerio paper [1], supposing existence of bounded solutions for $t \geq 0$ (t-time), of non-linear almost-periodic differential equations, one proves existence of bounded solutions which are defined on the whole time axis, $-\infty < t < \infty$.

In our paper [2] we proved a very similar result for solutions of the heat equation, with almost-periodic known term. We shall see below that this situation can be extended to a certain class of Banach space valued functions admitting a certain representation through a given semi-group of class C^0.

§ 1. Let us consider first a reflexive Banach space X; then, a one-parameter semi-group of operators in $L(X, X)$: T_t, $t \geq 0$; such that $T_0 = I$, $T_{t+s} = T_t T_s$; $T_t \in L(X, X)$ $\forall t \geq 0$ and $T_t x$ is continuous from $0 \leq t < \infty$ to X.

Consider also a continuous function $-\infty < t < \infty$ to X, which is almost-periodic in Bochner's sense, that is:

Each sequence $(f(t + a_n))_{n=1}^{\infty}$ contains a subsequence $(f(t + a_{n_p}))_{p=1}^{\infty}$ which is uniformly convergent on $-\infty < t < \infty$, in strong topology of X.

Let now $u(t)$ be a continuous function: $0 \leq t < \infty$ to X, admitting representation

\begin{equation}
(1.1) \quad u(t) = T_t u(0) + \int_0^t T_{t-\zeta} f(\zeta) d\zeta, \quad \forall t \geq 0
\end{equation}

Pervenuto alla Redazione il 21 Agosto 1969.

(*) This research is supported by a grant of the N. R. C. of Canada and by Summer Research Institute, Queen's University, 1969.
and let us assume
\[M = \sup_{t \geq 0} \| u(t) \|_X < \infty. \]

Then we have

Theorem. There exists a continuous function \(W(t), -\infty < t < \infty \) to \(X \), such that

\[W(t) = T_{t-t_0} W(t_0) + \int_{t_0}^{t} T_{t-s} f(s) \, ds, \quad \forall t \geq t_0 \]

Proof. Let us consider the sequence of translates
\[u_n(t) = u(t + n) \]

They are defined for \(t \geq -n \), and we have
\[\sup_{t \geq -n} \| u_n(t) \| = M = \sup_{t \geq 0} \| u(t) \| \]

As well known, reflexivity implies weak sequential compactness of bounded sets in \(X \). Then, using almost-periodicity of \(f(t) \) and the diagonal procedure, we obtain a sequence of positive integers \((n_k)_1^{\infty} \) with following properties:

\[\lim_{k \to \infty} f(t + n_k) = g(t), \text{ uniformly on } -\infty < t < \infty \text{ (and consequently } g(t) \text{ is an almost-periodic function)} \]

For each \(N = 0, 1, 2 \), \(u_{n_k}(-N) \) is defined for \(k \geq N \), and

\[(w) \lim_{k \to \infty} u_{n_k}(-N) = W_N \text{ exists and belongs to } X \text{ (here (w) means weak topology in } X \text{; remember that a reflexive space is weakly sequentially complete).} \]

Remark now, that for each real \(t \), \(u_{n_k}(t) \) is defined for \(k \geq k_t \). Then we shall see that, \(\forall t \in (-\infty, \infty) \)

\[(w) \lim_{k \to \infty} u_{n_k}(t) = V(t) \text{ exists.} \]
In fact (1.10) is a consequence of (1.9) and (1.5). To prove (1.9) we use the following

Lemma 1. Let \(t \in (-\infty, \infty) \) be given, and \(N \) a positive integer such that \(t + N > 0 \). Then, \(\forall k > N \), we have

\[
(1.12) \quad u_{n_k}(t) = T_{t+N} u_{n_k}(-N) + \int_{-N}^{t} T_{t-\tau} f(\tau + n_k) \, d\tau.
\]

This Lemma is a Corollary of a slightly more general result

Lemma 2. Let \(u(t), t \geq 0 \rightarrow \mathcal{X} \) (arbitrary Banach space), be a continuous function; \(T_t; t \geq 0 \rightarrow L(\mathcal{X}, \mathcal{X}) \) be a strongly continuous one parameter semigroup of linear bounded operators in \(\mathcal{X} \); \(f(t), -\infty < t < \infty \rightarrow \mathcal{X} \) be a continuous function.

