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ON P-EQUATIONS AND NORMAL EXTENSIONS
OF FINITE P-TYPE

(II) THE ANALOGY OF THE RIEMANN’S PROBLEM

HISASI MORIKAWA (*)

§ 1. Introduction.

1.1 Let Cffl be a closed Riemann surface and Z be the direct system
of all the finite subsets in where the order in E is defined by the set
theoretical inclusion. If there exists the canonical homo

morphism qJS,8’ of the fundamental group S’) onto the fundamen-
tal group We denote by G(9K) the inverse limit of

{nt S ) ~ S E I with respect to the homomorphisms (qs, c S’) and
by ggs the canonical homomorphism of (~ onto j’lt S). We denote

by the field of meromorphic functions on 9X and by CJ) the

set of all the linear homogeneous ordinary differential equations with coef-
ficients in K(9£). We denote by the set of all the solutions

of certain non-zero elements in ~2) (9N). Then it easily checked that

is a commutative by the usual sum, the pro-
duct and the multiplication of the elements of The topological
group operates continuously on the discrete ring as

follows : Let f be any element in S~ and a be any element in G 

Let 8 be the set of all the singularities of f on 9N and y (o) be the closed
path on Cffl - S of which homotopy class in ~i (Cffl- S ) is the image qs (0)
of a by the canonical homomorphism qs . Then the image fa of f by a is
defined by the analytic continuation of f along the closed path y (0). The-
reforo we can regard 0 (c)g) as a C [ C where C is the field

Pervenuto alla Redazione il 22 novembre 1963 ed in forma definitiva il 3 marzo 1964.

(*) This research wae sponsored by Consiglio Nazionale Delle Ricerche al Centro
Ricerche Fisica e Matematica a Pisa.
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of complex numbers and we mean by a G a discrete module

on which G operates continuously.
In these notations and terminologies the classical Riemann problem is

formulated as follows (1) :
Does there exist a in which is isomorphic

to a given of finite dimension over é,

1.2 We shall explain the analogy of the Riemann’s problem in the
ring of Witt vectors. Let p be a prime number and L1 be field of characteri-
stic p. Let Wf be the eeparable algebraic closure ~of L1 and G (A) be the

Galois group of d’/d, where G (d) is considered as a discrete group. We

mean by a Witt vector with coefficients in d’ an infinite ordered set

of elements oe~ (~ = 0~ ly 2~...) in Putting 0 = (0, 0, 0, ...),

we write

instead of 9 a2 I "’)’ E. Witt introduced the sum, the difference and

the product of two Witt vectors by means of systems of infinite polyno-
mials with coefficients in the prime field GF(p)

(i) The Riemann’s problem formulated in tne classical terminology can be seen [2],
II,, 865 p. p. 888-384.

(2) See [8].
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By means of these operations all the Witt vectors with coefficients in

d’ form a commutative integral domain W (A’). We call W (A’) the ring of
Witt vectors with coefficients in 2’. For any subring A in d’ the ring
W (A) of Witt vectors with coefficients in A is naturally considered as a
subring of W (j’). Since the ring Zp of p-adic integers can be regarded as
the ring of Witt vectors with coefficients in the prime field GF (p), Zp is
considered as a subring of We denote (resp. g (d)) the
quotient field of W (2i’) (resp. W (A)).. More generally for any subfield ~1 in

2F we denote by K (tl) the quotient field of the ring W (A) of Witt vectors

with_ coeffidients in A. The discrete group G (A) operates continuously on
W (A’) as follows :

Hence W (d’) is regarded as a Zp [G (4)].module.
In these notations and terminologies the analogy of Riemann’s problem

is formulated as follows: 
_

Does there exist a Zp [(~ (A)]-submodule in W (A’) which is isomorphic
to a given of finite rank over Zp?

In the present paper we shall solve this problem. Our main theorem

is as follows:

MAIN THEOREM. If R (A) is transcendental over Qp, there exists a

Zp I 0 (J)]-module in W (d’) which is isomorphic to a given Zp 
of finite rank over Zp.

§ 2. Proof of the main theorem.

2.1. We shall begin by the theorem on normal base (3):
Let be a finite separable normal extension of a field K. Then

there exists a base (called normal base) of which consists of all the

conjugates of an element in Z over K.
For a finite separable extension of we denote by G (LIK) the

Galois group of LjK and by TrLJg the trace map of L into K, i. e.

0153O’, (a E L).
0’ c 

(3) See some standard texthooks on algebra.
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LEMMA 1. Let L/g be a finite separable normal extension. Then the
trace map is surjective.

