Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

HISASI MORIKAWA

On p-equations and normal extensions of finite p-type. (II) The analogy of the Riemann's problem

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 18, nº 2 (1964), p. 187-200

<http://www.numdam.org/item?id=ASNSP_1964_3_18_2_187_0>

© Scuola Normale Superiore, Pisa, 1964, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON \$\$-EQUATIONS AND NORMAL EXTENSIONS OF FINITE \$\$-TYPE (II) THE ANALOGY OF THE RIEMANN'S PROBLEM

HISASI MORIKAWA (*)

§ 1. Introduction.

1.1 Let \mathcal{M} be a closed Riemann surface and Σ be the direct system of all the finite subsets in \mathcal{M} , where the order in Σ is defined by the set theoretical inclusion. If $S \subset S'(S, S' \in \Sigma)$, there exists the canonical homomorphism $\varphi_{S,S'}$ of the fundamental group $\pi_1(\mathcal{M}-S')$ onto the fundamental group $\pi_1(\mathcal{M}-S)$. We denote by $G(\mathcal{M})$ the inverse limit of $\{\pi_{i}(\mathcal{M}-S) \mid S \in \Gamma\}$ with respect to the homomorphisms $\{\varphi_{S,S'} \mid S \subset S'\}$ and by φ_s the canonical homomorphism of $G(\mathcal{M})$ onto $\pi_1(\mathcal{M}-S)$. We denote by $K(\mathcal{M})$ the field of meromorphic functions on \mathcal{M} and by $\mathcal{D}(\mathcal{M})$ the set of all the linear homogeneous ordinary differential equations with coefficients in $K(\mathcal{M})$. We denote by $\Omega(\mathcal{M})$ the set of all the solutions of certain non-zero elements in $\mathcal{D}(\mathcal{M})$. Then it easily checked that $\Omega(\mathcal{M})$ is a commutative $K(\mathcal{M})$ -algebra by the usual sum, the product and the multiplication of the elements of $K(\mathcal{M})$. The topological group $\mathcal{G}(\mathcal{M})$ operates continuously on the discrete ring $\mathcal{Q}(\mathcal{M})$ as follows: Let f be any element in $\Omega(\mathcal{M})$ and σ be any element in $G(\mathcal{M})$. Let S be the set of all the singularities of f on \mathcal{M} and $\gamma(\sigma)$ be the closed path on $\mathcal{M} - S$ of which homotopy class in $\pi_1(\mathcal{M} - S)$ is the image $\varphi_S(\sigma)$ of σ by the canonical homomorphism φ_s . Then the image f^{σ} of f by σ is defined by the analytic continuation of f along the closed path $\gamma(\sigma)$. Therefore we can regard $\Omega(\mathcal{M})$ as a $C[G(\mathcal{M})]$ -module, where C is the field

Pervenuto alla Redazione il 22 novembre 1963 ed in forma definitiva il 3 marzo 1964. (*) This research was sponsored by Consiglio Nazionale Delle Ricerche al Centro Ricerche Fisica e Matematica a Pisa.

of complex numbers and we mean by a $G(\mathcal{M})$ -module a discrete module on which $G(\mathcal{M})$ operates continuously.

In these notations and terminologies the classical Riemann problem is formulated as follows $(^{1})$:

Does there exist a $C[G(\mathcal{M})]$ submodule in $\Omega(\mathcal{M})$ which is isomorphic to a given $C[G(\mathcal{M})]$ -module of finite dimension over C?

1.2 We shall explain the analogy of the Riemann's problem in the ring of Witt vectors. Let p be a prime number and Δ be field of characteristic p. Let $\overline{\Delta}'$ be the separable algebraic closure of Δ and $G(\Delta)$ be the Galois group of $\overline{\Delta'}/\Delta$, where $G(\Delta)$ is considered as a discrete group. We mean by a Witt vector with coefficients in $\overline{\Delta'}$ an infinite ordered set $(\alpha_0, \alpha_1, \alpha_2, ...)$ of elements $\alpha_l (l = 0, 1, 2, ...)$ in $\overline{\Delta'}$. Putting $\mathbf{0} = (0, 0, 0, ...)$, $\mathbf{1} = (1, 0, 0, ...), \mathbf{p} = (0, 1, 0, ...), \mathbf{p}^n = (0, ..., 0, 1, 0, ...)$, we write $\sum_{l=0}^{\infty} \alpha_l^{p^{-l}} \mathbf{p}^l$ instead of $(\alpha_0, \alpha_1, \alpha_2, ...)$. E. Witt introduced the sum, the difference and the product of two Witt vectors by means of systems of infinite polynomials with coefficients in the prime field GF(p)

$$\{\Phi_{+, l}(x_0, \ldots, x_{l-1}; y_0, \ldots, y_{l-1})\}, \{\Phi_{-l}(x_0, \ldots, x_{l-1}; y_0, \ldots, y_{l-1})\},\$$

 $\{\Phi_{0,l}(x_0, ..., x_{l-1}, y_0, ..., y_{l-1})\}$ as follows (2):

$$\begin{pmatrix} \sum_{l=0}^{\infty} \alpha_l^{p^{-l}} \mathbf{p}^l \end{pmatrix} + \begin{pmatrix} \sum_{l=0}^{\infty} \beta_l^{p^{-l}} \mathbf{p}^l \end{pmatrix} = \sum_{l=0}^{\infty} \gamma_{+,l}^{p^{-l}} \mathbf{p}^l,$$
$$\begin{pmatrix} \sum_{l=0}^{\infty} \alpha_l^{p^{-l}} \mathbf{p}^l \end{pmatrix} - \begin{pmatrix} \sum_{l=0}^{\infty} \beta_l^{p^{-l}} \mathbf{p}^l \end{pmatrix} = \sum_{l=0}^{\infty} \gamma_{-,l}^{p^{-l}} \mathbf{p}^l,$$
$$\begin{pmatrix} \sum_{l=0}^{\infty} \alpha_l^{p^{-l}} \mathbf{p}^l \end{pmatrix} \cdot \begin{pmatrix} \sum_{l=0}^{\infty} \beta_l^{p^{-l}} \mathbf{p}^l \end{pmatrix} = \sum_{l=0}^{\infty} \gamma_{+,l}^{p^{-l}} \mathbf{p}^l,$$

(1)
$$\gamma_{+,l} = \alpha_l + \beta_l + \Phi_{+,l}(\alpha_0, ..., \alpha_{l-1}; \beta_0, ..., \beta_{l-1}),$$

(2)
$$\gamma_{-, l} = \alpha_l - \beta_l + \Phi_{-, l} (\alpha_0, ..., \alpha_{l-1}; \beta_0, ..., \beta_{l-1}),$$

(3)
$$\gamma_{\cdot,l} = \alpha_l^{p^l} \beta_l + \alpha_l \beta_0^{p^l} + \Phi_{\cdot,l} (\alpha_0, \dots, \alpha_{l-1}; \beta_0, \dots, \beta_{l-1}).$$

⁽⁴⁾ The Riemann's problem formulated in the classical terminology can be seen [2], II₂, 365 p. p. 383-384.

