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ON p-EQUATIONS AND NORMAL EXTENSIONS
OF FINITE p-TYPE
(ITYy THE ANALOGY OF THE RIEMANN'S PROBLEM

HisAsT MORIKAWA (%)

§ 1. Introduction.

1.1 Let N be a closed Riemann surface and 3 be the direct system
of all the finite subsets in 9/, where the order in 3 is defined by the set
theoretical inclusion. If S < 8’ (S, 8’ €X), there exists the canonical homo-
morphism g, s- of the fundamental group =, (W — 8’) onto the fundamen-
tal group =n, (M — 8). We denote by G (W) the inverse limit of
{7, (M — 8)| 8€I'} with respect to the homomorphisms {ps, s/ | 8§ < §’} and
by ¢s the canonical homomorphism of @ (M) onto =, (M — 8). We denote
by K (M) the field of meromorphic functions on Y and by D (W) the
set of all the linear homogeneous ordinary differential equations with coef-
ficients in K (N ). We denote by (M) the set of all the solutions
of certain non-zero elements in ) (M). Then it easily checked that
QM) is a commutative K (9)-algebra by the usual sum, the pro-
‘duct and the multiplication of the elements of K (). The topological
group @G (M) operates continuously on the discrete ring Q (M) as
follows : Let f be any element in 2 (M) and ¢ be any element in G (V).
Let & be the set of all the singularities of f on Y and y (s) be the closed
path on N — 8 of which homotopy class in =, (W — 8) is the image @s(0)
of ¢ by the canonical homomorphism ¢g. Then the image f° of f by ¢ is
defined by the analytic continuation of f along the closed path y (o). The-
reforo we can regard Q (M) as a C[G (M )}-module, where C is the field

Pervenuto alla Redazione il 23 novembre 1963 ed in forma definitiva il 3 marzo 1964.
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Ricerche Fisica e Matematica a Pisa.
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of complex numbers and we mean by a @ (9)-module a discrete module
on which @ () operates continuously.

In these notations and terminologies the classical Riemann problem is
formulated as follows ():

Does there exist a C[@ (W)]-submodule in 2 (W) which is isomorphic
to a given C[@Q (W)} module of finite dimension over Ct

1.2 We shall explain the analogy of the Riemann’s problem in the
ring of Witt vectors. Let p be a prime number and 4 be field of characteri-
stic p. Let A’ be the separable algebraic closure of A4 and @ (4) be the
Galois group of 4’ /4, where G (4) is considered as a discrete group. We
mean by a Witt vector with coefficients in A4’ an infinite ordered set
(0t 3 0y 5 gy .e.) Of elements a;(!=0,1,2,..) in 4’. Putting 0= (0,0,0,...),

n

—~— . ©o -]
1=(1,0,0,..) p=(0,1,0,..), p*=(0,..,0,1,0,..), we write lz(‘) af P
instead of (xgy &, ,%,..). E. Witt irtroduced the sum, the difference and
the product of two Witt vectors by means of systems of infinite polyno-

mials with coefficients in the prime field GF (p)

(P, 1@y eeey Bi15 Y0y ooe 1 Yiely (Pt (@ y ooy Bi15Yg 5 ere s Y1)}y

{Do, 1 (R y ey @11y Yoy eee y Yi—1)] a8 follows (3):

oo =1 -] -1 oo -l
(Zar p‘)+(2ﬂz" p')=zyi.z v,

I=0

(lgap_l p‘) - (Eﬁf’—l Pl) =1§ yZa P,

0

(E“’p - Pl) ' ( T P') =30,
=0 1—0 =0

(1) rra=o0 4 B4 Dy 1y eeey %15 B0y eee s Bi—1)y
(2 Y—i=0— i+ DP_ 1(0gy ey i1 ,30 y we y Bi1)y
(3) o= a{l B+ o, ﬂg’l + {D_' (@ g ooy 0 5By e s Bi_,)