PROOF. Let 10 E G (LIK)) be a normal base of L/.K and a be any
element in K. Then there exists a unique system (can Q E G (LIK)) of ele-
ments in K such that a = Ec. wa. Since a"= a in G (LIK), we have

0

c° = c°= for 0, ’f in G (LIK). This shows that Ca = c for every a in G (Z/g )
with an element c in K. Namely

LEMMA 2. Let LIK be a finite separable normal extension. Let Li and
L2 be normal subfields of Lover .g such that E, n L2 = K. If elements a
in Lt and fl in L2 satisfy (’%) = TrLtlK (~8), then there exists an ele-

ment y in L such that (y) = ex and = fl.

PROOF. In view of Lemma 1 it is enough to prove Lemma 2 for the

case L = .Li L2 . " By the condition in Lemma 2 the Galois group 
is the direct product x G (LifK). We choose normal basis

and of Ls/K and L2/K, respectively.
Then o E G G form a normal base of Ls i Lz j K. Put

and with coefficients in K. Let us consider the fol-
1 T

lowing system of linear equations in 7} :

where G operates on )XQ, _) trivially. This system is equivalent to

Since we have

and

is the unit element in (~ (L1 
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Putting

we have a solution of the above equations in K. Hence the element
satisfies the condition in Lemma 2.

0, T

We shall formulate Lemma 2 to the problem in the rings of Witt

vectors :

LEMMA 3. Let ~1 be a finite separable normal extension of J. Let tl ~
and A2 be normal subfields of ~1 over 4 such that At n A2 = 4. If elements
a in and f in satisfy then

there exists an element y in W (A) such that and

PROOF. It is sufficient to show that the coefficients r1 ... in the

expansion
1

of y in Lemma 3 are successively constructed. Put

and , Then, since

we have mod p and

Hence, by virtue of Lemma 2, we have yo in ~1 such that .’
and (yo) = Po, namely

Assume we have already ya , .·. , in tl such that
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Put

and

Then, since . we bave

and thus Therefore by virtue of Lemma 2 we have
yn in d such that

namely

2.2. We shall first prove the following Lemma and apply it together
with Lemma 2 to construct of the matric solution of Aa = AM (a), (o E Q’ (d))
in W (5).

LEMMA 4. Let LIK be a finite separable normal extension and (N(o) ~ Q E
E (~ be a representation of the Galois group by non singular matrices
with coefficients in K. Let w be an element in .L such that all the conjw
gates of (1) over K form a normal base. Then the matrix N (0-1) w is

~ 
’

non-singular.

PROOF. It is sufficient to prove Lemma 4 for every irreducible repre-

sentation in K. Since every irreducible representation appears in the regu-
lar representation as an irreducible component, it is suf-

ficient to prove det (Z R (0-1) 0. Giving an order a, &#x3E; ... in
6
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G (L/K), we shall calculate (i xj)-element of,

where 6 (e) .-_. 1 for the unit element s and 6 (r) = 0 for l’ =1= s. Since

(coa 10 E G form a normal base , the matrix of which (i xj)
. ...

element is co’ i i8 not singular. This proves Lemma 4.
Let (M (a) o E G (A)) be a representation of G (A) by non singular r X r-

matrices with coefficients in Zp. We denote by the subgroup
(a E G (A) M (a) == identity mod p-) in G (if) and J (m) the subfield of 4’
consisting of all the elements fixed by every element in r (m), ~m = 1, 2, .,.).
Then are normal subgroups of finite indecis and if (m)/A are finite
separable normal extensions of 4.

For each m we choose a system of representatives of G in

G (d) and we understand by E that the sum is taken over all o running
o mod 

through the representatives of G (d)/T (m).

THEOREM 1. Let (M (o) o E G (4)) be a representation of G (d) by non-
singular r X r-matrices with coefficients in Zp. Then there exists a non-

singular matrix A with coefficients in W (A’) such that Ao =’ M (a) A,
(o E G (d)).

PROOF. We use the notations in the above. In view
. 

of Lemma 1 and the theorem of normal base, there exists a system (ro1 , ro2’ ...)
of elements in W (41’ such that

1) wm E W(4 (nt)), (m = 1, 2,...), C01 = co, 1.
2) all the conjugates of co, over LJ form a normal base of 4 (1)IA,
3) (COm+1) = ODI, , f (m = 1, 2, ...).