^{(&}lt;sup>2</sup>) See [3].

By means of these operations all the Witt vectors with coefficients in $\overline{\Delta}'$ form a commutative integral domain $W(\overline{\Delta}')$. We call $W(\overline{\Delta}')$ the ring of Witt vectors with coefficients in $\overline{\Delta}'$. For any subring A in $\overline{\Delta}'$ the ring W(A) of Witt vectors with coefficients in A is naturally considered as a subring of $W(\overline{\Delta}')$. Since the ring \mathbb{Z}_p of p adic integers can be regarded as the ring of Witt vectors with coefficients in the prime field GF(p), \mathbb{Z}_p is considered as a subring of $W(\overline{\Delta}')$ (resp. $W(\Delta)$). We denote by $K(\overline{\Delta}')$ (resp. $K(\Delta)$) the quotient field of $W(\overline{\Delta}')$ (resp. $W(\Delta)$). More generally for any subfield Λ in $\overline{\Delta}'$ we denote by $K(\Lambda)$ the quotient field of the ring $W(\Lambda)$ of Witt vectors with coefficients in Λ . The discrete group $G(\Delta)$ operates continuously on $W(\overline{\Delta}')$ as follows:

(4)
$$\left(\sum_{l=0}^{\infty} \alpha_l^{p^{-l}} \mathbf{p}^l\right)^{\sigma} = \sum_{l=0}^{\infty} (\alpha_l^{p^{-l}})^{\sigma} \mathbf{p}^l, \qquad (\sigma \in G(\Delta)).$$

Hence $\mathbf{W}(\overline{\Delta}')$ is regarded as a $\mathbf{Z}_p[G(\Delta)]$ -module.

In these notations and terminologies the analogy of Riemann's problem is formulated as follows:

Does there exist a $\mathbb{Z}_p[G(\Delta)]$ -submodule in $\mathbb{W}(\overline{\Delta}')$ which is isomorphic to a given $\mathbb{Z}_p[G(\Delta)]$ -module of finite rank over \mathbb{Z}_p ?

In the present paper we shall solve this problem. Our main theorem is as follows:

MAIN THEOREM. If $\mathbf{K}(\Delta)$ is transcendental over \mathbf{Q}_p , there exists a $\mathbf{Z}_p \mid G(\Delta)$]-module in $\mathbf{W}(\overline{\Delta}')$ which is isomorphic to a given $\mathbf{Z}_p \mid G(\Delta)$]-module of finite rank over \mathbf{Z}_p .

§ 2. Proof of the main theorem.

2.1. We shall begin by the theorem on normal base $(^3)$:

Let L/K be a finite separable normal extension of a field K. Then there exists a base (called normal base) of L/K which consists of all the conjugates of an element in L over K.

For a finite separable extension of L/K we denote by G(L/K) the Galois group of L/K and by $Tr_{L/K}$ the trace map of L into K, i. e. $Tr_{L/K}(\alpha) = \sum_{\sigma \in G(L/K)} \alpha^{\sigma}, (\alpha \in L).$

^{(&}lt;sup>3</sup>) See some standard textbooks on algebra.

190 HISASI MORIKAWA: On p-equations and normal extensions of finite

LEMMA 1. Let L/K be a finite separable normal extension. Then the trace map $Tr_{L/K}$ is surjective.

PROOF. Let $\{\omega^{\sigma} \mid \sigma \in G(L/K)\}$ be a normal base of L/K and a be any element in K. Then there exists a unique system $\{c_{\sigma} \mid \sigma \in G(L/K)\}$ of elements in K such that $a = \sum c_{\sigma} \omega^{\sigma}$. Since $a^{\tau} = a$ for τ in G(L/K), we have $c_{\sigma} = c_{\sigma\tau}$ for σ, τ in G(L/K). This shows that $c_{\sigma} = c$ for every σ in G(L/K)with an element c in K. Namely

$$a = \sum_{\sigma} (c\omega)^{\sigma} = Tr_{L/K} (c\omega).$$

LEMMA 2. Let L/K be a finite separable normal extension. Let L_1 and L_2 be normal subfields of L over K such that $L_1 \cap L_2 = K$. If elements α in L_1 and β in L_2 satisfy $Tr_{L_1/K}(\alpha) = Tr_{L_2/K}(\beta)$, then there exists an element γ in L such that $Tr_{L/L_1}(\gamma) = \alpha$ and $Tr_{L/L_2}(\gamma) = \beta$.

PROOF. In view of Lemma 1 it is enough to prove Lemma 2 for the case $L = L_1 L_2$. By the condition in Lemma 2 the Galois group $G(L_1 L_2/K)$ is the direct product $G(L_1/K) \times G(L_2/K)$. We choose normal basis $\{\omega^{\sigma} \mid \sigma \in G(L_1/K) \text{ and } \{\lambda^{\tau} \mid \tau \in G(L_2/K)\}$ of L_1/K and L_2/K , respectively. Then $\{\omega^{\sigma} \lambda^{\tau} \mid \sigma \in G(L_1/K), \tau \in G(L_2/K)\}$ form a normal base of $L_1 L_2/K$. Put $\alpha = \sum_{\sigma} a_{\sigma} \omega^{\sigma}$ and $\beta = \sum_{\tau} b_{\tau} \lambda^{\tau}$ with coefficients in K. Let us consider the following system of linear equations in $\{X_{\sigma,\tau}\}$:

$$Tr_{L_{1}L_{2}/L_{1}}\left(\sum_{\sigma,\tau}X_{\sigma,\tau}\,\omega\sigma\,\lambda^{\tau}\right) = \sum_{\sigma}a_{\sigma}\,\omega^{\sigma},$$
$$Tr_{L_{1}L_{2}/L_{2}}\left(\sum_{\sigma,\tau}X_{\sigma,\tau}\,\omega^{\sigma}\,\lambda^{\tau}\right) = \sum_{\sigma}b_{\tau}\,\lambda^{\tau},$$

where $G(L_1, L_2/K)$ operates on $\{X_{\sigma, \tau}\}$ trivially. This system is equivalent to

$$\begin{split} &\sum_{\tau} X_{\sigma,\tau} = (Tr_{L_1/K}(\lambda))^{-1} v_{\sigma}, \ (\sigma \in G \ (L_1(K)), \\ &\sum_{\sigma} X_{\sigma,\tau} = (Tr_{L_1/K}(\omega))^{-1} b_{\tau}, \ (\tau \in G \ (L_2/K)). \end{split}$$

Since $Tr_{L_1/K}(\alpha) = Tr_{L_2/K}(\beta)$, we have

$$(\sum_{\sigma} a_{\sigma}) Tr_{L_{1}/K}(\omega) = (\sum_{\tau} b_{\tau}) Tr_{L_{2}/K}(\lambda)$$

and

$$Tr_{L_{2}/K}(\lambda)^{-1} a_{\mathfrak{s}} - Tr_{L_{1}/K}(\omega)^{-1} (\sum_{\tau \neq \mathfrak{s}} b_{\tau}) = (Tr_{L_{1}/K}(\omega))^{-1} b_{\mathfrak{s}} - (Tr_{L_{2}/K}(\lambda))^{-1} \sum_{\sigma \neq \mathfrak{s}} a_{\sigma},$$

where ε is the unit element in $G(L_1 L_2/K)$.