(!) The Riemann’s problem formulated in tne classical terminology can be seen [2],
II,, 8656 p. p. 388-384,
(%) See [38].
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By means of these operations all the Witt vectors with coefficients in
A’ form a commutative integral domain W (4’). We call W (4°) the ring of
Witt vectors with coefficients in 4’. For any subring A in A’ the ring
W (A) of Witt vectors with coefficients in A is naturally considered as a
subring of W(4’). Since the ring Z, of p-adic integers can be regarded as
the ring of Witt vectors with coefficients in the prime field GF (p), Z, is
considered as a subring of W (4°). We denote by K (4’) (resp. K (4)) the
quotient field of W (4’)(resp. W (4)).. More generally for any subfield A in
A’ we denote by K (A4) the quotient field of the ring W (4) of Witt vectors
with coefficients in A. The discrete group @ (4) operates continuously on
W (4’) as follows :

@ (Ev)=2G@y,  ceaw.
-0 -0

Hence W (4’) is regarded as a Z,[@ (4)]-module.

In these notations and terminologies the analogy of Riemann’s problem
is formulated as follows :

Does there exist a Z, [@ (4)}-submodule in W (4’) which is isomorphic
to a given Z,[@ (4)]-module of finite rank over Z,%

In the present paper we shall solve this problem. Our main theorem
is as follows:

MaN THEOREM. If K(4) is transcendental over @, there exists a
Z,|Q (4)}module in W (4’) which is isomorphic to a given Z, [G(4)]-module
of finite rank over Z,.

§ 2. Proof of the main theorem.

2.1. We shall begin by the theorem on normal base (3):

Let L/K be a finite separable normal extension of a field K. Then
there exists a base (called normal base) of L/K which consists of all the
conjugates of an element in L over K.

For a finite separable extension of L/K we denote by G (L/K) the
Galois group of L/K and by Trpjx the trace map of L into K, i. e.

Tryx(@)= 2 a°%(«€L)
oe ALIK)

() See some standard texthooks on algebra.
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LEMMA 1. Let L/K be a finite separable normal extension. Then the
trace map Trpx is surjective.

PROOF. Let {w”| o€ G (L/K)} be a normal base of L/K and a be any
element in K. Then there exists a unique system {c,|o€ G (L/K)} of ele-
ments in K such that a = 3¢, w°. Since a*=a for v in @ (L/K), we have

€, == Cg; for 6,7 in @ (L/K). This shows that ¢, = ¢ for every o in G (L/K)
with an element ¢ in K. Namely

a =3 (cw)® = Tryk (cw).

(4

LeMMA 2. Let L/K be a finite separable normal extension. Let L, and
L, be normal subfields of L over K such that L, N L, = K. If elements «
in L, and B in L, satisfy Trp x(«)= Trr, x(f), then there exists an ele-
ment Y in L such that T"L/Iq (}')=¢ and TTL/L,(}')=,3.

PROOF. In view of Lemma 1 it is enough to prove Lemma 2 for the
case L = L, L,. By the condition in Lemma 2 the Galois group G (L, L,/K)
is the direct product @ (L,/K)>< G (L,/K). We choose mnormal basis
{w°| o€ G (L,/K) and {i*|v€ G(Ly/K)} of L,/K and L,/K, respectively.
Then {w’A*|o€ G (L,/K), 1€ G (Ly/K)] form a normal base of L, L,/K. Put
o= Ja,w° and f =3 b, A* with coefficients in K. Let us consider the fol-

lowing system of linear equations in {X, ,}:
Tri,pyL, (UZ'Xa, ¢ Wo A7) = ?aa w’
T LyLs iZ; X5, « a)". A7) = 2'7 b, A,
where G (L, L,/K) operates on {X, .} trivially. This system is equivalent to
{ X, . = (Treyx (A) " w4, (o € G (L, (K)),

> X,’ = (TTL‘/K ((1)))_'1 b, ) (‘t €@ (LJ/K)).

