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VARIETIES OF MINIMAL RATIONAL TANGENTS
OF CODIMENSION 1

ʙʏ J�ɴ-M�� HWANG

Aʙ��ʀ���. – Let X be a uniruled projective manifold and let x be a general point. The main result
of [2] says that if the (−KX)-degrees (i.e., the degrees with respect to the anti-canonical bundle of X)
of all rational curves through x are at least dim X + 1, then X is a projective space. In this paper, we
study the structure of X when the (−KX)-degrees of all rational curves through x are at least dim X.

Our study uses the projective variety Cx ⊂ PTx(X), called the VMRT at x, defined as the
union of tangent directions to the rational curves through x with minimal (−KX)-degree. When the
minimal (−KX)-degree of rational curves through x is equal to dim X, the VMRT Cx is a hypersurface
in PTx(X). Our main result says that if the VMRT at a general point of a uniruled projective manifold
X of dimension≥ 4 is a smooth hypersurface, then X is birational to the quotient of an explicit rational
variety by a finite group action. As an application, we show that, if furthermore X has Picard number 1,
then X is biregular to a hyperquadric.

R�����. – Soit X une variété projective uniréglée et soit x un point général. D’après le résultat
principal de [2], si le degré par rapport à −KX de toute courbe rationnelle passant par x est au moins
égal à dim(X) + 1, alors X est un espace projectif. Dans cet article, nous étudions la structure de X
sous l’hypothèse que le degré par rapport à−KX de toute courbe rationnelle passant par x est au moins
égal à dim(X).

Notre étude repose sur la variété projective Cx ⊂ PTx(X) que nous appelons la VMRT (variété
des tangentes des courbes rationnelles minimales) en x et qui est définie comme la réunion de toutes
les directions tangentes aux courbes rationnelles passant par x dont le degré par rapport à −KX est
minimal. Lorsque ce degré est égal à dim(X), la VMRT Cx est une hypersurface de PTx(X). Notre
résultat principal affirme que si la VMRT en un point général d’une variété projective uniréglée X de
dimension ≥ 4 est une hypersurface, alors X est birationnelle au quotient d’une variété rationnelle
explicite par l’action d’un groupe fini. Si, de plus, le rang du groupe de Picard de X est égal à 1, nous
en déduisons que X est une hypersurface quadrique d’un espace projectif.

Supported by National Researcher Program 2010-0020413 of NRF and MEST.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/04/© 2013 Société Mathématique de France. Tous droits réservés



630 J.-M. HWANG

1. Introduction and statement of main results

We will work over the complex numbers. For a projective manifold X, we have the notion
of the (normalized) space RatCurvesn(X) of rational curves on X (cf. [11] Section II.2 for the
definition). When X is uniruled, this space RatCurvesn(X) has an irreducible component K
such that the subscheme K x consisting of members of K through a general point x ∈ X is
non-empty. If furthermore K x is projective, the component K is called a family of minimal
rational curves and its members are called minimal rational curves of X. For a uniruled
projective manifold X, a family of minimal rational curves always exists. For example, fix an
ample line bundle L on X and pick a rational curve C through a general point of X which
has minimal degree with respect to L. Then the component of RatCurvesn(X) containing
C is a family of minimal rational curves. Minimal rational curves play a crucial role in the
geometry of X and have been much studied for that reason.

Given a family K of minimal rational curves, denote by deg(K ) the degree of mem-
bers of K with respect to the anti-canonical divisor −KX . Then it is well-known that
deg(K ) ≤ dim X + 1 (e.g., [11] Corollary IV.1.15). When deg(K ) is maximal, i.e.,
deg(K ) = dim X + 1, the biregular structure of X is completely known: Theorem 0.2
of [2] says that X is biregular to projective space and minimal rational curves are lines.

In this paper, we study the next-to-maximal case, i.e., when deg(K ) = dim X. To see what
is to be expected, recall the following examples which are introduced in Example 1.7 of [5].

E����ʟ� 1.1. – Let Z ⊂ Pn−1
, n ≥ 3, be a submanifold. Regard Z as a submanifold

of a hyperplane Pn−1 ⊂ Pn. Let β : XZ → Pn be the blow-up of Pn along Z. Let KZ

be the component of RatCurvesn(XZ) determined by the proper transforms of lines on Pn

intersecting Z. Then KZ is a family of minimal rational curves on XZ . If Z ⊂ Pn−1 is a
hypersurface, then deg(KZ) = n.

Another example can be obtained by taking a cyclic quotient of Example 1.1:

E����ʟ� 1.2. – In the setting of Example 1.1, let G be a finite group acting on Pn

preserving the two submanifolds Z ⊂ Pn−1 ⊂ Pn. The G-action can be lifted to a G-action
on XZ and the quotient XZ/G exists as a normal variety. Let ‡XZ/G be a desingularization
of XZ/G which leaves the smooth locus intact. For some choice of Z and G, the family of
rational curves given by the proper images of members of KZ in ‡XZ/G becomes a family of
minimal rational curves on ‡XZ/G. For example, when Z is a Fermat hypersurface of large
degree, we can find a cyclic group G acting on Pn preserving Z ⊂ Pn−1 such that the action
is free outside a finite set F ⊂ Pn with F ∩ Z = ∅. When we regard F as a subset in XZ ,
the G-action on XZ is free outside F ⊂ XZ which is disjoint from members of KZ through
a general point. Thus the quotient XZ → XZ/G is unramified at all points of the members
of KZ through general points, which shows that KZ descends to a family of minimal rational
curves on ‡XZ/G.

