Some formulas in a riemannian space

<http://www.numdam.org/item?id=ASNSP_1956_3_10_1-2_85_0>
SOME FORMULAS IN A RIEMANNIAN SPACE

By MANINDRA CHANDRA CHAKI, M. A. (Calcutta)

In this paper a number of theorems and formulas involving two arbitrary affine connections in a Riemannian space \(V^n \) have been established by imposing certain conditions on the affine connections. In section 1 it has been assumed that the covariant derivatives of the metric tensor of the \(V^n \) with respect to the affine connections are the same while in section 2 the torsions of the affine connections have been taken to be the same.

1. Let \(I^i_{jk} \) and \(L^i_{jk} \) be the coefficients of two arbitrary affine connections in a Riemannian space \(V^n \) with metric tensor \(g_{ij} \) and let a comma and a semicolon denote the covariant derivatives of the \(g_{ij} \)'s with respect to the two connections. Then

\[
g_{ij,k} - g_{ij;k} = - g_{is} (I^s_{jk} - L^s_{jk}) - g_{js} (I^s_{ik} - L^s_{ik})
\]

Putting \(T^i_{jk} = I^i_{jk} - L^i_{jk} \), it follows that

\[
g_{ij,k} = g_{ij;k}
\]

if and only if

(I. 1) \[g_{is} T^s_{jk} + g_{js} T^s_{ik} = 0 \]

Hence we have the following theorem:

Theorem 1. The covariant derivatives of the \(g_{ij} \)'s with respect to two affine connections with coefficients \(I^i_{jk} \) and \(I^i_{jk} + T^i_{jk} \) are the same if and only if the tensor \(T^i_{jk} \) satisfies (I. 1).

As an example it is easy to verify that the above result holds with respect to the coefficients of affine connections

\[
I^i_{jk} \quad \text{and} \quad I^i_{jk} \pm g^{is} (g_{jk,s} - g_{ks,j})
\]
This example is an application of Sen's sequence (3) which is defined as follows:

Put $a = \Gamma^t_j$, $a^* = \Gamma^t_j + g^{mt}g_{im,j}$, $a' = \Gamma^t_{ji}$

Then it is known that for every affine connection a there exist uniquely two others a^* and a' which are respectively called the associate and the conjugate of a having the property

$$a^{**} = a' = a$$

In particular, a is self-associate if $a = a^*$ and self-conjugate if $a = a'$. Now if we construct the sequence

$$(1.2) \quad a_1 = a, \quad a_2 = a^*, \quad a_3 = a^*, \quad a_4 = a^*, \quad a_5 = a^*, \quad \ldots$$

then the sequence is a finite cyclic sequence of twelve terms and it is Sen's sequence. In the sequence if we put

$$\alpha = g^{mt}g_{im,j}, \quad \alpha_c = g^{mt}g_{jm,i}, \quad \gamma = g^{mt}g_{ij,m} = \gamma_c$$

$$\beta = g^{mt}g_{ik}(\Gamma^{s}_mj - \Gamma^{s}_jm), \quad \beta_c = g^{mt}g_{ik}(\Gamma^{s}_im - \Gamma^{s}_im)$$

and suppose that a is self-conjugate, then we have

$$a_4 = a_9 = a + \alpha - \gamma, \quad a_5 = a_8 = a + \alpha_c - \gamma, \quad a_6 = a_7 = a + \alpha + \alpha_c - \gamma$$

It follows that

$$(1.3) \quad a_1 - a_5 = a_2 - a_6 = g^{mt}(g_{jk,s} - g_{ks,j})$$

Further, if the covariant derivatives of the $g_{ij}'s$ with respect to two affine connections are the same and if one of them is self-associate then the other is also self-associate, because the covariant derivatives of the $g_{ij}'s$ must vanish. Now when $a_1 = a_2$ is self-associate, then $a_7 = a_8$ is also self-associate. Hence we have the following theorem:

Theorem 2. If a_i be coefficients of a self-conjugate affine connection, then the $g_{ij}'s$ have the same covariant derivatives with respect to the pairs of affine connections (a_1, a_5) and (a_2, a_6) of Sen's sequence. And if a_1 be self-associate then the $g_{ij}'s$ have the same covariant derivatives with respect to the pair (a_1, a_7).
Further, let \(\Gamma_{ij}^t \) and \(\Gamma_{ij}^t = T_{ij}^t \) be the coefficients of two affine connections. Then their associates are
\[
\Gamma_{ij}^{*t} \quad \text{and} \quad \Gamma_{ij}^{*t} = g^{mt} g_{ia} T_{mj}^t
\]
and their conjugates are
\[
\Gamma_{ij}^t \quad \text{and} \quad \Gamma_{ij}^t = T_{ij}^t
\]
It follows immediately from Theorem 1 that

Theorem 3. If the \(g_{ij}^t \)'s have the same covariant derivatives with respect to two arbitrary affine connections, then the same is true with respect to their associates and conjugates.

