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APPLICATION OF THE
HOLMGREN-RIESZ TRANSFORM

H. L. GRAY (Lubbock~ I Texas)

1. Introduction.

In several recent works [1, 2, 3] M. A. Bassam has studied the g-R
transform and its application. In particular he has found it of some use in
solving differential equations of the Fuchsian type. In this paper the appli-
cation of the H~R transform to the equation

at , h2 and c~ are real constants, is considered in more detail.

In the B R form of (1.1) the exponential function is introduced to re-

move some undesirable restrictions on the form given by Bassam. Also the
range for which the transform is applicable to (1.1) is extended to R (a) C 0.
A « generalized » Rodriques formula is discussed and some « generalized »
formulas for the Laguerre and Legendre functions are given.

x

Throughout the paper the symbol will represent the transform
a

of the real valued function f (x) on the interval ~a, h]. In some cases, when
x

more meaningful, the operator I ~ will be replaced by its equivalent, 
a

The letters m and n will always denote positive integers.

2. Definitions.

is a real valued function of class on [a, b] and 0  R (0153 + n) ~ 1
then

Pervenuto in Redazione il 12 Agosto 1963.



58

3. THEOREM 1. If f (x) = as X2 + b2 x + °2 and

then the differential equation (1.1) has the equivalent H-R form

where

provided y (x) is a real valued function of class on [a, b] and one of-the
following conditions is satisfied :

PROOF. Expanding (3.1) gives

Hence if one of the conditions i-iii are met the indices can be added so that

one gets (1.1). By reversing the argument the equivalence follows.

THEOREM 2. If f (x), Q (x), y (x) and a are defined as is theorem 1, then,
if R (a) 0, the differential equation ~1.1) has the equivalent H-.9 form

(1) I would like to extend credit to D. R. Myrick for his help in establishing this

result.
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PROOF : If R (a)  0 (3.3) can be expanded in the same manner as (3.1)
to give

Hence

so that (1.1) follows. Again the argument can be reversed so that the equi-
valence is established.

4. General Solution. 

By defining the arbitrary constants of the H-R equation
(3.1) as zero, the solution of (1.1) is easily seen to be

where R (0153) ~ 0, ~ =~= 2013 00 and n = [0153] + 1..
The necessity for letting the constants be zero can be seen by substi-

tuting the solution in (3.1). If a = - 00 it follows (see [2]) that the solution
is the same with the to-fa factor deleted. Similarly if R (a) ~ 0 and a =1= - o0
the solution of (1.1) is by (3.3)

where n = [0153J -~-1. 
’

As before if a = - oo the solution is the same but with the fac-

tor removed. In both solutions a is of course chosen to meet the continuity
conditions on y (x).

5. General solution when a is an integer.

When a is an integer the above results yield the solution of (1.1) in
such a simple manner that it deserves special mention. That is, if 

( 1.1 ) can be written
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By defining the first n --1 constants of integration as zero the solution is

obvious. Similarly if a = - n (1.1) has the equivalent form

As above, the solution is by inspection. Note that the nonhomogeneous equa-
tion could be handled here just as well and that a particular solution could
be obtained without the knowledge of either solution of the homogeneous
equation.

6. Rod;iques formula.

A « generalized » Rodriques formula may be defined as follows :
If f (x) and Q (x) are defined as in theorem 1, and c is a constant, then

will be called a Rodriques formula.
It follows at once that if 0 one solution of (1.1) can always be

put in the Rodriques form, and if R (a) ) 0 there is always a solution of

an analogous form.
Consider now the following examples.

(A) Laguerre equation. Take the Laguerre equation

By (3.2) a = - ~ sothat the corresponding H R form is

and

The solution then follows by inspection. In particular consider the solution
0. Choosing a. = 0 in (6.2) gives
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Now if 0 , = (~ 1 -f- ~ and P = n the first solution is the Rodriques

formula for the Laguerre polynomials. However the solution is not depen-
dent on P being an integer and as a matter of fact yields the Laguerre
function for all fl h 0 provided ,u ~ - m. That is,

when ~ ~ 0 and ~8 + p =}= 2013 m.

PROOF. If fl = n the result is well known. Hence n. Then

Therefore if p -~- ~ ~ - m

But

Therefore

(B) Legendre equation. For the Legendre equation,

or a = - ~. Taking a = fJ + 1, where ~ &#x3E; 2013 1, gives the H-R
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form

Hence for proper a

where the factor is deleted if a = - oo. The solution (6.5) is in a very
useful form and suggests the following formulas for the Legendre functions :

0 and

and I ae  1.
That (6.6), (6.7) and (6.8) are formulas for the Legendre functione can

be shown as follows. If ~ = r~ the results are well known. Hence suppose

fl ~ n, then

Therefore
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Now to prove (6.7)

where n = [Pl -+- 1.
Then since x ~ &#x3E; 1 one gets

Now

so that the above limit

But

so that the above double series is

Hence (6.7)
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Finally to show (6.8) we have, when  1,

but

so that the above

The above series when multiplied by gives the desired

result. Note that Q~ (x) is a series of odd powers when n is even and even

powers when n is odd.

(C) Hypergeometric equation. For the hypergeometric equation

a = fl or a = ,u. Hence the equivalent form for R (a) ~ 0 is

or

The results (6.10) and (6.11) were obtained in [2] where the solutions were
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discussed in detail and hence will not be dwelt on here. However by use
theorem 2 two additional forms for the hypergeometric equation can be

obtained. That i~ if R (a)  0 (6.9) has the form

or

where Q (x) = xY-1 (1 - 
Note that if p or P _ - n, say fl, one gets by inspection

Parts of this paper were presented at the annual Texas meeting of
the Mathematical Association of America, April 18, 1963.
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