More examples can be constructed by suitable birational transformations of XZ as
follows.
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E����ʟ� 1.3. – Given a projective manifold X and a family of minimal rational curves
K with deg(K ) = dimX, there exists a non-trivial birational transformation Φ : X ��� X

�

such that the proper images of members of K give rise to a family of minimal rational
curves K � on X

�. Then deg(K �) = dim X
�. For example, for any finite subset F ⊂ X,

all members of K through a general point x ∈ X are disjoint from F . Thus the blow-up
Φ : X ��� BlF (X) provides an example of such birational transformations.

These examples show that, unlike in the case of deg(K ) = dim X + 1, there is no simple
biregular classification of X in the case of deg(K ) = dim X. What we can hope is to
give a birational classification of X together with a description of K . We achieve this for
projective manifolds of dimension ≥ 4, modulo one technical assumption. To explain this
technical assumption, let us recall the notion of the variety of minimal rational tangents (to
be abbreviated as VMRT) associated to a family of minimal rational curves K . The VMRT at
a general point x ∈ X is the subvariety Cx ⊂ PTx(X) defined as the set of tangent directions
at x of the members of K x (cf. [4] Section 1.3). The dimension of Cx is equal to deg(K )− 2.
The technical assumption we need is the following.

(*) The VMRT Cx at a general point x ∈ X is smooth.

It has been conjectured that (*) is true for any X and any K . The main result of [8] says
that the normalization of Cx is smooth, so (*) is equivalent to the normality of Cx. In specific
problems involving minimal rational curves, the assumption (*) is often verifiable directly.
For example, when deg(K ) = dim X + 1, Cx = PTx(X) is trivially smooth, which plays an
implicit role in [2]. It is also easy to check (*) in Examples 1.1 and 1.2. In fact, Cx ⊂ PTx(XZ)
is isomorphic to Z ⊂ Pn−1 as projective subvariety. In this sense, it is reasonable to keep (*)
as a working hypothesis when studying minimal rational curves.

Our main result is the following. Note that under the assumption of (*) and deg(K ) = n,
the VMRT Cx is a smooth hypersurface in PTx(X).

Tʜ��ʀ�� 1.4. – Let X be a uniruled projective manifold of dimension n ≥ 4 with a
family K of minimal rational curves such that the VMRT Cx ⊂ PTx(X) at a general point
x ∈ X is a smooth hypersurface of degree m ≥ 3. Then there exist a smooth hypersurface
Z ⊂ Pn−1 of degree m, a finite group G acting on Pn preserving Z ⊂ Pn−1 and a birational
map Φ : XZ/G ��� X such that the dominant rational map Ψ : XZ ��� X defined by the
composition of Φ and the quotient XZ → XZ/G sends general members of KZ to those of K .

The assumption m ≥ 3 in Theorem 1.4 is harmless. When the degree m of the hypersur-
face Cx is 1 or 2, the structure of X is already well-understood. When m = 1, Theorem 1.1
of [1] says that there exist a Zariski open subset X

o ⊂ X and a Pn−1-fibration X
o → B to

a (quasi-projective) curve B such that members of K correspond to lines in the Pn−1-fibers.
When m = 2, i.e., Cx is a hyperquadric, the conclusion of Theorem 1.4 follows from the work
of Mok ([13]) as a variation of its Main Theorem. Strictly speaking, [13] is written under the
assumption that X has Picard number 1 and its Main Theorem is stated with that assump-
tion. However, those arguments in [13] that are independent from that assumption and our
argument in Section 5 provide the proof we need.
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Theorem 1.4 gives a reasonably satisfactory classification under the technical assumption
(*). However, to be a complete classification, we need to classify the pairs (Z, G) which
actually occur and determine the birational type of XZ/G. This seems to require a substan-
tial work of quite different nature from the main theme of the current paper. Thus we will
not touch upon these questions in the current paper and leave them for future research of
interested readers.

Our approach to Theorem 1.4 is based on the study of geometric structures arising from
minimal rational curves. To fix the terminology, we give the definition here.

D��ɪɴɪ�ɪ�ɴ 1.5. – On a uniruled projective manifold X with a family K of minimal
rational curves, the VMRT-structure C ⊂ PT (X) is the irreducible subvariety defined by
the closure of the union of the VMRT’s Cx ⊂ PTx(X) as x varies over general points of X.

In contrast to previous terminology in [4], [8], etc., the term ‘structure’ is used here to
emphasize our view-point that this subvariety should be viewed as a differential geometric
object. In fact, a key notion is the equivalence of VMRT-structures in the following sense.