Put

where 1 is the identity in W (d’). Since wm E K (d (m)) and M (e) = identity
mod pm for Lo in r(m), the class of Am mod p’~ is independent of the choice
of the representatives of G Moreover we have the following set
important relations :
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because

Therefore there exists the limit A = lim Am such that A = Am mod pm.
m-oo

(in = 1, 2, ...). On the other hand

I 
m od p~, (a E C~ (4) ; m = 1) 29 ...),.

hence we have (a E C~ (A)). By virtue of Lemma 4 Ai is non.

singular, so A is also non-singular. This completes the proof of Theorem 1.
By an argument based on the same ideas as in the proof of Theorem 1

we have the following theorem :

THEOREM 2. Let (M (a) I 0 E G (A)) be a representation of Q’ (d) by non-
singular r &#x3E; r-matrices with coefficients in Zp and Bi be a r x r-matrix
with coefficients in d (1) such that Bi = M (a) Bi , y (0 E Q’ (d)), where M (a) is

the reduction of modulo p the subfield of 2’ consisting of
all the elements in A’ fixed by the element a such that M (_o) = identity
mod p. Then there exists a matrix B with coefficients in W (d’) such that

1 ) B, is the reduction of B modulo p,
2) Do = 11 (a) B, (a E Q’ (A)).

PROOF. On this proof 01 0)2 ... denote the same elements of (A’) as

in the proof of Theorem 1. Since is non-singular (Lemma 4),
we can put
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Then 0 is a matrix with coefficiente in A and C 1 is a matrix with

coefficients in W (d). Moreover Bm - Am (C - 1) mod pm and B1 is the redu-

ction of Bm modulo p, where A m is the same as in the proof of Theorem 1.
Hence putting B = lim B~ , we have a B satisfying the conditions in

Theorem 2.

2.3 In order to solve the problem affirmatively, we need to prove the
existence of a vector ta _ (tit, ... , 0153,.) with coefficients in W (J’) such that 1)
a° =1~ (a) a, (a E G4) and 2) a,. are linearly independent over Qp. The
existence of non-zero vector satisfying 1) is guaranteed by Theorem 1. We

shall first notice the existence of vectors satisfying 1) and 2) for the irre.
ducible representations IN (o) I a E G (A)) of G (d1 and, then under the assum.
ption that K is transcendental, we shall prove the existence of ve-
ctors satisfying 1) and 2) by the induction on the number of irreducible

components in the representations.

THEOREM 3. Let {M (a) I a E G (d)) be an irreducible representation of
Q’ (A) by ~~ X r-matrices with coefficients in Zp. Then there exists a systems
of elements e1 , ... , Er in W (4’) such that 1)

2) ;1 , ... , ~ are linearly independent over Qp.

PROOF. In view of Theorem 1 there exists a non-zero vector ... , tlr)
with coefficients in W (A’) such that

Let Y be Zp [ G (d)]-module spanned by ... , a, over Zp in W (J’). If
the rank of V is less than ;, the representation (M (0) I (if)) is not ir-

reducible. This shows the linearly independentness of x1 ~ ... , over Qp.
In the induction process we shall need the following lemma:

LEMMA 5. Let ~ be a transcendental element in a field L over a sub-
field g and 0153{,..., flu , ... , I y, I ... , 2,, be elements in L such that

(a, 7..., and are sets of linearly independent elements over
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K. Then there exists a positive integer no such that for no the

elements ai ~’~ -f - ... ~ as $19 + yr, y ~ ... , are linearly independent
over K.

PROOF. We shall give a proof from algebraic geometry. Put ill =

= g (~, ... , fl, , ..., y, , ... , Y8), where if denotes the algebraic
closure of K. We choose a normal projective variety V defined over K as
a model of the function field M / iT. We denote by I the IT module spanned
by a~ , ... , a8 , ... , Y8 in 111 over, K and denote by d the
maximal of the degrees of the polar divisors of elements in I. For a prime
divisor Y on V we mean by 1’y the valuation defined as follows: If the

multiplicity of Y in the principal divisor ( f ) is I the value ’Vy ( f ) is gi-
ven by ny deg Y. We choose a prime divisor X on V such that 1.

Since the degree of polar divisors of elements in E is at most d, we have
in ~). We put no = 2d + 1. Let n be a positive

integer not less than ~zo and assume that there exist I

in 1~ such that Then, since ,

we have the two cases :

+ = 0, it follows that at) En = 0 and Z a; ai = 0. Since 01531’.’" ar
i i i

are linearly independent over K, we have a, =... = a, = 0. By the linear

independence of ~81, ... , flr-o over g we have b1 = ... = = 0, because
Let us assume Then

. J .

On the other hand, as E I and ; ,’
..

we have &#x3E;

This is a contradiction. Therefore are

linearly independent over K.
The next lemma is the reduction of the problem.