Putting

$$c_{\sigma,\tau} = \begin{cases} (Tr_{L_{1}/K}(\lambda))^{-1} a_{\sigma} , & \text{for } \sigma \neq \epsilon \text{ and } \tau = \epsilon \\ (Tr_{L_{1}/K}(\omega))^{-1} b_{\tau} , & \text{for } \tau \neq \epsilon \text{ and } \sigma = \epsilon \\ 0 , & \text{for } \sigma \neq \epsilon \text{ and } \tau \neq \epsilon \\ (Tr_{L_{2}/K}(\lambda))^{-1} a_{\epsilon} - (Tr_{L_{1}/K}(\omega))^{-1} \sum_{\varrho \neq \epsilon} b_{\varrho} , & \text{for } \sigma = \epsilon \text{ and } \tau = \epsilon, \end{cases}$$

we have a solution $(c_{\sigma,\tau})$ of the above equations in K. Hence the element $\gamma = \sum c_{\sigma,\tau} \omega^{\sigma} \lambda^{\tau}$ satisfies the condition in Lemma 2.

We shall formulate Lemma 2 to the problem in the rings of Witt vectors:

LEMMA 3. Let Λ be a finite separable normal extension of Λ . Let Λ_4 and Λ_2 be normal subfields of Λ over Λ such that $\Lambda_1 \cap \Lambda_2 = \Lambda$. If elements α in $W(\Lambda_4)$ and β in $W(\Lambda_2)$ satisfy $Tr_{K(\Lambda_4)/K(\Lambda_4)}(\alpha) = Tr_{K(\Lambda_4)/K(\Lambda_4)}(\beta)$, then there exists an element γ in $W(\Lambda)$ such that $Tr_{K(\Lambda_4)/K(\Lambda_4)}(\gamma) = \alpha$ and $Tr_{K(\Lambda_4)/K(\Lambda_4)}(\gamma) = \beta$.

PROOF. It is sufficient to show that the coefficients $\gamma_0, \gamma_1, ...$ in the expansion $\sum_{l=0}^{\infty} \gamma_l^{p^{-l}} \mathbf{p}^l$ of $\boldsymbol{\gamma}$ in Lemma 3 are successively constructed. Put $\boldsymbol{\alpha} = \sum_{l=0}^{\infty} \alpha_l^{p^{-l}} p^l$ and $\boldsymbol{\beta} = \sum_{l=0}^{\infty} \beta_l^{p^{-l}} \mathbf{p}^l$. Then, since $Tr_{\mathbf{K}(A_1)/\mathbf{K}(d)}(\boldsymbol{\alpha}) = Tr_{\mathbf{K}(A_2)/\mathbf{K}(d)}(\boldsymbol{\beta})$, we have $Tr_{\mathbf{K}(A_1)/\mathbf{K}(d)}(\alpha_0, 1) \equiv Tr_{\mathbf{K}(A_2)/\mathbf{K}(d)}(\beta_0, 1)$ mod \mathbf{p} and $Tr_{A_1/d}(\alpha_0) = Tr_{A_2/d}(\beta_0)$. Hence, by virtue of Lemma 2, we have γ_0 in Λ such that $Tr_{A/A_1}(\gamma_0) = \alpha_0$ and $Tr_{A/A_1}(\gamma_0) = \beta_0$, namely

$$Tr_{K(\Lambda)/K(\Lambda_1)}(\gamma_0 \mathbf{1}) \equiv \alpha_0 \mathbf{1} \equiv \alpha$$

$$Tr_{K(\Lambda)/K(\Lambda_1)}(\gamma_0 \mathbf{1}) \equiv \beta_0 \mathbf{1} \equiv \boldsymbol{\beta}$$

Assume we have already $\gamma_0, \ldots, \gamma_{n-1}$ in Λ such that

$$Tr_{\mathsf{K}(\mathcal{A})/\mathsf{K}(\mathcal{A}_{1})} \begin{pmatrix} \overset{n-1}{\Sigma} \gamma_{i}^{p-l} \mathbf{p}^{l} \\ \overset{1}{\Sigma} \gamma_{i}^{p-l} \mathbf{p}^{l} \end{pmatrix} \equiv \mathbf{\alpha}$$

mod \mathbf{p}^{n} .
$$Tr_{\mathsf{K}(\mathcal{A})/\mathsf{K}(\mathcal{A}_{2})} \begin{pmatrix} \overset{n-1}{\Sigma} \gamma_{i}^{p-l} \mathbf{p}^{l} \\ \overset{1}{\Sigma} - \gamma_{i}^{p-l} \mathbf{p}^{l} \end{pmatrix} \equiv \mathbf{\beta}$$

Put

$$\boldsymbol{\alpha} - Tr_{\mathsf{K}(A)/\mathsf{K}(A_1)} \begin{pmatrix} \sum_{l=0}^{n-1} \gamma_l^{p-l} \mathbf{p}^l \end{pmatrix} = \sum_{l=0}^{\infty} \alpha_l^{p-n-l} \mathbf{p}^{n+l}$$

and

$$\boldsymbol{\beta} - Tr_{\mathbf{K}(\Lambda)/\mathbf{K}(\Lambda_{1})} \begin{pmatrix} n-1 \\ \boldsymbol{\Sigma} \\ l=0 \end{pmatrix} \boldsymbol{p}_{l}^{p-l} \mathbf{p}^{l} = \boldsymbol{\Sigma}_{l=0}^{\infty} \boldsymbol{\beta}_{l}^{\prime p-n-l} \mathbf{p}^{n+l}.$$