D��ɪɴɪ�ɪ�ɴ 1.6. – Given two uniruled projective manifolds X
1 and X

2 with families
of minimal rational curves K 1 and K 2 respectively, the corresponding VMRT-structure
C1 ⊂ PT (X1) at a point x

1 ∈ X
1 is equivalent to the VMRT-structure C2 ⊂ PT (X2)

at x
2 ∈ X

2, if there exist an analytic neighborhood x
1 ⊂ U

1 ⊂ X
1 (resp. x

2 ⊂ U
2 ⊂ X

2)
and a biholomorphic map ψ : U

1 → U
2 whose differential dψ : PT (U1) → PT (U2) sends

C1 ∩ PT (U1) to C2 ∩ PT (U2) biholomorphically.

To see the relevance of the equivalence of VMRT-structures in Theorem 1.4, recall the
following result.

Tʜ��ʀ�� 1.7 (Main Theorem in [7]). – Let X
1 (resp. X

2) be a uniruled projective
manifold of Picard number 1, not biregular to projective space. Assume that X

1 (resp. X
2) has

a family of minimal rational curves K 1 (resp. K 2) such that the VMRT C1
x1
⊂ PTx1(X

1) at
a general point x

1 ∈ X
1 (resp. x

2 ∈ X
2) is smooth and irreducible, and the VMRT-structure

at x
1 is equivalent to the VMRT-structure at x

2 in the sense of Definition 1.6. Then the local
equivalence map ψ in Definition 1.6 extends to a biregular morphism Ψ : X

1 → X
2 which

sends members of K 1 to members of K 2.

It turns out that we can use some analogue of Theorem 1.7 to reduce the proof of Theo-
rem 1.4, to showing that the VMRT-structure of X at a general point is equivalent to that
of XZ in Example 1.1. The argument we need for this reduction is a variation of the proof
of Theorem 1.7 in [7]. This will be explained in Section 5.

From this, we may say that the gist of the matter is to study the equivalence problem for
the VMRT-structure in the setting of Theorem 1.4. In [5], this equivalence problem is studied
and the following result is proved (Theorem 1.11 in [5]).

Tʜ��ʀ�� 1.8. – Let X be a uniruled projective manifold of dimension n ≥ 3 with a family
K of minimal rational curves with deg(K ) = n. Assume that for a general x ∈ X,

(i) the VMRT Cx ⊂ PTx(X) is smooth;
(ii) the hypersurface Cx ⊂ PTx(X) has degree m ≥ 4; and
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(iii) C is isotrivial, namely, for any y ∈ X in a neighborhood of x, the hypersurface
Cy ⊂ PTy(X) is projectively equivalent to a fixed hypersurface Z ⊂ Pn−1.

Then the VMRT-structure C is locally flat at a general point (cf. Definition 3.14), or equiva-
lently, equivalent to the VMRT-structure at a general point of XZ (cf. Example 4.2).

Among the three assumptions in Theorem 1.8, (i) is exactly our technical assumption (*),
and does not damage the generality of the statement. However the assumptions (ii) and (iii)
are restrictive. It is unnatural to exclude m = 3 in (ii). The isotriviality assumption in (iii) is,
by far, the strongest condition in Theorem 1.8. In [5], (iii) is imposed to employ the differential
geometric machinery developed by É. Cartan. From the view-point of algebraic geometry,
this assumption is most unsatisfactory.

The essence of the present work is to remove the two assumptions (ii) and (iii). More
precisely, we prove the following, which is the essential result of this paper.

Tʜ��ʀ�� 1.9. – Let X be a uniruled projective manifold of dimension n ≥ 4 with a family
K of minimal rational curves with deg(K ) = n. Assume that for a general x ∈ X, the
hypersurface Cx ⊂ PTx(X) is smooth of degree m ≥ 3. Then the VMRT-structure is locally
flat at a general point.

Note that Theorem 1.9, as well as Theorem 1.4, is stated only for n ≥ 4, while Theorem 1.8
holds for n ≥ 3. I have no idea whether an analogue of Theorem 1.9 is true when n = 3. We
need n ≥ 4 in Theorem 1.9 because it is proved via the following more general result. For
the definition of the terms and the notation here, see Section 2.

Tʜ��ʀ�� 1.10. – Let C ⊂ PT (X) be a VMRT-structure on a uniruled projective
manifold. Assume that for a general x ∈ X, the VMRT Cx is smooth and irreducible. Assume
furthermore that

(1) Cx is linearly normal;
(2) Cx is tangentially non-degenerate;
(3) H

0( Cx, T ( Cx)) = 0;
(4) H

1( Cx, O Cx
) = 0; and

(5) dim H
1( Cx, T ( Cx)⊗N

∗
Cx
⊗ O(1)| Cx

) ≤ dim H
0( Cx, O(1)| Cx

).

Then the VMRT-structure is locally flat at a general point.

It is easy to check that the conditions (1)-(5) hold for smooth hypersurfaces in Pn−1 of
degree ≥ 3 if n ≥ 4 as explained in Proposition 2.4 below. Thus Theorem 1.10 implies
Theorem 1.9. But the condition (5) is not true if n = 3 (cf. Remark 2.5), which is why we
need the assumption n ≥ 4 in Theorem 1.9.