Since Trr k («) = Tri,x(B), we have
(Za,) T'rLllK (w) = (2 b,) .TTL,/K (].)
and

-TrLaIK (A)_l Ay — TrL)/K (w)—l (Z br) = (TrLI/K (w))_l b, — (T”'L,/K (l»_lf g o
T ¢ oF s

where £ is the unit element in @ (L, L,/K).
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Putting

(Troyx (A)™ a, for o3¢ and r=z¢

(Trrx (w)™ b, , for 1=¢ and o=c¢

Cor =

0 , for oF+e¢e and v¢

(Tragk @)~ @ — (Troyx @)1 3 By, for o=e and r=¢,
. o7&

we have a solution (c¢,,) of the above equations in K. Hence the element
y = 2 ¢,,, 0w°A* satisfies the condition in Lemma 2.

‘We shall formulate Lemma 2 to the problem in the rings of Witt
vectors :

LEMMA 3. Let A be a finite separable normal extension of 4. Let A,
and 4, be normal subfields of A over 4 such that 4, n 4, = 4. If elements
o in W(4,) and B in W (A4,) satisfy Triuy k) (%) = Trkq) k4 (), then
there exists an element y in W (A4) such that Trggykua,) (y) = « and
Treayay (V) = B-

Proor. It is sufficient to show that the coefficients y,,y,,.. in the

expansion X y;’_' p' of y in Lemma 3 are successively constructed. Put
=0

o= lz:oaf_lpl and p =120ﬂ"’—l pl . Then, since T”‘K(A,)/K(A) () = TrK(A,),K(A)(ﬁ),

we have TTK(AI)/K(A) (ao 1) = TTK(A,)/K(A) (,30 1) mod p and TrAnIA (ao) = TTA,/A (/30).
Hence, by virtue of Lemma 2, we have y in A such that Trg4, (o) = %
and Tr4)4, (y,) = B, , namely

Treaykay (o) =y 1=a
mod p.
Trruyka,) 7o) =, 1 =4

Assume we have already ¥¢,..,yn—; in 4 such that

n—1 1
Trvayx(ay) (lz; r¥ P') =
mod p*.

n—1 )
Trecayxias) (EO}',” p’) =p
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Put
ol o, el
o — T'rK(A)II((Al) (12 ylp pl) =,2 azl’ pn+l
—0 —0
and

n—1 -l 3 * . —n—1 +1
B — Treayxcay ZrT) =287 .
-0 -
Then, since Try4,4) (@) = Tre(49k(4) (B)y, We bave
. x 7 —n—1 1 g , =11 1
Treq g2)iKid) 12 o P ) = Trec 4k E By prtt),
) 0

and thus Tr, 4 (ao) = Tr,,4(Bs). Therefore by virtue of Lemma 2 we have
y» in 4 such that

o 1 _
& — Tre(4)K(40) (1203'{‘ P‘) = Trec gy (727 DY)

mod prtt,
n—1
—1 - *
B — Tre4)xcan (Eo e D’) = Trecaykean (727" D)
namely
n
a=Tr PR l)
K(4)/K(42) (L_O?'z P
mod pntl.

n
B = Trea)xa» (lzo yp P')

2.2. We shall first prove the following Lemma and apply it together
with Lemma 2 to coustruct of the matric solution of A”= AM (o), (0 € G (4))
in W (4.

LEMMA 4. Let L/K be a finite separable normal extension and {N(o)| o€
€ G (L/K)} be a representation of the Galois group by non-singular matrices
with coefficients in K. Let w be an element in L such that all the conju:

gates of w over K form a normal base. Then the matrix 3 N (6! w’ is
ce QLK) - :

non-singular.

ProovF. It is sufficient to prove Lemma 4 for every irreducible repre-
gentation in K. Since every irreducible representation appears in the regu-
lar representation {R (o) |o€ @ (L/K)} as an irreducible component, it is suf-
ficient to prove det (2 R (6~') w?) & 0. Giving an order o, > .. > o, in

(4
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G (L/K), we shall calculate (i ><j)-element of 3 R (0™!) w°:
[

1\ oo o oy
%‘6(0‘.001. Yo' = m y

where 8 (¢) =1 for the unit element & and 8(r)=0 for 73 & Since
{w’|o€ @(L/K)} form a normal base of L/K, the matrix of which (i >< j)

-1
element is  *  is not singular. This proves Lemma 4.