Then, since $Tr_{K(\Lambda_1)/K(\Lambda)}(\alpha) = Tr_{K(\Lambda_2)/K(\Lambda)}(\beta)$, we have

$$Tr_{\mathsf{K}(\underline{A})/\mathsf{K}(\underline{A})}\left(\sum_{l=0}^{\infty}\alpha'_{l}p^{-n-l} \mathbf{p}^{n+l}\right) = Tr_{\mathsf{K}(\underline{A})/\mathsf{K}(\underline{A})}\left(\sum_{l=0}^{\infty}\beta'_{l}p^{-n-l} \mathbf{p}^{n+l}\right),$$

and thus $Tr_{\Lambda 1/d}(\alpha'_0) = Tr_{\Lambda 2/d}(\beta'_0)$. Therefore by virtue of Lemma 2 we have γ_n in Λ such that

$$\boldsymbol{\alpha} - Tr_{\mathsf{K}(\underline{A})/\mathsf{K}(\underline{A}1)} \left(\sum_{l=0}^{\infty} \gamma_l^{p^{-l}} \mathbf{p}^l \right) \equiv Tr_{\mathsf{K}(\underline{A})/\mathsf{K}(\underline{A}1)} \left(\gamma_n^{p^{-n}} \mathbf{p}^n \right)$$

mod \mathbf{p}^{n+1} ,
$$\boldsymbol{\beta} - Tr_{\mathsf{K}(\underline{A})/\mathsf{K}(\underline{A}1)} \left(\sum_{l=0}^{n-1} \gamma_l^{p^{-l}} \mathbf{p}^l \right) \equiv Tr_{\mathsf{K}(\underline{A})/\mathsf{K}(\underline{A}1)} \left(\gamma_n^{p^{-n}} \mathbf{p}^n \right)$$

namely

$$\boldsymbol{\alpha} \equiv Tr_{\mathsf{K}(\underline{A})/\mathsf{K}(\underline{A})} \begin{pmatrix} \sum \\ \sum \\ l=0 \end{pmatrix} p^{p-l} \mathbf{p}^{l} \end{pmatrix}$$
$$\text{mod } \mathbf{p}^{n+1}.$$
$$\boldsymbol{\beta} \equiv Tr_{\mathsf{K}(\underline{A})/\mathsf{K}(\underline{A})} \begin{pmatrix} \sum \\ \sum \\ l=0 \end{pmatrix} \gamma_{l}^{p-l} \mathbf{p}^{l} \end{pmatrix}$$

2.2. We shall first prove the following Lemma and apply it together with Lemma 2 to construct of the matric solution of $\mathbf{A}^{\sigma} = \mathbf{A}\mathbf{M}(\sigma)$, $(\sigma \in G(\Delta))$ in $\mathbf{W}(\overline{\Delta}')$.

LEMMA 4. Let L/K be a finite separable normal extension and $\{N(\sigma) \mid \sigma \in \mathcal{C} (L/K)\}$ be a representation of the Galois group by non singular matrices with coefficients in K. Let ω be an element in L such that all the conjugates of ω over K form a normal base. Then the matrix $\sum_{\sigma \in G(L/K)} N(\sigma^{-1}) \omega^{\sigma}$ is non-singular.

PROOF. It is sufficient to prove Lemma 4 for every irreducible representation in K. Since every irreducible representation appears in the regular representation $\{R(\sigma) \mid \sigma \in G(L/K)\}$ as an irreducible component, it is sufficient to prove det $(\sum_{\sigma} R(\sigma^{-1}) \omega^{\sigma}) \neq 0$. Giving an order $\sigma_1 > ... > \sigma_n$ in G(L/K), we shall calculate (i > j)-element of $\sum R(\sigma^{-1}) \omega^{\sigma}$:

$$\sum_{\sigma} \delta(\sigma_i \sigma \sigma_j^{-1}) \omega^{\sigma} = \omega^{\sigma_i^{-1} \sigma_j},$$

where $\delta(\varepsilon) = 1$ for the unit element ε and $\delta(\tau) = 0$ for $\tau \neq \varepsilon$. Since $\{\omega^{\sigma} \mid \sigma \in G(L/K)\}$ form a normal base of L/K, the matrix of which $(i \times j)$ element is $\omega^{\sigma_i^{-1}\sigma_j}$ is not singular. This proves Lemma 4.

Let $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ be a representation of $G(\Delta)$ by non singular r > rmatrices with coefficients in \mathbb{Z}_p . We denote by $\Gamma(m)$ the subgroup $\{\sigma \in G(\Delta) \mid \mathbf{M}(\sigma) \equiv \text{identity mod } \mathbf{p}^m\}$ in $G(\Delta)$ and $\Delta(m)$ the subfield of $\overline{\Delta'}$ consisting of all the elements fixed by every element in $\Gamma(m)$, (m = 1, 2, ...). Then $\Gamma(m)$ are normal subgroups of finite indecis and $\Delta(m)/\Delta$ are finite separable normal extensions of Δ .

For each *m* we choose a system of representatives of $G(\Delta)/\Gamma(m)$ in $G(\Delta)$ and we understand by $\sum_{\sigma \mod \Gamma(m)} \mathcal{L}$ that the sum is taken over all σ running through the representatives of $G(\Delta)/\Gamma(m)$.

THEOREM 1. Let $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ be a representation of $G(\Delta)$ by nonsingular r > r-matrices with coefficients in \mathbb{Z}_p . Then there exists a nonsingular matrix \mathbf{A} with coefficients in $\mathbf{W}(\overline{\Delta}')$ such that $\mathbf{A}^{\sigma} = \mathbf{M}(\sigma) \mathbf{A}$, $(\sigma \in G(\Delta))$.

PROOF. We use the notations $\Gamma(m)$, $\Delta(m)$, $\sum_{\sigma \mod I(m)}$ in the above. In view of Lemma 1 and the theorem of normal base, there exists a system $(\omega_1, \omega_2, ...)$ of elements in $\mathbf{W}(\overline{\Delta})'$ such that

1) $\omega_m \in \mathbf{W}(\Delta(m)), (m = 1, 2, ...), \omega_1 = \omega, 1.$

2) all the conjugates of ω_1 over Δ form a normal base of $\Delta(1)/\Delta$,

3) $Tr_{K(\Delta(m+1))/K(\Delta(m))}(\omega_{m+1}) = \omega_m$, (m = 1, 2, ...).

