S. M. MAZHAR

A theorem on generalized absolute Riesz summability

<http://www.numdam.org/item?id=ASNSP_1965_3_19_4_513_0>
A THEOREM ON GENERALIZED ABSOLUTE RIESZ SUMMABILITY

by S. M. MAZHAR

1.1. Let Σa_n be a given infinite series and $\{\lambda_n\}$ be an increasing sequence of positive numbers tending to infinity with n. We write

$$A_1(\omega) = A_1^\omega(\omega) = \sum_{\lambda_n < \omega} a_n,$$
$$A_1^\omega(\omega) = 0,$$
$$A_1^\omega(\omega) = \sum_{\lambda_n < \omega} (\omega - \lambda_n)^\alpha a_n,$$
$$\int_{\lambda_1}^\omega (\omega - \ell)^\alpha \, dA_1(\ell)$$

and

$$C_1(\omega) = A_1^\omega(\omega) / \omega^\alpha.$$

A series Σa_n is said to be summable by Riesz means of «type» λ and «order» α or, simply, summable (R, λ, α), $\alpha \geq 0$ to the sum s if

$$\lim_{\omega \to \infty} C_1^\alpha(\omega) = s,$$

where s is any finite number [8].

The series Σa_n is said to be summable $|R, \lambda, \alpha|$, $\alpha \geq 0$, if the function $C_1^\alpha(\omega) \in BV(h, \infty)$, that is to say, if

$$\int_{h}^{\infty} \left| \frac{d}{d\omega} C_1^\alpha(\omega) \right| \, d\omega < \infty,$$

where h is a finite positive number [6, 7].

Similarly the series Σa_n is said to be summable $| R, \lambda, \alpha |_k$, $\alpha > 0$, $k \geq 1$, $\alpha k' > 1$, $\frac{1}{k} + \frac{1}{k'} = 1$, if the integral
\[
\int_{0}^{\infty} \omega^{k-1} \frac{d}{d\omega} C_{2}^{\alpha}(\omega) \, d\omega
\]
is convergent [4].

In 1915 Hardy and Riesz [2] proved the following interesting theorem concerning the Riesz summability of an infinite series.

Theorem A. If $\lambda > 0$ and Σa_n is summable $| R, \lambda, \alpha |$, then the series $\Sigma a_n \lambda_n^\alpha$ is summable $| R, \lambda, \alpha |$, where $\lambda_n = e^{\lambda n}$.

Analogous problem was considered by Tatchell [9] for absolute Riesz summability. He proved the following theorem:

Theorem B. If $\alpha \geq 0$ and Σa_n is summable $| R, \lambda, \alpha |$, then $\Sigma a_n \lambda_n^{-\alpha}$ is summable $| R, \lambda, \alpha |$, where $\lambda_n = e^{\lambda n}$.

The object of the present note is to establish the corresponding result for the generalized absolute Riesz summability, namely summability $| R, \lambda, \alpha |_k$ for integral values of α. In a subsequent note it is proposed to discuss the non-integral case.

2.1. In what follows we shall prove the following theorem:

Theorem. If α is a positive integer and Σa_n is summable $| R, \lambda, \alpha |_k$, then $\Sigma a_n \lambda_n^{-\alpha+1/k'}$ is summable $| R, \lambda, \alpha |_k$, where $\lambda_n = e^{\lambda n}$, $k \geq 1$, $\lambda > 0$ and $\frac{1}{k} + \frac{1}{k'} = 1$.

It is evident that for $k = 1$ our theorem includes the above theorem of Tatchell for integral values of α.

2.2. We require the following lemmas for the proof of this theorem:

Lemma 1 [3]. If $\alpha > 0$ and $R_n(\omega)$ is the Rieszian sum of type λ and order α of the series $\Sigma a_n \lambda_n$, then
\[
\omega^{\alpha+1} \frac{d}{d\omega} C_{2}^{\alpha}(\omega) = \alpha R_{\alpha-1}(\omega) = \frac{d}{d\omega} R_{\alpha}(\omega).
\]

(1) See also Borwein [1] who defined the summability $| R, \lambda, \alpha |_k$.

(2) This theorem for the case $\alpha = 1$ is due to Mohanty [5].
LEMMA 2 [2]. If \(l \) is a positive integer, then

\[
A_l(t) = \frac{1}{l!} \left(\frac{d}{dt} \right)^l A^l(t).
\]

3.1. PROOF OF THEOREM. Under the hypothesis of the theorem we have by Lemma 1

\[
\int_{\lambda_1}^{\infty} \omega^{-(l+\alpha k)} |E_{\alpha-1}(\omega)|^k d\omega < \infty
\]

and we have to establish the convergence of the integral

\[
\int_{\lambda_1}^{\infty} \omega^{-(l+\alpha k)} |E_{\alpha-1}(\omega)|^k d\omega,
\]

where \(E_{\alpha-1}(\omega) \) is the Rieszian sum of order \((\alpha - 1)\) and of type \(l \), of the series \(\sum a_n \lambda_n^{-(\alpha+1)/k} e^{i\lambda n} \).