Let (M (0)| 0 € @ (4)} be a representation of G(4) by non singular r >< r-
matrices with coefficients in Z,. We denote by I'(m) the subgroup
{0 € @ (4) | M (0) = identity mod p™} in G (4) and 4 (m) the subfield of A’
consisting of all the elements fixed by every element in I"(m), (m =1, 2, .,.).
Then I'(m) are normal subgroups of finite indecis and 4 (m)/4 are finite
separable normal extensions of 4.

For each m we choose a system of representatives of @ (4)/I'(m) in

G (4) and we understand by 2 that the sum is taken over all ¢ running
o mod I'(m)

through the representatives of G (4)/I"(m).

THEOREM 1. Let {M (o) | o€ G (4)] be a representation of @ (4) by non-
singular r >< r-matrices with coefficients in Z,. Then there exists a non-
singular matrix A with coefficients in W (4') such that A° =M (o) A,
(o € G (4)).

PrROOF. We use the notations I'(m), 4(m), 3 in the above. In view
. o mod I'(m)

of Lemma 1 and the theorem of normal base, there exists a system (o,,w,,...)
of elements in W (4) such that
1) on € W (m), (m=1,2,..), 0, = o, 1.
2) all the conjugates of w, over 4 form a normal base of 4(1)/4,
8) Trem+nkdm) (Omi1) = Om, (m=1,2,...).
Put

A= 3 M@ Yer, m=1,2,..),
o mod I'(m)

where 1 is the identity in W (4'). Since ®,, € K (4 (m)) and M (o) = identity
mod p™ for ¢ in I'(m), the class of A, mod p™ is independent of the choice
of the representatives of @ (4)/I'(m). Moreover we have the following set
important relations :

Ant1 = A, mod p7, (m =1, 2,..),
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because

A == by M@ 0°
m+1 amodI‘(m+1)( ) o5

S M@ 2z M (™) g 1

7 mod I'(m) e memEi ;8:—){-1)
= 3 M@ z 0., mod p™
v mod I'(m) emod I;S(m+l)
e e I'(m)

= I M) Tregams)dm) (Omtr)
v mod I'(m)

= 3 M@EYon=A,modpm.
+ mod I'(m)

Therefore there exists the limit A = lim A,, such that A = A,, mod p™.

m—+oo
(m=1,2,...). On the other hand A2 = b M@ o =
smod I' (m)
=M@ 2 M@)o, =M@A, mdpm, ce@(); m =1,2..),

+mod I'(m)
hence we have A° = M (o) A, (6 € G(4)). By virtue of Lemma 4 A, is non-

singular, so A is also non-singular. This completes the proof of Theorem 1.
By an argument based on the same ideas as in the proof of Theorem 1
we have the following theorem :

THEOREM 2. Let {M(0)| o€ G (4)}] be a representation of G (4) by non-
singular r >< r-matrices with coefficients in Z, and B, be a r >< r-matrix
with coefficients in 4 (1) such that B} = M (o) B;, (o € G (4)), where M (o) is
the reduction of M (o) modulo p and 4(1) the subfield of A’ consisting of
all the elements in 4’ fixed by the element ¢ such that M (o) = identity
mod p. Then there exists a matrix B with coefficients in W (4’) such that

1) B, is the reduction of B modulo p,
2) B°= M (o) B, (s € G (4)).