Put

$$\mathbf{A}_{m} = \sum_{\sigma \bmod I(m)} \mathbf{M} (\sigma^{-1}) \boldsymbol{\omega}_{m}^{\sigma}, \qquad (m = 1, 2, ...),$$

where 1 is the identity in $W(\overline{\Delta}')$. Since $\omega_m \in K(\Delta(m))$ and $M(\varrho) \equiv$ identity mod \mathbf{p}^m for ϱ in $\Gamma(m)$, the class of $\mathbf{A}_m \mod \mathbf{p}^m$ is independent of the choice of the representatives of $G(\Delta)/\Gamma(m)$. Moreover we have the following set important relations:

$$A_{m+1} \equiv A_m \mod p^m$$
, $(m = 1, 2, ...),$

because

$$\begin{split} \mathbf{A}_{m+1} &\equiv \sum_{\sigma \bmod \Gamma(m+1)} \mathbf{M} (\sigma^{-1}) \ \mathbf{\omega}_{m}^{\sigma} \\ &\equiv \sum_{\tau \bmod \Gamma(m)} \mathbf{M} (\tau^{-1}) \sum_{\substack{\varrho \bmod \Gamma(m+1)\\ \varrho \in \Gamma(m)}} \mathbf{M} (\varrho^{-1}) \ \mathbf{\omega}_{m+1}^{\varrho \pi} \\ &\equiv \sum_{\tau \bmod \Gamma(m)} \mathbf{M} (\tau^{-1}) \sum_{\substack{\varrho \bmod \Gamma(m+1)\\ \varrho \in \Gamma(m)}} \mathbf{\omega}_{m+1}^{\varrho \pi} \ \mathbf{mod} \ \mathbf{p}^{m} \\ &\equiv \sum_{\tau \bmod \Gamma(m)} \mathbf{M} (\tau^{-1}) \ Tr_{\mathbf{K}(d(m+1))/\mathbf{K}(d(m))} (\mathbf{\omega}_{m+1})^{\tau} \\ &\equiv \sum_{\tau \bmod \Gamma(m)} \mathbf{M} (\tau^{-1}) \ \mathbf{\omega}_{m} \equiv \mathbf{A}_{m} \ \mathbf{mod} \ \mathbf{p}^{m}. \end{split}$$

Therefore there exists the limit $\mathbf{A} = \lim_{m \to \infty} \mathbf{A}_m$ such that $\mathbf{A} \equiv \mathbf{A}_m \mod \mathbf{p}^m$. (m = 1, 2, ...). On the other hand $\mathbf{A}_m^{\sigma} = \sum_{\substack{\tau \mod \Gamma(m) \\ \tau \mod \Gamma(m)}} \mathbf{M} (\tau^{-1}) \ \mathbf{w}_m^{\tau\sigma} \equiv \mathbf{M} (\sigma) \mathbf{A}_m \mod \mathbf{p}^m$, $(\sigma \in G(\Delta); m = 1, 2, ...)$, hence we have $\mathbf{A}^{\sigma} = \mathbf{M} (\sigma) \mathbf{A}$, $(\sigma \in G(\Delta))$. By virtue of Lemma 4 \mathbf{A}_1 is nonsingular, so \mathbf{A} is also non-singular. This completes the proof of Theorem 1.

By an argument based on the same ideas as in the proof of Theorem 1 we have the following theorem :

THEOREM 2. Let $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ be a representation of $G(\Delta)$ by nonsingular r > r-matrices with coefficients in \mathbf{Z}_p and B_1 be a r > r-matrix with coefficients in $\Delta(1)$ such that $B_1^{\sigma} = \mathbf{M}(\sigma) B_1$, $(\sigma \in G(\Delta))$, where $\overline{\mathbf{M}}(\sigma)$ is the reduction of $\mathbf{M}(\sigma)$ modulo \mathbf{p} and $\Delta(1)$ the subfield of $\overline{\Delta}'$ consisting of all the elements in $\overline{\Delta}'$ fixed by the element σ such that $\mathbf{M}(\sigma) \equiv \text{identity}$ **mod** \mathbf{p} . Then there exists a matrix \mathbf{B} with coefficients in $\mathbf{W}(\overline{\Delta}')$ such that

1) B_1 is the reduction of **B** modulo **p**, 2) $\mathbf{B}^{\sigma} = \mathbf{M}(\sigma) \mathbf{B}, (\sigma \in G(\Delta)).$

PROOF. On this proof $\omega_1 = \omega_1 \mathbf{l}, \omega_2 \dots$ denote the same elements of $(\overline{\Delta'})$ as in the proof of Theorem 1. Since $\sum_{\tau \mod \Gamma(1)} \overline{M(\tau^{-1})} \omega_1^{\tau}$ is non-singular (Lemma 4), we can put

$$C = \left(\sum_{\substack{\tau \mod \Gamma(1) \\ \sigma \mod \Gamma(m) \\ \sigma \coprod (m) \\ (m) \\ \sigma \coprod (m) \\ \sigma \coprod (m) \\ ($$

Then C is a matrix with coefficiente in Δ and $C \cdot 1$ is a matrix with coefficients in $W(\Delta)$. Moreover $\mathbf{B}_m \equiv \mathbf{A}_m (C \cdot 1) \mod \mathbf{p}^m$ and B_1 is the reduction of \mathbf{B}_m modulo \mathbf{p} , where \mathbf{A}_m is the same as in the proof of Theorem 1. Hence putting $\mathbf{B} = \lim_{m \to \infty} \mathbf{B}_m$, we have a \mathbf{B} satisfying the conditions in Theorem 2.

2.3 In order to solve the problem affirmatively, we need to prove the existence of a vector ${}^{t}\mathbf{a} = (\alpha_{1}, ..., \alpha_{r})$ with coefficients in $\mathbf{W}(\overline{\Delta'})$ such that 1) $\mathbf{a}^{\sigma} = \mathbf{M}(\sigma) \mathbf{a}, (\sigma \in G_{\Delta}) \text{ and } 2) \alpha_{1}, ..., \alpha_{r}$ are linearly independent over \mathbf{Q}_{p} . The existence of non-zero vector satisfying 1) is guaranteed by Theorem 1. We shall first notice the existence of vectors satisfying 1) and 2) for the irreducible representations $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ of $G(\Delta)$ and, then under the assumption that $\mathbf{K}(\Delta)/\mathbf{Q}_{p}$ is transcendental, we shall prove the existence of vectors satisfying 1) and 2) by the induction on the number of irreducible components in the representations.

THEOREM 3. Let $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ be an irreducible representation of $G(\Delta)$ by r > r-matrices with coefficients in \mathbb{Z}_p . Then there exists a system of elements ξ_1, \ldots, ξ_r in $\mathbf{W}(\overline{\Delta'})$ such that 1)

$$\begin{pmatrix} \boldsymbol{\xi}_{i} \\ \vdots \\ \boldsymbol{\xi}_{r} \end{pmatrix}^{\sigma} = \mathbf{M} (\sigma) \begin{pmatrix} \boldsymbol{\xi}_{i} \\ \vdots \\ \boldsymbol{\xi}_{r} \end{pmatrix}, (\sigma \in G (\Delta)),$$

2) ξ_1, \ldots, ξ_r are linearly independent over Q_p .