Theorem 1.10 is proved by showing that a certain exact sequence of vector bundles on C
over an open subset of X splits (cf. Proposition 4.5). This splitting is obtained from the
deformation theory of minimal rational curves and implies the vanishing of the Kodaira-
Spencer class for Cx’s which leads to the isotriviality.

We expect that Theorem 1.4 and Theorem 1.9 will be useful in the study of uniruled
projective manifolds. As an application, we will prove
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Tʜ��ʀ�� 1.11. – Let X be a Fano manifold of Picard number 1 of dimension ≥ 3 such
that the VMRT Cx ⊂ PTx(X) at a general point x ∈ X associated to a family of minimal
rational curves is a smooth hypersurface. Then X is biregular to the hyperquadric.

Theorem 1.11 is a special case of Miyaoka’s result in [12]. Miyaoka’s result is stronger
because it does not require the assumption (*). However, our proof of Theorem 1.11 via
Theorem 1.9, to be explained in Section 6, is completely different from the proof in [12]. The
method of [12] is based on the study of certain rational curves of higher degree and is quite
technical. Since it depends heavily on the assumption Pic(X) ∼= Z, the approach of [12] looks
hard to yield results like Theorem 1.4.

One may ask whether we can go further to the cases of deg(K ) < dim X. A general
classification result like Theorem 1.4 is hopeless even for deg(K ) = dim X − 1. However,
since Theorem 1.10 does not require Cx is of codimension 1, it may be applicable in some
cases. It looks plausible that there are examples of projective submanifolds satisfying the
conditions (1)-(5) of Theorem 1.10 other than hypersurfaces. In this regard, it is worth
noticing that the conditions (1)-(4) in Theorem 1.10 hold for smooth complete intersections
of small codimension. But the condition (5) does not hold even for a smooth complete
intersection of codimension 2. As an example, when X ⊂ Pn+1 is an n-dimensional cubic
hypersurface, the VMRT Cx ⊂ PTx(X) at a general point x ∈ X is the complete intersection
of a quadric and a cubic. Thus Cx satisfies (1)-(4) if n is sufficiently large, but does not satisfy
(5). In fact, the VMRT-structure is not locally flat, because if it is locally flat, X must be quasi-
homogeneous by Proposition 6.2 below, which is absurd because the automorphism group
of a smooth cubic hypersurface is finite.

To close the introduction, let us remark that there are some previous results, e.g., [3]
and [13], where the knowledge of the projective geometry of Cx at a general point x ∈ X

implies the local flatness of the VMRT-structure. However, in all these previous results,
Cx ⊂ PTx(X) is rigid, i.e., the structure is a priori isotrivial. Our Theorem 1.9 is the first
result where the local flatness holds even though the projective variety Cx can have non-
trivial deformation.

2. Some results on subvarieties of projective space

N����ɪ�ɴ 2.1. – Given a vector space V , its projectivization PV is the variety of
1-dimensional subspaces of V . For a non-singular projective variety Z ⊂ PV , we denote
by NZ the normal bundle T (PV )|Z/T (Z). We have the conormal bundle sequence

0 → N
∗
Z → T

∗(PV )|Z → T
∗(Z) → 0.

Pʀ����ɪ�ɪ�ɴ 2.2. – For a non-singular projective variety Z ⊂ PV , denote by
L := O(1)|Z , the restriction of the hyperplane line bundle. The conormal bundle sequence
induces an exact sequence

H
0(Z, T (Z)⊗ T

∗(PV )|Z ⊗ L) → H
0(Z, T (Z)⊗ T

∗(Z)⊗ L)
χ→

H
1(Z, T (Z)⊗N

∗
Z ⊗ L) → H

1(Z, T (Z)⊗ T
∗(PV )|Z ⊗ L).
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The homomorphism χ is bijective if H
0(Z, T (Z)) = 0 and

dim H
1(Z, T (Z)⊗N

∗
Z ⊗ L) ≤ dim H

0(Z, L).

Furthermore, in this case, H
0(Z,End0(T (Z)) ⊗ L) = 0, where End0(·) denotes the space of

traceless endomorphisms.

Proof. – The exact sequence results from the conormal bundle sequence in Notation 2.1
by tensor product with T (Z)⊗ L.

Denote by ‹V the trivial vector bundle on Z with fiber V . From the Euler sequence

0 → L
∗ → ‹V → T (PV )|Z ⊗ L

∗ → 0,

we have

H
0(Z, T (Z)⊗ T

∗(PV )|Z ⊗ L) ⊂ H
0(Z, T (Z)⊗ ‹V ∗) = V

∗ ⊗H
0(Z, T (Z)) = 0.

Thus the homomorphism χ is injective. From

H
0(Z, T (Z)⊗ T

∗(Z)⊗ L) = H
0(Z,End0(T (Z))⊗ L)⊕H

0(Z, L),

the inequality
dim H

1(Z, T (Z)⊗N
∗
Z ⊗ L) ≤ dim H

0(Z, L)

implies H
0(Z,End0(T (Z))⊗ L) = 0 and the bijectivity of χ.