Suppose

\[
(1.13) \quad u(t) = T_t u(0) + \int_{0}^{t} T_{t-\tau} f(\tau) \, d\tau, \quad \forall t \geq 0.
\]

Then, if \(t \in (-\infty, \infty) \), is given and \(b > a > 0, a + t > 0 \), we have

\[
(1.14) \quad u(t+b) = T_{t+a} u(b-a) + \int_{a}^{t} T_{t-\zeta} f(\zeta + b) \, d\zeta.
\]

Remark. Lemma 1 follows from Lemma 2 if we take \(b = n_k, a = N \).

Proof of Lemma 2.

As \(t + b > t + a > 0 \), we have using (1.1)
Next remark, again by (1.1), the representation

\[u(b - a) = T_{b-a} u(0) + \int_0^{b-a} T_{b-a-s} f(s) \, ds. \]

Introducing in (1.14) the value of \(T_{b-a} u(0) \) we get

\[(1.15) \quad u(t + b) = T_{t+a} \left(u(b - a) - \int_0^{b-a} T_{b-a-s} f(s) \, ds \right) + \int_0^{t+b} T_{t+b-s} f(s) \, ds = \]

\[\left. \left. \right. \right. \]

\[T_{t+a} u(b - a) + \int_{b-a}^{t+b} T_{t+b-s} f(s) \, ds. \]

Now, set \(a = \zeta + b \); it follows \(\int_{b-a}^{t+b} T_{t+b-s} f(s) \, ds = \int_{-a}^{t} T_{t-\zeta} f(\zeta + b) \, d\zeta \) which proves our Lemma, and consequently Lemma 1 too.

Actually we see that (1.9) is true in the following way: Fix an arbitrary real \(t \); then take \(N \) a positive integer, such that \(t + N > 0 \), and take \(k \geq N \). We use then (1.12); as \(f(t + n_k) \to g(t) \) uniformly on \((-\infty, \infty)\) and in \(X \) strong, we have obviously

\[\lim_{k \to \infty} \int_{-N}^{t} T_{t-\zeta} f(\zeta + n_k) \, d\zeta = \int_{-N}^{t} T_{t-\zeta} g(\zeta) \, d\zeta. \]

Then we have also

\[(w) \lim_{k \to \infty} T_{t+N} u_{n_k}(-N) = T_{t+N} W_N. \]

because a linear continuous operator in a \(B \)-space is continuous also in respect to the weak convergence.

Now, we shall see that for function \(V(t) \), \(-\infty < t < \infty \to X \) defined by (1.9), the representation formula (1.11) holds for each semi axis \(t \geq t_0 \).

Take in fact two reals \(t \geq t_0 \), and choose an integer \(N \) such that \(-N < t_0 \). Apply Lemma 1 to \(t, t_0, N \). We have

\[u_{n_k}(t) = T_{t+N} u_{n_k}(-N) + \int_{-N}^{t} T_{t-\zeta} f(\zeta + n_k) \, d\zeta \]

\[u_{n_k}(t_0) = T_{t_0+N} u_{n_k}(-N) + \int_{-N}^{t_0} T_{t_0-\zeta} f(\zeta + n_k) \, d\zeta. \]
Then, reasoning as above, we obtain

\[V(t) = T_{t+N} W_N + \int_{-N}^{t} T_{t-\zeta} g(\zeta) \, d\zeta \]

\[V(t_0) = T_{t_0+N} W_N + \int_{-N}^{t_0} T_{t_0-\zeta} g(\zeta) \, d\zeta \]

Trying now to get (1.11) we write

\[T_{t-t_0} V(t_0) = T_{t-t_0} \left(T_{t_0+N} W_N + \int_{-N}^{t_0} T_{t_0-\zeta} g(\zeta) \, d\zeta \right) = T_{t+N} W_N + \int_{-N}^{t} T_{t-\zeta} g(\zeta) \, d\zeta. \]

Hence

\[T_{t-t_0} V(t_0) + \int_{t_0}^{t} T_{t-\zeta} g(\zeta) \, d\zeta = T_{t+N} W_N + \int_{-N}^{t} T_{t-\zeta} g(\zeta) \, d\zeta = V(t) \]

that is (1.11).

Now we give the idea of the final step in the proof. Using uniform (on real axis) convergence of sequence \(f(t + n_k) \) to \(g(t) \), we obtain uniform convergence of sequence \(g(t - n_k) \) to \(f(t) \). Starting now with \(V(t) \) and repeating above procedure, we obtain function \(W(t), -\infty < t < \infty \) which is continuous, bounded, and admits representation (1.3) \(\forall t \geq t_0 \).

REFERENCES