PROOF. In view of Theorem 1 there exists a non-zero vector ${}^{t}(\alpha_{1}, ..., \alpha_{r})$ with coefficients in $W(\overline{\Delta}')$ such that

$$\begin{pmatrix} \boldsymbol{\alpha}_{1} \\ \vdots \\ \boldsymbol{\alpha}_{r} \end{pmatrix}^{\sigma} = \mathbf{M} (\sigma) \begin{pmatrix} \boldsymbol{\alpha}_{1} \\ \vdots \\ \boldsymbol{\alpha}_{r} \end{pmatrix}, (\sigma \in G (\Delta)).$$

Let \mathbf{V} be $\mathbf{Z}_p[G(\Delta)]$ -module spanned by $\boldsymbol{\alpha}_1, \ldots, \boldsymbol{\alpha}_r$ over \mathbf{Z}_p in $\mathbf{W}(\overline{\Delta}')$. If the rank of \mathbf{V} is less than r, the representation $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ is not irreducible. This shows the linearly independentness of $\boldsymbol{\alpha}_1, \ldots, \boldsymbol{\alpha}_r$ over \mathbf{Q}_p .

In the induction process we shall need the following lemma:

LEMMA 5. Let ξ be a transcendental element in a field L over a subfield K and $\alpha_1, \ldots, \alpha_s, \beta_1, \ldots, \beta_{r-s}, \gamma_1, \ldots, \gamma_s$ be elements in L such that $\{\alpha_1, \ldots, \alpha_s\}$ and $\{\beta_1, \ldots, \beta_{r-s}\}$ are sets of linearly independent elements over K. Then there exists a positive integer n_0 such that for every $n \ge n_0$ the elements $\alpha_i \xi^n + \gamma_i, ..., \alpha_s \xi^n + \gamma_{s'} \beta_1, ..., \beta_{r-s}$ are linearly independent over K.

PROOF. We shall give a proof from algebraic geometry. Put M = $=\overline{K}(\xi, \alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_{r-s}, \gamma_1, \dots, \gamma_s)$, where \overline{K} denotes the algebraic closure of K. We choose a normal projective variety V defined over \overline{K} as a model of the function field M/\overline{K} . We denote by Σ the \overline{K} -module spanned by $\alpha_1, \ldots, \alpha_s, \beta_1, \ldots, \beta_{r-s}, \gamma_1, \ldots, \gamma_s$ in *M* over \overline{K} and denote by *d* the maximal of the degrees of the polar divisors of elements in Σ . For a prime divisor Y on V we mean by v_y the valuation defined as follows: If the multiplicity of Y in the principal divisor (f) is n_y , the value $v_y(f)$ is given by n_y deg Y. We choose a prime divisor X on V such that $v_x(\xi) \ge 1$. Since the degree of polar divisors of elements in Σ is at most d, we have $-d \leq v_x(g) \leq d$ $(g \neq 0$ in Σ). We put $n_0 = 2d + 1$. Let n be a positive integer not less than n_0 and assume that there exist $a_1, \ldots, a_s, b_1, \ldots, b_{r-s}$ in K such that $\sum a_i (\alpha_i \xi^{\mu} + \gamma_i) + \sum b_j \beta_j = 0$. Then, since $\sum a_i \gamma_i + \sum b_j \beta_j \in \Sigma$,

we have the two cases:

1) $\sum_{i} a_i \gamma_i + \sum_{j} b_j \beta = 0$, 2) $-d \leq v_{\alpha} (\sum_{i} a_i \gamma_i + \sum b_j \beta_j) \leq d$. If $\sum_{i} a_i \gamma_i + \sum_{j} b_j \beta_j = 0$, it follows that $(\sum_{i} a_i \alpha_i) \xi^n = 0$ and $\sum_{i} a_i \alpha_i = 0$. Since $\alpha_1, \ldots, \alpha_r$ are linearly independent over K, we have $a_i = ... = a_s = 0$. By the linear independence of $\beta_1, \ldots, \beta_{r-s}$ over K we have $b_1 = \ldots = b_{r-s} = 0$, because $\sum_{j} b_{j} \beta_{j} = 0. \text{ Let us assume} - d \leq v_{x} (\sum_{i} a_{i} \gamma_{i} + \sum_{j} b_{j} \beta_{j}) \leq d. \text{ Then } v_{x} ((\sum_{i} a_{i} \alpha_{i}) \xi^{n}) =$ $= v_{\alpha}(\sum_{i} a_{i} \gamma_{i} + \sum_{j} b_{j} \beta_{j}) \leq d. \text{ On the other hand, since } \sum_{i} a_{i} \alpha_{i} \in \Sigma \text{ and } \sum_{i} a_{i} \alpha_{i} \neq 0,$ we have $v_x\left(\sum_i a_i \alpha_i\right) \xi^n = n v_x(\xi) + v_x\left(\sum_i a_i \alpha_i\right) \ge n - d \ge 2d + 1 - d = d + 1.$ This is a contradiction. Therefore $\alpha_1 \xi^n + \gamma_1, \dots, \alpha_r \xi^n + \gamma_s, \beta_1, \dots, \beta_{r-s}$ are linearly independent over K.

The next lemma is the reduction of the problem.

LEMMA 6. Let $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ be a representation of $G(\Delta)$ by non-singular r > r-matrices with coefficients in \mathbb{Z}_p such that

$$\mathbf{M} (\sigma) \begin{pmatrix} \overbrace{\mathbf{N}_{1}(\sigma)}^{s} & \overbrace{\mathbf{A}(\sigma)}^{r-s} \\ \mathbf{0} & \mathbf{N}_{2}(\sigma) \end{pmatrix} \overset{}{}_{r}^{s} s, \ (\sigma \in G(\Delta)).$$

Let $\Delta(m)$ be the subfield of $\overline{\Delta}'$ consisting of all the elements fixed by the subgroup $\Gamma(m) = \{ \sigma \in G(\Delta) \mid \mathbf{M}(\sigma) \equiv \text{identity mod } \mathbf{p}^m \} (m = 1, 2, ...).$ Assume

two systems $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ of vectors with coefficients in $W(\overline{\Delta}')$ satisfy

1) the coefficients of a_m and b_m belong to $W(\Delta(m))$,

2) $\operatorname{Tr}_{\mathsf{K}(\Delta(m+1))/\mathsf{K}(\Delta(m))}(\mathfrak{a}_{m+1}) = \mathfrak{a}_m$, $\operatorname{Tr}_{\mathsf{K}(\Delta(m+1))/\mathsf{K}(\Delta(m))}(\mathfrak{b}_{m+1}) = \mathfrak{b}_m$, 3) putting (4)

$$\begin{pmatrix} \boldsymbol{\alpha}_{1} \\ \vdots \\ \boldsymbol{\alpha}_{s} \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \Gamma(m)} \mathbf{N}_{1}(\sigma^{-1}) \, \boldsymbol{\alpha}_{m}^{\sigma} \,, \, \begin{pmatrix} \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{r-s} \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \Gamma(m)} \mathbf{N}_{2}(\sigma^{-1}) \, \boldsymbol{b}_{m}^{\sigma} \,,$$

the sets $\{\alpha_1, ..., \alpha_s\}$ and $\{\beta_1, ..., \beta_{r-s}\}$ are sets of linearly independent elements over \mathbf{Q}_p . Then, if $\mathbf{K}(\varDelta)$ is transcendental over \mathbf{Q}_p , there exists a system of vectors $(\mathbf{X}_1, \mathbf{X}_2, ...)$ such that 1) the coefficients of \mathbf{X}_m belong to $\mathbf{W}(\varDelta(m)), 2) \ Tr_{\mathbf{K}(\varDelta(m+1))/\mathbf{K}(\varDelta(m))}(\mathbf{X}_{m+1}) = \mathbf{X}_m, 3)$ putting

$$\begin{pmatrix} \boldsymbol{\xi}_1 \\ \vdots \\ \boldsymbol{\xi}_r \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \Gamma(m)} (\sigma^{-1}) \, \boldsymbol{\chi}_m^{\sigma},$$

the elements ξ_1, \ldots, ξ_r are linearly independent over Q_p .