D��ɪɴɪ�ɪ�ɴ 2.3. – A projective variety Z ⊂ PV is linearly normal if the restriction
homomorphism

H
0(PV, O(1)) −→ H

0(Z, L)

is bijective. For a non-singular projective variety Z ⊂ PV , its variety of tangent lines
is the subvariety in P(∧2

V ) defined as the closure of the union of the points in P(∧2
V )

corresponding to lines of PV tangent to Z. We say that Z is tangentially non-degenerate if its
variety of tangent lines is non-degenerate in P(∧2

V ), i.e., not contained in any hyperplane
in P(∧2

V ).

Pʀ����ɪ�ɪ�ɴ 2.4. – Let Z ⊂ Pn−1 be a smooth hypersurface of degree m ≥ 3 with n ≥ 4.
Then

(1) Z is linearly normal;
(2) Z is tangentially non-degenerate;
(3) H

0(Z, T (Z)) = 0;
(4) H

1(Z, OZ) = 0; and
(5) dim H

1(Z, T (Z)⊗N
∗
Z ⊗ L) = n.

Proof. – The conditions (1)-(4) are well-known for smooth hypersurfaces of degree
m ≥ 3 with n ≥ 4. Let us check (5). Since N

∗
Z
∼= L

−m, we need to check

dim H
1(Z, T (Z)⊗ L

1−m) = n.

From the sequence
0 −→ T (Z) −→ T (Pn−1)|Z −→ L

m −→ 0,

we have

H
0(Z, T (Pn−1)|Z ⊗ L

1−m) → H
0(Z, L) → H

1(Z, T (Z)⊗ L
1−m) → H

1(Z, T (Pn−1)|Z ⊗ L
1−m).
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From T (Pn−1)|Z ⊗ L
1−m ∼= Ωn−2

Pn−1(n−m + 1), it suffices to prove

H
0(Z,Ωn−2

Pn−1(n−m + 1)|Z) = H
1(Z,Ωn−2

Pn−1(n−m + 1)|Z) = 0.

From the sequence on Pn−1,

0 −→ Ωn−2
Pn−1(n− 2m + 1) −→ Ωn−2

Pn−1(n−m + 1) −→ Ωn−2
Pn−1(n−m + 1)|Z −→ 0,

we have

H
0(Pn−1

,Ωn−2
Pn−1(n−m+1)) → H

0(Z,Ωn−2
Pn−1(n−m+1)|Z) → H

1(Pn−1
,Ωn−2

Pn−1(n−2m+1))

and

H
1(Pn−1

,Ωn−2
Pn−1(n−m+1)) → H

1(Z,Ωn−2
Pn−1(n−m+1)|Z) → H

2(Pn−1
,Ωn−2

Pn−1(n−2m+1)).

Thus the desired vanishing follows from the well-known vanishing (e.g., p.8 of [14]) of

H
0(Pn−1

,Ωn−2
Pn−1(n−m + 1)), H

1(Pn−1
,Ωn−2

Pn−1(n− 2m + 1)),

H
1(Pn−1

,Ωn−2
Pn−1(n−m + 1)), H

2(Pn−1
,Ωn−2

Pn−1(n− 2m + 1))

for n ≥ 4 and m ≥ 3.

R���ʀ� 2.5. – When n = 3, i.e., Z is a plane curve Z ⊂ P2,

dim H
1(Z, T (Z)⊗N

∗
Z ⊗ L) = dim H

0(Z, K
2
Z ⊗ L

m−1) =
m(5m− 11)

2
> 3.

Thus the statement (5) does not hold when n = 3.

3. Cone structures with P-splitting connections

N����ɪ�ɴ 3.1. – Given a projective submanifold Z ⊂ PV , the homogenous cone of Z

will be denoted by Ẑ ⊂ V . For a point α ∈ Z, the affine tangent space of Z at α is

T̂α(Z) := Tu(Ẑ) ⊂ V for a non-zero vector u ∈ α̂.

This is independent of the choice of u.

D��ɪɴɪ�ɪ�ɴ 3.2. – A cone structure on a complex manifold M is a submanifold
C ⊂ PT (M) such that the projection � : C → M is a smooth morphism with con-
nected fibers. For each point x ∈ M , the fiber �

−1(x) will be denoted by Cx. Associated to
a cone structure are three natural distributions V ⊂ T ⊂ P on C whose fiber at α ∈ Cx is
defined as follows in terms of the differential d�α : Tα( C) → Tx(M) of � at α:

V α := d�
−1
α (0), T α := d�

−1
α (α̂), Pα := d�

−1
α (T̂α( Cx)).

Of course, V ⊂ T ( C) is the relative tangent bundle of �.

D��ɪɴɪ�ɪ�ɴ 3.3. – Given a cone structure C ⊂ PT (M) and the associated distributions
V ⊂ T ⊂ P, a line subbundle F ⊂ T ( C), with locally free quotient T ( C)/ F , is called a
connection (or a conic connection) if F ⊂ T and F ∩ V = 0, i.e., it splits the exact sequence

0 −→ V −→ T −→ T / V ∼= L
∗ −→ 0
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where L denotes the restriction of the relative hyperplane bundle on PT (M). A connection
F ⊂ T is P-splitting if the sequence

(3.1) 0 −→ V −→ P/ F −→ P/ T −→ 0

splits.