PROOF. On this proof o, =, 1, , ... denote the same elements of (4’) as

in the proof of Theorem 1. Since X M (r—!)w; is non-singular (Lemma 4),
Tmod I(1)

we can put

O=( 3 M@EY)o) !B,
tmod I'(1)

B=( X M@Yher)(Cl), @m=1,2..).
" omod I'(m) . m
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Then C is a matrix with coefficiente in 4 and C.1 is a matrix with
coefficients in W (4). Moreover B, = An, (0 -1) mod p™ and B, is the redu-
ction of B,, modulo p, where A, is the same as in the proof of Theorem 1.
Hence putting B = lim B,,, we have a B satisfying the conditions in

m—+00

Theorem 2.

2.3 In order to solve the problem affirmatively, we need to prove the
existence of a vector ‘a = (&, , ... , &) With coefficients in W (4') such that 1)
ac=M(o)a, (€ G,) and 2) «,,..., a, are linearly independent over Q, . The
existence of non-zero vector satisfying 1) is guaranteed by Theorem 1. We
shall first notice the existence of vectors satisfying 1) and 2) for the irre-
ducible representations {M (o) | o € G (4)} of @ (4) and, then under the assum-
ption that K (4)/Q, is transcendental, we shall prove the existence of ve-
ctors satisfying 1) and 2) by the induction on the number of irreducible
components in the representations.

THEOREM 3. Let (M (o) | 0 € G(4)] be an irreducible representation of
G (4) by r >< r-matrices with coefficients in Z,. Then there exists a system
of elements §,,..., &, in W (4’) such that 1)

5, ¢ a!
= M (o) y (0€ @ (4),
er %r

2) & ,..,& are linearly independent over Q,.

ProoF. In view of Theorem 1 there exists & non-zero vector Yoty yaee y @)
with coefficients in W (4') such that

%\’ &%,
—H@©|: |, ceG)

Oy Oy,

Let V be Z,[@ (4)]module spanned by a,,..,a, over Z, in W (). If
the rank of V is less than », the representation {M (o) | o € @ (4)} is not ir-
reducible. This shows the linearly independentness of &, ,...,®, over Q,.

In the induction process we shall need the following lemma:

LEMMA 5. Let £ be a transcendental element in a field L over a sub-
field K and o y.., 0%y ByyeeyBresy P1yeey?s be elements in L such that
{0y 500y @) and {B,,..,Pr—) are sets of linearly independent elements over
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K. Then there exists a positive integer mn, such that for every n =, the
elements o, &* 4 P,y ey % E* 4 Yo By y.ey Br—s are linearly independent
over K.

PROOF. We shall give a proof from algebraic geometry. Put M =
== K (£, 0y yunyOsy ByyeeryBrosy Piyees?s)y Where K denotes the algebraic
closure of K. We choose a normal projective variety V defined over K as
a model of the function field M /IE ‘We denote by 2 the K-module spanned
by @ yeayOsy Byyeey Brosy Pyseey?¥s i M over K and denote by d the
maximal of the degrees of the polar divisors of elements in 3. For a prime
divisor Y on V we mean by v, the valuation defined as follows: If the
multiplicity of Y in the principal divisor (f) is =, , the value v, (f) is gi-
ven by n, deg Y. We choose a prime divisor X on V such that v,(£) = 1.
Since the degree of polar divisors of elements in 2 is at most d, we have
—d<<v,(9)<<d (g0 in ). We put n,=2d 4 1. Let » be a positive
integer not less than n, and assume that there exist a, ,..., @, by, .., br—s
in K such that X a; («:§" 4 y:)+ 2 b; §; = 0. Then, since 3 a;y:+ 2'b; €2,

1] L] 13 13

we have the two cases:
1) 2{,‘“.7.+Zb,ﬂ=0, 2)—dgv,,(2_a.-7,-+2b,ﬁ,)gd. IfZ‘a,y.-l—
J ] 1]

+ jz b f;= 0, it follows that (2 a;a;) " = 0 and %‘ a;o; = 0. Since o, ,...,a,
1]

are linearly independent over K, we have a, = ... = a, = 0. By the linear

independence of 8,,...,f,—, over K we have b, =... = b,_, = 0, because

2 bjB;=0. Let us assume — d << v, (Z a; y; + 2 b; B;) << d. Then v, ((Z a; a;) &%) =

J i j i

=V, (2 a; y; + 2 b; B;) << d. On the other hand, since Z a; ;€ 3 and Ja;a; 30,
i j [ f

we have v, (2 a;a) &) =, (&) + v (T i) =0 —d>=2d+1—d=d+1.

f i
This is a contradiction. Therefore a, & 4y, e y0r &~ y4, B,y oeey Br—s are

linearly independent over K.
The next lemma is the reduction of the problem.