LEMMA 6. Let o E be a representation of G (J) by non-sin-
gular r X r-matrices with coefficients in Zp such that

Let J (m) be the subfield of A’ consisting of all the elements fixed by the
subgroup = (Q E G (d) ~ I M (a) ==E= identity mod p’~~ (m = 1, 2, ...). Assume
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two systems (ai , a2 , ..) and (bi, b2, ...) of vectors with coefficients in

satisfy
1) the coefficients of and bm belong to W (4 (m)),
2) = am, _ b~ ~
3) putting (4)

the sets (ai , ... , and {*’1’’’.’ are sets of linearly independent ele-
ments over Qp. 1. Then, if K (LI) is transcendental over I there. exists a

system of vectors ...) such that 1) the coefficients of Xm belong to
putting

the elements ;1,...,;r are linearly independent over Qp.
PROOF. Put

and apply Lemma 5 to ai , ... , CI" 9 ~Bi , ... , 7 ~1, ... , t Y8 I L = R (d’) and
K = Qp. Then there exists a non-zero element q in W (A) such +

... , + y8 I Bl , ... are linearly independent over Qp. Therefore,
putting

we get.a system of vectors (Xi, X2 , ...) satisfying the conditions in Lemma 6.
Applying Lemma 6 successively we have our main theorem :

THEOREM 4 (the main theorem). If K (J) is transcendental over Qp,
there exists a Zp [G (d)]-submodule in W (d’) which is isomorphic to a given
Zp [G of finite rank over Zp .

PROOF. We shall prove the next assertion :

(A) Let {M (a) Q E G (d)) be any representation of G (d) by non-singular
r X r.matrices with coefficients in Zp. Let be the subgroup

(4) The conditions 1) and 2) imply the existence of limits in 3).

8. AnnWi Yom. 
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(a E G (J) ~ ~I (0) « identity mod p"’) and A (m) the subfield in A’ consisting
of all the elements fixed by every element in r (m). Then, I if K (4)/Q, is
transcendental, there exists a system of vectors X2 ...) such that

1) the coefficients of xm belong to W (J (m)),

3) putting (5)

the elements ;1,...,;r are linearly independent 
The vector t(~i , ... , ~r) in (A) satisfies the condition in Theorem 4,

hence it is enough to prove (A) by the induction on the number of ir-

reducible components. First we assume G(4)) is irreducible.

Then, if we denote by Al A2 , ... the same matrices as in the proof of
Theorem 1 and denote y a2 , ,.. the first column vectors of A ~ , A2 , ... , I
respectively, then by the argument in the proof of Theorem 3 the system
(ai , a~ , ...) satisfies the condition in (A). We assume (A) for the case in

which the number of irreducible components is less than n.

Let ( M (o) a E G (A)) be a representation of G (d) by non-singular r X r-
matrices with coefiicients in Zp such that i)

ii) (NI (a) 10 E Q~ (/J)) is irreducible, iii) the number of irreducible components
in is n -1. We denote the subfield of i~
consisting of all the elements fixed by every element in m) ==
= (o E Q’ (4) j N~ (o) == identity mod pn), (i = 1, 2 ; m = 1, 2, ...). By the

induction assumption there exist systems of vectors (at, az , I ...) and

(lb 1 ...) such that
1) the coefficients of am (resp. bm) belong to W (4 (1, m)). (resp. W (A(2, m)),

3) putting (6)

(5), (8) see (4).
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and

the sets (ai , ..., and f"t,"., are sets of linearly independent ele-
ments over ~, .

Put = U 4 (1, m) and d(2) = U A (2, m). Then there exists a non-
m m

decreasing arithmetic function 0 such that A (11 o 4(1) f1 A (m) and
J (2, 4Y (m)) m A(2) n 4 (m), (m = 1, 2, ...), because if (m) (m = 1, 2, ...) are finite

extensions over 4. We shall inductively show that we can choose vectors

Cm and am with coefficients in W (d (m)) such that

Since d (1)) is a known element in K A (1))
applying Lemma 3 to 41 = Ap = n 4 (1), 4 = and a = fl =

we have an element C1 with coefficients in
W(J(1)) satisfying (B~). Assume we have already such that

the coefficients of Ci belong to W (d (1)) and cl satisfy (Bi)~ (I = 1~ 2, ... , 2
m - 1). Then, since n 4 (m)) n 4 (m - 1) = d(1~ n 4 (m - 1) and

we can use Lemma 3 and get a vector Cm with coefficients in W (4 (in))
such that

and

By the same method we have b1, ~2 , ... satisfying the conditions. By virtue
of the last condition in the limits
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exist and by the first two conditions in we have

Therefore, applying Lemma 6 to (C, , C2 , ...) and (b, ...), we have

a system of vectors (XI, X2 , ...) satisfying the conditions in (A). This com-
pletes the proof of the main theorem.
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