L���� 3.4. – A connection F ⊂ T of a cone structure C is P-splitting if and only if there
exists a vector subbundle W ⊂ P with an isomorphism P/ V ∼= W splitting

(3.2) 0 −→ V −→ P −→ P/ V −→ 0

such that F = W ∩ T .

Proof. – If such a W exists, W / F ⊂ P/ F splits the sequence (3.1). Conversely, the split-
ting of the sequence (3.1) induces a splitting of (3.2) by W ⊂ P satisfying
F = W ∩ T .

Pʀ����ɪ�ɪ�ɴ 3.5. – Given a cone structure C ⊂ PT (M) and a point x ∈ M , set
V = Tx(M). Denote by Z ⊂ PV the projective submanifold Cx ⊂ PTx(M).

(a) When there exists a conic connection F , the extension class of

0 −→ V −→ T ( C)/ F −→ T ( C)/ T −→ 0

restricted to Z lies in H
1(Z, T (Z)⊗ T

∗(PV )|Z ⊗ L).
(b) When a conic connection F is P-splitting, given by P = V ⊕ W in Lemma 3.4, the

extension class of

0 −→ V −→ T ( C)/W −→ T ( C)/P −→ 0

restricted to Z lies in H
1(Z, T (Z)⊗N

∗
Z ⊗ L).

Proof. – At a point α ∈ Z,

Tα( C)/ T α = Tα( C)/d�
−1
α (α̂) = V/α̂ = α̂⊗ Tα(PV ).

Thus the restriction of T ( C)/ T to Z is naturally isomorphic to T (PV )|Z ⊗L
∗, showing (a).

Similarly,
Tα( C)/Pα = Tα( C)/d�

−1
α (T̂α(Z)) = V/T̂α(Z) = α̂⊗NZ,α.

Thus the restriction of T ( C)/P to Z is naturally isomorphic to NZ ⊗ L
∗
, showing (b).

Pʀ����ɪ�ɪ�ɴ 3.6. – Given a cone structure C ⊂ PT (M) and a point x ∈ M , set
V = Tx(M) and denote by Z ⊂ PV the projective submanifold Cx ⊂ PTx(M). Let
κ ∈ H

1(Z, T (Z))⊗ V
∗ be the the extension class of the sequence

(3.3) 0 −→ V −→ T ( C) −→ T ( C)/ V = �
∗
T (M) −→ 0

restricted to Z. This is the Kodaira-Spencer class of � : C → M at x. Denote by ‹V the trivial
vector bundle on Z with a fiber V . Consider two homomorphisms

H
1(Z, T (Z)⊗N

∗
Z ⊗ L)

σ→ H
1(Z, T (Z)⊗ T

∗(PV )|Z ⊗ L)
�→ H

1(Z, T (Z))⊗ V
∗

where σ is the last homomorphism of the exact sequence in Proposition 2.2 and � is induced by
the Euler sequence

0 → T
∗(PV )|Z ⊗ L → ‹V ∗ → L → 0.
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When there exists a P-splitting connection F , let θ ∈ H
1(Z, T (Z) ⊗ T

∗(PV )|Z ⊗ L) be the
extension class in Proposition 3.5 (a) and let ξ ∈ H

1(Z, T (Z) ⊗ N
∗
Z ⊗ L) be the extension

class in Proposition 3.5 (b). Then

κ = �(θ) and θ = σ(ξ).

Proof. – If there exists a conic connection F , i.e., T = V ⊕ F , the extension class of (3.3)
comes from the extension class of Proposition 3.5 (a). Thus κ = �(θ). If F is P-splitting, then
the extension class of Proposition 3.5 (a) comes from the extension class of Proposition 3.5
(b). Thus θ = σ(ξ).

Pʀ����ɪ�ɪ�ɴ 3.7. – Let C ⊂ PT (M) be a cone structure admitting a P-splitting conic
connection F ⊂ T . If H

0( Cx, T ( Cx)) = 0 and

dim H
1( Cx, T ( Cx)⊗N

∗
Cx
⊗ L) ≤ dim H

0( Cx, L),

then the Kodaira-Spencer map κx : Tx(M) → H
1( Cx, T ( Cx)) associated to the family

� : C → M vanishes, i.e., the sequence (3.3) in Proposition 3.6 splits in a neighborhood of Cx.
Furthermore, this splitting �

∗
T (M) ⊂ T ( C) can be chosen such that its intersection with the

subbundle T ⊂ T ( C) coincides with the splitting of

0 −→ V −→ T −→ T / V ∼= L
∗ −→ 0

in Definition 3.3 given by the conic connection F .

Proof. – Applying Proposition 2.2 to Z = Cx, the homomorphism σ vanishes. Thus
Proposition 3.6 implies the result.

Now we recall some definitions and results from [5].

D��ɪɴɪ�ɪ�ɴ 3.8. – Let M be a complex manifold of dimension n. Fix a vector space
V of dimension n. A V -valued 1-form ω on M is called a coframe if for each x ∈ M , the
homomorphism ωx : Tx(M) → V is an isomorphism.