LEMMA 6. Let {M (o) | 0 € G (4)} be a representation of @ (4) by non-sin-
gular r >< r-matrices with coefficients in Z, such that

N, (o) ,\A'(_c?}s
M(a)(‘o Nz(o))“_s,(oea(d».

Let 4 (m) be the subfield of A’ consisting of all the elements fixed by the
subgroup I'(m) = {0 € G (4) | M (¢) = identity mod p™}(m =1, 2, ...). Assume
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two systems (d,,d8,...) and (b,,b,,..) of vectors with coefficients in
W (4') satisfy

1) the coefficients of &,, and b, belong to W (4 (m)),

2) Tream+nyxaem) @mt1) = &my Treamtnyxdm) Omt1) = bm

3) putting (4)

Gi #l

=lim 3 N Ya.,{: |=1lm > N,cbj,
° m-sco omod I (m) . m—co omodI'(m)
s, Br—s

the sets {a,,..,a) and {8,,..,pB,—,} are sets of linearly independent ele-
ments over Q,. Then, if K (d) is transcendental over Q,, there exists a
system of vectors (X,,X,,...) such that 1) the coefficients of X,, belong to
W (4 (m)), 2) Treaomtr)xam) (Xm41) = Xm , 3) putting

&
= lim > M (0_1) x:n,
E' m—oco o mod I'(m)
r,
the elements §,, ..., &, are linearly independent over Q,.
PROOF. Put
Y1
t)=1lim = o) be
° m-»co o mod I'(m)A ( )bm
Ys

and apply Lemma 5 t0 ey, .y Oy Byyevey Prosy Yiyoes¥sy, L =K (4') and
K = Q,. Then there exists a non-zero element % in W (4) such that &, 9

+ ¥y 5oy %N+ Ys5 Byyewy Br—s are linearly independent over Q,. Therefore,
putting

am"
X = ( bm ), (m = 1’ 27 ‘")’

we get.a system of vectors (X, ,X,,...) satisfying the conditions in Lemma 6.
Applying Lemma 6 successively we have our main theorem :

THEOREM 4 (the main theorem). If K (4) is transcendental over Q,,
there exists a Z,[@ (4)]-submodule in W (4') which is isomorphic to a given
Z, [G (4)]-submodule of finite rank over Z,.

PROOF. We shall prove the next assertion :
(A) Let {M (o) | o€ G (4)} be any representation of @ (4) by non-singular
r >< r-matrices with coefficients in Z,., Let I'(m) be the subgroup

(4) The conditions 1) and 2) imply the existence of limits in 3),

8. Annall della Scuola Norm. Sup, - Pisa.
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{0 € G (4)| M (o) = identity mod p™} and A4 (m) the subfield in 4’ consisting
of all the elements fixed by every element in I'(m). Then, if K (4)/Q, is
transcendental, there exists a system of vectors (X, ,X,,..) such that
1) the coefficients of X, belong to W (4 (m)),
2) Tream+aykdm) Xmt1) = Xm
3) putting (5
&

i ]=1lm 2 M(eY)&7,
&r m—oo omod I (m)
the elements &,,..,& are linearly independent over Q,.

The vector &, ,..,&,) in (A) satisfies the condition in Theorem 4,
hence it is enough to prove (A4) by the induction on the number of ir-
reducible components. First we assume (M (o)|o€ @ (d4)} is irreducible.
Then, if we denote by A,,A,,.. the same matrices as in the proof of
Theorem 1 and denote by &,,8,,.. the first column vectors of A, , A,,...,
respectively, then by the argument in the proof of Theorem 3 the system
(a,,a,,..) satisfies the condition in (4). We assume (A) for the case in
which the number of irreducible components is less than n=.