PROOF. Put

$$\begin{pmatrix} \mathbf{\hat{\gamma}}_1 \\ \vdots \\ \mathbf{\hat{\gamma}}_s \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \Gamma(m)} \mathbf{\hat{\beta}}_m^{\sigma} (\sigma^{-1}) \mathbf{\hat{\beta}}_m^{\sigma}$$

and apply Lemma 5 to $\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_{r-s}, \gamma_1, ..., \gamma_s, L = \mathbf{K}(\overline{\Delta}')$ and $K = \mathbf{Q}_p$. Then there exists a non-zero element η in $\mathbf{W}(\Delta)$ such that $\alpha_1 \eta + \gamma_1, ..., \alpha_s \eta + \gamma_s, \beta_1, ..., \beta_{r-s}$ are linearly independent over \mathbf{Q}_p . Therefore, putting

$$\mathbf{x}_m = \begin{pmatrix} \mathbf{a}_m \, \mathbf{\eta} \\ \mathbf{b}_m \end{pmatrix}, \qquad (m = 1, 2, ...),$$

we get a system of vectors $(x_1, x_2, ...)$ satisfying the conditions in Lemma 6. Applying Lemma 6 successively we have our main theorem:

THEOREM 4 (the main theorem). If $\mathbf{K}(\Delta)$ is transcendental over \mathbf{Q}_p , there exists a $\mathbf{Z}_p[G(\Delta)]$ -submodule in $\mathbf{W}(\Delta')$ which is isomorphic to a given $\mathbf{Z}_p[G(\Delta)]$ -submodule of finite rank over \mathbf{Z}_p .

PROOF. We shall prove the next assertion :

(A) Let $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ be any representation of $G(\Delta)$ by non-singular $r \succ r$ -matrices with coefficients in \mathbb{Z}_p . Let $\Gamma(m)$ be the subgroup

⁽⁴⁾ The conditions 1) and 2) imply the existence of limits in 3).

^{8.} Annali della Scuola Norm. Sup. - Pisa.

 $\{\sigma \in G (\Delta) \mid \mathbf{M} (\sigma) \equiv \text{identity mod } \mathbf{p}^m\}$ and $\Delta (m)$ the subfield in Δ' consisting of all the elements fixed by every element in $\Gamma(m)$. Then, if $\mathbf{K} (\Delta)/\mathbf{Q}_p$ is transcendental, there exists a system of vectors $(\mathbf{x}_1, \mathbf{x}_2, ...)$ such that

- 1) the coefficients of x_m belong to $W(\Delta(m))$,
- 2) $Tr_{K(\Delta(m+1))/K(\Delta(m))} (X_{m+1}) = X_m$,
- 3) putting (5)

$$\begin{pmatrix} \boldsymbol{\xi}_{1} \\ \vdots \\ \boldsymbol{\xi}_{r} \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \boldsymbol{\Gamma}(m)} \mathbf{M} (\sigma^{-1}) \boldsymbol{\chi}_{m}^{\sigma},$$

the elements ξ_1, \ldots, ξ_r are linearly independent over Q_p .

The vector ${}^{t}(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{r})$ in (A) satisfies the condition in Theorem 4, hence it is enough to prove (A) by the induction on the number of irreducible components. First we assume $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ is irreducible. Then, if we denote by $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots$ the same matrices as in the proof of Theorem 1 and denote by $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots$ the first column vectors of $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots$, respectively, then by the argument in the proof of Theorem 3 the system $(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots)$ satisfies the condition in (A). We assume (A) for the case in which the number of irreducible components is less than n.

Let $\{\mathbf{M}(\sigma) \mid \sigma \in G(\Delta)\}$ be a representation of $G(\Delta)$ by non-singular r > r-matrices with coefficients in \mathbb{Z}_p such that i)

$$\mathbf{M}(\sigma) = \begin{pmatrix} s & r-s \\ \widetilde{\mathbf{N}_{1}(\sigma)} & \widetilde{\mathbf{A}(\sigma)} \\ 0 & \mathbf{N}_{2}(\sigma) \end{pmatrix} s, (\sigma \in G(\Delta))$$

ii) $\{\mathbf{N}_i(\sigma) \mid \sigma \in G(\Delta)\}$ is irreducible, iii) the number of irreducible components in $\{\mathbf{N}_2(\sigma) \mid \sigma \in G(\Delta)\}$ is n-1. We denote by $\Delta(i, m)$ the subfield of $\overline{\Delta'}$ consisting of all the elements fixed by every element in $\Gamma(i, m) =$ $= \{\sigma \in G(\Delta) \mid \mathbf{N}_i(\sigma) \equiv \text{ identity mod } \mathbf{p}^m\}, (i = 1, 2; m = 1, 2, ...)$. By the induction assumption there exist systems of vectors $(\mathbf{a}_1, \mathbf{a}_2, ...)$ and $(\mathbf{b}_1, \mathbf{b}_2, ...)$ such that

1) the coefficients of a_m (resp. b_m) belong to $W(\Delta(1, m))$. (resp. $W(\Delta(2, m))$,

2) $Tr_{K(\Delta(1, m+1))/K(\Delta(1, m))}(a_{m+1}) = a_m$,

 $Tr_{K(\Delta(2, m+1))/K(\Delta(2, m)} (\mathfrak{b}_{m+1}) = \mathfrak{b}_m,$

3) putting $(^6)$

$$\begin{pmatrix} \boldsymbol{\alpha}_1 \\ \vdots \\ \boldsymbol{\alpha}_s \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \Gamma(1, m)} \mathbf{N}_1(\sigma^{-1}) \, \mathbf{a}_m^{\sigma}$$

(⁵), (⁶) see (⁴).

and

$$\begin{pmatrix} \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{\tau-s} \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \Gamma(2,m)} N_{2}(\sigma^{-1}) \mathfrak{b}_{m}^{\sigma},$$

the sets $\{\alpha_1, ..., \alpha_s\}$ and $\{\beta_1, ..., \beta_{r-s}\}$ are sets of linearly independent elements over Q_p .