D��ɪɴɪ�ɪ�ɴ 3.9. – Let V be an n-dimensional vector space and let Z ⊂ PV be a fixed
non-singular projective subvariety. A cone structure C ⊂ PT (M) on an n-dimensional
manifold M is said to be Z-isotrivial if for each x ∈ M , the inclusion ( Cx ⊂ PTx(M)) is
isomorphic to (Z ⊂ PV ) up to projective transformations.

D��ɪɴɪ�ɪ�ɴ 3.10. – Given Z ⊂ PV and a Z-isotrivial cone structure on M , a coframe
ω on M is said to be adapted to the cone structure if for each x ∈ M , the isomorphism
ωx : Tx(M) → V sends Cx ⊂ PTx(M) to Z ⊂ PV . Given any Z-isotrivial cone structure on
a manifold M , an adapted coframe exists if we shrink M .

Pʀ����ɪ�ɪ�ɴ 3.11. – Given a coframe ω adapted to a Z-isotrivial cone structure
C ⊂ PT (M), let τ : PT (M) → PV and γ := τ | C : C → Z be the submersive holo-
morphic maps induced by ω. Then Γ := Ker(dγ)∩ T is a connection on C , called the geodesic
connection of the adapted coframe ω.
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Proof. – This is proved in [5] using a slightly different terminology. A coframe induces a
natural vector field on T (M) called its geodesic flow (Definition 2.9 of [5]). If the coframe is
adapted to a cone structure C ⊂ PT (M) the geodesic flow is tangent to the homogeneous
cone Ĉ ⊂ T (M), inducing a holomorphic foliation Γ ⊂ T ( C) of rank 1 on C . This is exactly
Ker(dγ) ∩ T . That Γ is a connection is Proposition 5.4 of [5].

Pʀ����ɪ�ɪ�ɴ 3.12. – Given a cone structure C ⊂ PT (M) with a P-splitting connection,
suppose that for each x ∈ M , H

0( Cx, T ( Cx)) = 0 and

dim H
1( Cx, T ( Cx)⊗N

∗
Cx
⊗ L) ≤ dim H

0( Cx, L)

so that the Kodaira-Spencer map vanishes at every point by Proposition 3.7. Assume furthermore
that the cone structure is Z-isotrivial for some Z ⊂ PV . Then the geodesic connection of an
adapted coframe in Proposition 3.11 agrees with the given P-splitting connection.

Proof. – Since H
0( Cx, T ( Cx)) = 0, there is a unique splitting of (3.3). From Proposi-

tion 3.7, the splitting of (3.3) respects the given P-splitting conic connection F . The tangent
spaces to the fibers of the map γ in Proposition 3.11 induced by any adapted coframe give
a splitting of (3.3). Thus the geodesic connection Γ of Proposition 3.11 must agree with the
given P-splitting connection F .

D��ɪɴɪ�ɪ�ɴ 3.13. – A conic connection F ⊂ T ( C) is a characteristic connection if for
any local section v of P and any local section w of F , both regarded as local vector fields on
the manifold C , the Lie bracket [v, w] is a local section of P again.

D��ɪɴɪ�ɪ�ɴ 3.14. – Given a non-singular projective variety Z ⊂ PV , the flat Z-isotrivial
cone structure is the cone structure Z ⊂ PT (V ) on the manifold V , given by V ×Z under the
natural trivialization PT (V ) ∼= V × PV. A cone structure C ⊂ PT (M) is locally flat at x if
there exist a neighborhood U of x and an unramified injective holomorphic map ϕ : U → V

such that the differential dϕ : PT (U) → PT (V ) sends the cone structure C ∩ PT (U) onto
Z ∩ PT (ϕ(U)).

The following is Theorem 5.8 in [5].

Tʜ��ʀ�� 3.15. – Let Z ⊂ PV be a non-singular variety such that
(a) Z is linearly normal;
(b) Z is tangentially non-degenerate; and
(c) H

0(Z,End0(T (Z))⊗ O(1)|Z) = 0.
Let C ⊂ PT (M) be a Z-isotrivial cone structure with an adapted coframe ω. If the geodesic
connection Γ in Proposition 3.11 induced by ω on C is a characteristic connection, then the cone
structure is locally flat.

As a conclusion of the discussion in this section, we obtain

Tʜ��ʀ�� 3.16. – Let C ⊂ PT (M) be a cone structure with a P-splitting characteristic
connection F ⊂ T ( C). Assume that for each x ∈ M , the submanifold Cx ⊂ PTx(M) satisfies

(1) Cx is linearly normal;
(2) Cx is tangentially non-degenerate;
(3) H

0( Cx, T ( Cx)) = 0;
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(4) H
1( Cx, O Cx

) = 0; and
(5) dim H

1( Cx, T ( Cx)⊗N
∗
Cx
⊗ L) ≤ dim H

0( Cx, L).

Then the cone structure is locally flat.