Now, let \(\Gamma_{ij}^t \) and \(L_{ij}^t \) be the coefficients of two affine connections and
\[
\Delta_{ij}^t = \frac{1}{2} (\Gamma_{ij}^t + L_{ij}^t), \quad T_{ij}^t = \Gamma_{ij}^t - L_{ij}^t
\]

Also, let \(\Gamma_{ijk}^t, L_{ijk}^t \) and \(\Delta_{ijk}^t \) denote curvature tensors formed with \(\Gamma_{ij}^t, L_{ij}^t \) and \(\Delta_{ij}^t \) respectively.

Then it is known that

(I. 4)
\[
\Delta_{ijk}^t = \frac{1}{2} (\Gamma_{ijk}^t + L_{ijk}^t) = \frac{1}{4} (T_{sk}^t T_{ij}^t - T_{sj}^t T_{ik}^t)
\]

Now if the \(g_{ij}^t \)'s have the same covariant derivatives with respect to \(\Gamma_{ij}^t \) and \(L_{ij}^t \) then by (I. 1)
\[
T_{sk}^t T_{ij}^t = g^{mt} g_{np} T_{mn}^p g^{ms} g_{iq} T_{nj}^q = g^{mt} g_{iq} T_{mk}^q T_{nj}^q
\]
Therefore
\[
g_{ht} (T_{sk}^t T_{ij}^t - T_{sj}^t T_{ik}^t) = g_{ht} g^{mt} g_{iq} (T_{mk}^q T_{nj}^q - T_{mj}^q T_{nk}^q) = g_{ht} (T_{nj}^q T_{hk}^k - T_{nk}^k T_{hn}^k)
\]
Or
\[
\Delta_{hijk}^t = -\frac{1}{2} (\Gamma_{hijk}^t + L_{hijk}^t) = \frac{1}{4} g_{ht} (T_{sk}^t T_{ij}^t - T_{sj}^t T_{ik}^t) = \frac{1}{4} g_{ht} (T_{nj}^q T_{hk}^k - T_{nk}^k T_{hn}^k)
\]
Hence

(I. 5)
\[
\Delta_{hijk}^t = -\frac{1}{2} (\Gamma_{hijk}^t + L_{hijk}^t) = - [\Delta_{hijk}^t - \frac{1}{2} (\Gamma_{hijk}^t + L_{hijk}^t)]
\]
Thus we have the following theorem:

Theorem 4. If the g_{ij}'s have the same covariant derivatives with respect to Γ_{ij}^t and L_{ij}^t and if $A_{ij}^t = \frac{1}{2} (\Gamma_{ij}^t + L_{ij}^t)$, then the curvature tensors formed with them satisfy the relation (I. 5).

This result is easily verified in the case when Γ_{ij}^t and therefore L_{ij}^t, A_{ij}^t are self-associate. For in this case the curvature tensors are skew in the first two indices (4).

As before, suppose that the covariant derivatives of the g_{ij}'s with respect to Γ_{ij}^t and L_{ij}^t are the same. Forming the second covariant derivatives it is seen that

\[(I. 6)\]

\[g_{ij,kl} - g_{ij,kl} = - [g_{ij,k} T_{kl}^t + g_{kl,k} T_{ij}^t + g_{ij,s} T_{kl}^t]\]

where

\[\Gamma_{ij}^t - L_{ij}^t = T_{ij}^t = - g^{ml} g_{ij} T_{ml}^n\]

Therefore

by (I. 6) \[g^{ij} (g_{ij,kl} - g_{ij,kl}) = g^{ml} g_{ij,k} T_{ml}^t + g^{ml} g_{kl,k} T_{ml}^t - g^{ij} g_{ij,s} T_{kl}^t =\]

\[= g^{ij} [g_{ij,k} T_{kl}^t + g_{kl,k} T_{ij}^t + g_{ij,s} T_{kl}^t - 2 g_{ij,s} T_{kl}^t] = - g^{ij} (g_{ij,kl} - g_{ij,kl}) - 2 g^{ij} g_{ij,s} T_{kl}^t\]

Therefore

\[g^{ij} (g_{ij,kl} - g_{ij,kl}) = - g^{ij} g_{ij,s} T_{kl}^t\]