Put $\Delta^{(1)} = \bigcup_{m} \Delta(1, m)$ and $\Delta^{(2)} = \bigcup_{m} \Delta(2, m)$. Then there exists a nondecreasing arithmetic function Φ such that $\Delta(1, \Phi(m)) \supset \Delta^{(1)} \cap \Delta(m)$ and $\Delta(2, \Phi(m)) \supset \Delta^{(2)} \cap \Delta(m)$, (m = 1, 2, ...), because $\Delta(m) (m = 1, 2, ...)$ are finite extensions over Δ . We shall inductively show that we can choose vectors \mathbf{c}_m and \mathbf{d}_m with coefficients in $\mathbf{W}(\Delta(m))$ such that

$$(B_m) \begin{cases} Tr_{\mathsf{K}(\Delta(1, \ \varPhi(m))/\mathsf{K}(\Delta^{(1)} \ \sqcap \ \Delta(m))}(\mathfrak{a}_{\varPhi(m)}) = Tr_{\mathsf{K}(\Delta(m))/\mathsf{K}(\Delta^{(1)} \ \sqcap \ \Delta(m))}(\mathfrak{c}_m), \\ Tr_{\mathsf{K}(\Delta(2, \ \varPhi(m)))/\mathsf{K}(\Delta^{(2)} \ \sqcap \ \Delta(m))}(\mathfrak{b}_{\varPhi(m)}) = Tr_{\mathsf{K}(\Delta(m))/\mathsf{K}(\Delta^{(1)} \ \sqcap \ \Delta(m))}(\mathfrak{d}_m), \\ Tr_{\mathsf{K}(\Delta(m+1))/\mathsf{K}(\Delta(m))}(\mathfrak{c}_{m+1}) = \mathfrak{c}_m, \ Tr_{\mathsf{K}(\Delta(m+1))/\mathsf{K}(\Delta))}(\mathfrak{d}_{m+1}) = \mathfrak{d}_m. \end{cases}$$

Since $Tr_{\mathbf{K}(\Delta(1, \Phi(1)))/\mathbf{K}(\Delta^{(1)} \cap \Delta(1))}(\mathbf{a}_{\Phi(1)})$ is a known element in $\mathbf{K} (\Delta^{(1)} \cap \Delta (1))$ applying Lemma 3 to $\Delta_{\mathbf{i}} = \Delta_{\mathbf{2}} = \Delta^{(1)} \cap \Delta (1), \quad \Delta = \Delta_{(1)}$ and $\mathbf{a} = \mathbf{\beta} = Tr_{\mathbf{K}(\Delta(1, \Phi(1)))/\mathbf{K}(\Delta^{(1)} \cap \Delta(1))}(\mathbf{a}_{\Phi(1)}),$ we have an element $\mathbf{c}_{\mathbf{i}}$ with coefficients in $\mathbf{W} (\Delta (1))$ satisfying $(B_{\mathbf{i}})$. Assume we have already $\mathbf{c}_{\mathbf{i}} \mathbf{c}_{\mathbf{2}}, \dots, \mathbf{c}_{m-1}$ such that the coefficients of $\mathbf{c}_{\mathbf{i}}$ belong to $\mathbf{W} (\Delta (l))$ and $\mathbf{c}_{\mathbf{i}}$ satisfy $(B_{\mathbf{i}}), (l = 1, 2, \dots, m - 1)$. Then, since $(\Delta^{(1)} \cap \Delta(m)) \cap \Delta(m - 1) = \Delta^{(1)} \cap \Delta(m - 1)$ and

$$Tr_{\mathtt{K}(\Delta^{(1)} \cap \Delta(m))/\mathtt{K}(\Delta^{(1)} \cap \Delta(m-1))} (Tr_{\mathtt{K}(\Delta^{(1)}, \varphi(m)))/\mathtt{K}(\Delta^{(1)} \cap \Delta(m))} (\mathfrak{a}_{\varphi(m)}))$$

$$= Tr_{\mathbf{K}(\Delta(m-1))/\mathbf{K}(\Delta^{(1)} \cap \Delta(m+1))} (\mathbf{C}_{m-1}),$$

we can use Lemma 3 and get a vector \mathbf{c}_m with coefficients in $\mathbf{W}(\Delta(m))$ such that

$$Tr_{\mathtt{K}(\varDelta(m))/\mathtt{K}(\varDelta^{(1)}\cap \varDelta(m))}(\mathtt{c}_m) = Tr_{\mathtt{K}(\varDelta(1, \varPhi(m))/\mathtt{K}(\varDelta^{(1)}\cap \varDelta(m))}(\mathfrak{a}_{\varPhi(m)})$$

and

$$Tr_{\mathbf{K}(\Delta(m+1))/\mathbf{K}(\Delta(m))}(\mathbf{C}_{m+1}) = \mathbf{C}_m$$
.

By the same method we have $\delta_1, \delta_2, ...$ satisfying the conditions. By virtue of the last condition in (B_m) the limits

$$\lim_{m\to\infty} \sum_{\sigma \bmod \Gamma} \sum_{(m)}^{N} (\sigma^{-1}) C_m^{\sigma} \text{ and } \lim_{m\to\infty} \sum_{\sigma \bmod \Gamma} \sum_{(m)}^{N} (\sigma^{-1}) \mathfrak{d}_m^{\sigma}$$

199

0 HISASI MOBIKAWA: On y-equations and normal extensions of finite

exist and by the first two conditions in (B_m) we have

$$\begin{pmatrix} \boldsymbol{\alpha}_{1} \\ \vdots \\ \boldsymbol{\alpha}_{s} \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \Gamma(m)} \mathbf{N}_{1}(\sigma^{-1}) \, \boldsymbol{C}_{m}^{\sigma}, \qquad \begin{pmatrix} \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{r-s} \end{pmatrix} = \lim_{m \to \infty} \sum_{\sigma \bmod \Gamma(m)} \mathbf{N}_{2}(\sigma^{-1}) \, \boldsymbol{\delta}_{m}^{\sigma}.$$

Therefore, applying Lemma 6 to $(c_1, c_2, ...)$ and $(d_1, d_2, ...)$, we have a system of vectors $(x_1, x_2, ...)$ satisfying the conditions in (A). This completes the proof of the main theorem.

BIBLIOGRAPHY

- [1] MORIGAWA H., On p-equations and normal extensions of finite p-type I, J. Math. Kyoto Univ. 2-3 (1963).
- [2] SCHLESINGER L., Handbuch der Theorie der Linearen Differentialgleichengen Leipzig (1898).
 I, II₄, II₂.
- [3] WITT E., Zyklische Korper and Algebren der Characteristik p vom Grad pⁿ, J. reine und angew. Math. Band 176 (1937) p. p. 126-140.

Centro Ricerche Fisica e Matematica Pisa and Nagoya University

200