Let {M (o) | o € @ (d)} be a representation of G (4) by non-singular » >< r-
matrices with coefticients in Z, such that q)

8 r—s } s
M (o) = Ny(0) A (o) , (6€@Q(4)

0 Ne(o)/ }r—s

ii) {N, (0)| 0 € @ (d4)} is irreducible, iii) the number of irreducible components
in {Ny(o)|o€G(4)} is n—1. We denote by 4(i,m) the subfield of 4
consisting of all the elements fixed by every element in I’ (i, m) =
= [0 € @ (4)| N; (o) = identity mod p™}, (i=1,2;m =1,2,..). By the
induction assumption there exist systems of vectors (a,, &, ,..) and
(b,,b,,...) such that

1) the coefficients of & (resp. bn,) belong to W (4(1,m)). (resp. W (4(2,m)),

2) Trean, mn)an, m) @mt1) = 8m ,

Tre(aee, m+1)/k(a@ m) (Dmt1) = D,
3) putting ()
%y
=lm X N, (e Y)ag

m—oo omod I'(1, m)
7

), (%) see ().
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and

=lim 3 N; () by, ,

m—co omod I' (2,m)

the sets {&,,..,&,} and {B,,..,B,—,} are sets of linearly independent ele-
ments over Q,.

Put AM=U4(1,m) and 4® =U 4(2,m). Then there exists a non-
m m

decreasing arithmetic function @ such that 4(1, @ (m)) > 4V N 4 (m) and
4(2, D (m)) D A n 4(m), (m =1, 2,...), because 4(m)(m=1,2,..) are finite
extensions over 4. We shall inductively show that we can choose- vectors
Cm and d, with coefficients in W (4 (m)) such that

Tryaa, sexa® n am) @sm) = Tra@m)Ka® o sm) (Cm)y
(Bm) Treace, oK@ o am) Osm) = Tryamy g(a® o aom) (Om)y
Trxam+1)kam) (Cmt1) = Cm s Trram+1)xa) (Omt1) = Om -

Since Tryaq, sy ksWa a1y (@s@) i8 8 known element in K (4D n 4 (1)
applying Lemma 3 to 4, =4,=49Nn4(1), d=4; and & =f =
= Tryuq, s))K4Wn aq) (@s), we have an element ¢, with coefficients in
W (4 (1)) satisfying (B,). Assume we have already C, Cp,... , Cm—; Such that
the coefficients of C; belong to W (4(l) and ¢; satisfy (B), (I=1, 2, ...,
m — 1). Then, since (AN A (m)) N4 (m —1) =400 4 (m — 1) and

Trya) o aemy)/KaW) o aom—1)) (TTh40, SEMKAD o dm) (@ om))

= Trxam—1))K(4® n 4(m+1)) (Cm—1),

we can use Lemma 3 and get a vector C, Wwith coefficients in W (4 (m))
such that

Tricam)ina® a am) (Cm) = Trxaq, Dm)ma®) a sm) (@dm)
and

Trxcaem+1)xaem) (Cm41) = Cm .

By the same method we have d,,d,,.. satisfying the conditions. By virtue
of the last condition in (B,,) the limits

lim 2 N,(67Y)c? and lim 2 N,(o72)d,

m—o0 ¢ mod I' (m) m~+co o mod I' (m)
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exist and by the first two conditions in (B,,) we have

“i ﬂ 1

v )=Ilim X N, (67 ¢y =lim X Ny (=) 0z, .
m—oo0 omod I' (m) m—oo o mod I' (m)

g pr—c

Therefore, applying Lemma 6 to (C,,Cy,..) and (0,,0;,..), we have
a system of vectors (X,,X,,..) satisfying the conditions in (4). This com-
pletes the proof of the main theorem.
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