Interchanging k and l and subtracting

\[g^{ij} (g_{ij,kl} - g_{ij,kl}) = g^{ij} g_{ij,s} (T_{kl}^t - T_{kl}^t)\]

Finally using Ricci's identity

\[(I. 7)\]

\[g^{ij} (g_{ij,kl} - g_{ij,kl}) = g^{ij} g_{ij,s} [(\Gamma_{kl}^t - L_{kl}^t) - (\Gamma_{kl}^t - L_{kl}^t)]\]

Let us further suppose that Γ_{ij}^t and L_{ij}^t are both self-associate or both self-conjugate. Then the right hand side of (I. 7) vanishes. We have therefore

\[g^{ij} [(\Gamma_{ij}^t + L_{ij}^t) - (\Gamma_{ij}^t + L_{ij}^t)] = 0\]

whence

\[(I. 8)\]

\[g^{ij} (\Gamma_{ij}^t - L_{ij}^t) = 0\]

As said before, this result is obvious when both the affine connections are self-associate.
Hence we have the following theorem:

Theorem 5. If the g_{ij}'s have the same covariant derivatives with respect to two self-conjugate affine connections with coefficients Γ^t_{ij}, L^t_{ij} and if Γ^t_{ijk}, L^t_{ijk} be the corresponding covariant curvature tensors, then (I. 8) holds.

2. The torsion of an affine connection with coefficients Γ^t_{ij} is defined to be the tensor $\frac{1}{2} (\Gamma^t_{ij} - \Gamma^t_{ji})$ (2). It follows that two arbitrary affine connections with coefficients Γ^t_{ij} and $\Gamma^t_{ij} + T^t_{ij}$ have the same torsion if and only if T^t_{ij} is symmetric in i and j. It is now easy to see that if two affine connections have the same torsion the same is true of their conjugates. E. g., in Sen's sequence each of the pairs (a_1, a_8), (a_2, a_9), (a_4, a_7) and therefore their conjugates (a_{12}, a_7), (a_3, a_8), (a_{14}, a_6) have the same torsion.

Again, let $a = \Gamma^t_{ij}$, $b = L^t_{ij}$ be the coefficients of two affine connections and $a - b = T^t_{ij}$. Their associates a^* and b^* will have the same torsion if the tensor

$$T^t_{ij} + g^{mt}(g_{im,j} - g_{im,j}) = g^{mt} g_{is} T^*_{sj}$$

is symmetric in i,j i. e., if

$$(2.1)\quad g_{is} T^*_{sj} = g_{js} T^*_{is}$$

Putting $g_{is} T^*_{sj} = T^*_{ij}$ we have the following theorem:

Theorem 6. Let a and b have the same torsion; then their associates will also have the same torsion if the tensor T^*_{ijk} is symmetric in all the indices.

Let $e_0 = (a, b) = \frac{1}{2} (a + b) + (a - b)$, $\bar{e}_0 = (b, a) = \frac{1}{2} (a + b) + (b - a)$

$$e_1 = (e_0, \bar{e}_0) = \frac{1}{2} (a + b) + 2(a - b), \bar{e}_1 = \frac{1}{2} (a + b) + 2(b - a)$$

Similarly for e_2, \bar{e}_2 etc.

Then

$$e_r = \frac{1}{2} (a + b) + 2^r (a - b)$$

Therefore

$$e_r - \bar{e}_r = 2^r (a - b)$$

It follows that if a and b have the same torsion then the same is true of e_r and \bar{e}_r.

Further, we have the following theorem:

Theorem 7. If the associates of a and b have the same torsion, the same is true of the associates of c_r and d_r.

Let I_{ij}^t and L_{ij}^t have the same torsion. Then applying the condition that T_{ij}^t is symmetric in i, j, we obtain from (I. 4) the cyclical property, namely

\[(2.3) A_{ijk}^t = \frac{1}{2} (I_{ijk}^t + L_{ijk}^t) + A_{ikj}^t - \frac{1}{2} (I_{jki}^t + L_{jki}^t) + A_{kij}^t - \frac{1}{2} (I_{kij}^t + L_{kij}^t) = 0\]

This result is obvious if I_{ij}^t and therefore L_{ij}^t, A_{ij}^t are self-conjugate.

In conclusion, I acknowledge my grateful thanks to Prof. R. N. Sen for his helpful guidance in the preparation of this paper.

Department of Pure Mathematics
Calcutta University.

References

1. Eisenhart, L. P., (1926) *Riemannian Geometry*