By writing \(\omega = e^x \) in the above integral (3.1.2) we find that the required condition can also be written in the form

\[
\int_{\lambda_1}^{\infty} e^{-\alpha x k} |E_{\alpha-1}(e^x)|^k dx < \infty.
\]

We have

\[
E_{\alpha-1}(e^x) = \int_{\lambda_1}^{e^x} (e^u - u)^{\alpha-1} dE(u)
\]

\[
= \int_{\lambda_1}^{e^x} (e^u - e^x)^{\alpha-1} dE(e^u)
\]

\[
= \int_{\lambda_1}^{e^x} (e^u - e^x)^{\alpha-1} e^t t^{\alpha-1}/k dB(t)
\]

\[
= [(e^x - e^x)^{\alpha-1} e^t t^{\alpha-1}/k B(t)]_{\lambda_1}^{e^x}
\]

\[
- \int_{\lambda_1}^{e^x} dB(t) \frac{d}{dt} [(e^x - e^x)^{\alpha-1} e^t t^{\alpha-1}/k] dt.
\]
Applying Lemma 2 and integrating \((x - 1)\) times we have

\[
E_{n-1}(e^x) = \left[(e^x - e^{i\theta}) e^{x \cdot t-a^{1/k}} B(t)^n_1 + \right.
\]

\[
+ O(n! \sum_{n=1}^{\infty} (-1)^i \left(\frac{d}{dt} \right)^{n-i-1} B_{n-1}(t) \left(\frac{d}{dt} \right)^i \left[(e^x - e^{i\theta}) e^{x \cdot t-a^{1/k}} \right]_1^x
\]

\[
+ C \int_0^x B_{n-1}(t) \left(\frac{d}{dt} \right)^n \left[(e^x - e^{i\theta}) e^{x \cdot t-a^{1/k}} \right] dt
\]

\[
= C B_{n-1}(x) e^{ax} x^{-a-1/k} + C \int_0^x B_{n-1}(t) \left(\frac{d}{dt} \right)^n \left[(e^x - e^{i\theta}) e^{x \cdot t-a^{1/k}} \right] dt
\]

\[
= L_1 + L_2, \text{ say.}
\]

Since

\[
\int_0^\infty e^{-ax} |L_1|^k dx \leq C \int_0^\infty x^{-(1+ak)} |B_{n-1}(x)|^k dx < \infty,
\]

it is, therefore, by virtue of Minkowski's inequality sufficient to prove that

\[
\int_0^\infty e^{-ax} |L_2|^k dx < \infty.
\]

Now

\[
L_2 = O \left\{ \int_0^x |B_{n-1}(t)| t^{-a-1/k} e^{at} dt \right\} + O \left\{ \int_0^x \left(\sum_{i=1}^{\infty} e^{ax} e^{(a-\delta)t} t^{-a-1/k} \right) dt \right\}
\]

\[
= L_{21} + L_{22}.
\]

Applying Hölder's inequality, we observe that

\[
\int_0^\infty e^{-ax} |L_{21}| dx = O \left\{ \int_0^\infty e^{-ax} \int_0^x |B_{n-1}(t)| ^k t^{-(1+ak)} e^{at} e^{ak|k-1|} dt dx \right\}
\]

\((^*)\) Where \(C\) denotes a constant not necessarily the same at each occurrence.
Also, in order to show that it is sufficient to prove the convergence of the integral

$$\int_{\lambda_i}^{\infty} e^{-x_{ik}} \left| I_{\mu_{ik}} \right|^k \, dx < \infty$$

it is sufficient to prove the convergence of the integral

$$\int_{\lambda_i}^{\infty} e^{-x_{ik}} \left| B_{u_{ik}} \right|^k \, dx \leq \int_{\lambda_i}^{\infty} e^{-x_{ik}} \left| B_{u_{ik}} \right|^k \left| B_{a_{ik}} \right|^k \, dx$$

for $1 \leq i \leq a - 1$.

Using Hölder's inequality we find that the above integral is

$$\leq C \int_{\lambda_i}^{\infty} t^{-(1+\alpha)} \left| B_{u_{ik}} \right|^k \left| B_{a_{ik}} \right|^k \int_{t}^{\infty} t^{(a-1)(k-1)} \, dt$$

by hypothesis.

This completes the proof of the theorem.

The author is highly grateful to Prof. B. N. Prasad for his constant encouragement and helpful suggestions during the preparation of this note.
REFERENCES

Department of Mathematics and Statistics,
Aligarh Muslim University
Aligarh (India)