Proof. – By (3) and (5), Proposition 3.7 implies that the fibers of the family � : C → M

of complex manifolds are all biholomorphic to each other. By (1) and (4), the family of
projective varieties { Cx ⊂ PTx(M), x ∈ M} are all isomorphic up to projective equivalence.
It follows that the cone structure is Z-isotrivial for some fixed projective variety Z ⊂ PV .
This Z ⊂ PV satisfies the conditions (a) and (b) of Theorem 3.15 from (1) and (2). From
(3) and (5), Proposition 2.2 implies that Z satisfies also the condition (c) of Theorem 3.15. It
follows that C is locally flat.

4. P-splitting property of the characteristic connection on the VMRT-structure

Let X be a uniruled projective manifold and K be a family of minimal rational curves
as defined in Section 1. Let ρ : U → K be the universal P1-bundle and µ : U → X be the
evaluation morphism such that the µ-images of the P1-fibers of ρ are minimal rational curves
of X belonging to K . For a general point x ∈ X, the normalization of the space K x ⊂ K
of members passing through x is a non-singular projective variety (cf. [11] Section II.3 or
[9]). To simplify the notation, we will use K x from now on to denote its normalization. We
denote by τx : K x → Cx the tangent morphism at x, which sends a member of K x to its
tangent direction at x. This is a well-defined morphism by Theorem 3.4 of [9]. The following
is a direct consequence of Proposition 1.4 of [4] and Theorem 1 of [8].

Pʀ����ɪ�ɪ�ɴ 4.1. – In the above setting, suppose that the assumption (*) in Section 1
holds, i.e., the VMRT Cx is smooth for a general point x ∈ X. Then

1. the tangent morphism τx : K x → Cx is biregular, and
2. each member of K x is a standard rational curve, i.e., for each member [C] ∈ K x, under

the morphism ν := µ|ρ−1([C]) : P1 → C ⊂ X,

ν
∗
T (X) ∼= O(2)⊕ O(1)p ⊕ On−1−p

where n = dim X and p = dim Cx = dim K x.

Let us make the assumption (*) and assume furthermore that Cx is irreducible, for sim-
plicity. Then there exists a Zariski open subset X

o ⊂ X such that C ∩ PT (Xo) is a cone
structure on X

o.

E����ʟ� 4.2. – In Example 1.1, set

X
o := β

−1(Pn \ Pn−1) ⊂ XZ .

The VMRT-structure C ⊂ PT (XZ) of KZ defines a cone structure on X
o. In fact, under

the natural biregular morphism X
o ∼= Cn, the cone structure is the flat Z-isotrivial cone

structure in Definition 3.14.

The cone structure C on X
o is equipped with a natural characteristic connection:
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Pʀ����ɪ�ɪ�ɴ 4.3. – Let X be a uniruled projective manifold with a family of minimal
rational curves such that Cx at a general point x ∈ X is smooth and irreducible. Choose a
Zariski open subset X

o ⊂ X as explained above. After shrinking X
o if necessary, we have a

biregular morphism
τ : µ

−1(Xo) → C ∩ PT (Xo)

which is defined by collecting the biregular morphisms τx in Proposition 4.1. Then the fibers
of the universal family morphism ρ are sent by τ to a connection F on the cone structure
C ∩ PT (Xo). This F is a characteristic connection of the cone structure.

Proof. – By the definition of τ , if F ⊂ µ
−1(Xo) is a germ of a fiber of ρ, then τ(F ) is

exactly PT (µ(F )). This means that the fibers of ρ are sent by τ to a connection F of the
cone structure C . That F is a characteristic connection is proved in Proposition 8 of [8].

For the proof of the next proposition, we recall the following notion.

D��ɪɴɪ�ɪ�ɴ 4.4. – For an effective 0-cycle H = p1 + · · · + pm on the affine line A1,
its center of mass is the point H̄ ∈ A1 defined by the average (p1 + · · · + pm)/m after an
identification A1 ∼= C by fixing a base point 0 ∈ A1. The definition of H̄ is independent of
the choice of the base point.

Pʀ����ɪ�ɪ�ɴ 4.5. – In the setting of Proposition 4.3, there exists a neighborhood M ⊂ X

of a general point x ∈ X such that for the cone structure C ∩ PT (M), the characteristic
connection in Proposition 4.3 is P-splitting.

Proof. – Let F ⊂ T be the connection from Proposition 4.3. For a general point x ∈ X
o,

we have an exact sequence of vector bundles on Cx

(4.1) 0 −→ T ( Cx) −→ (P/ F )| Cx
−→ (P/ T )| Cx

−→ 0

coming from (3.1). To prove the proposition, it suffices to show the splitting of (4.1).
Let ρx : Ux → K x be the universal P1-bundle with the evaluation morphism

µx : Ux → X with a distinguished section Ex = µ
−1
x (x) of ρx. We claim that there is

a section E
�
x ⊂ Ux of ρx with E

�
x ∩ Ex = ∅.

To prove the claim, fix an ample hypersurface H ⊂ X with x �∈ H . Let Hx ⊂ Ux be the
inverse image of H under µx. Then Hx is a hypersurface in Ux flat over K x and disjoint from
Ex. The bundle ρ

o
x : Ux \ Ex → K x is an affine bundle of rank 1. For each point α ∈ Ex,

let α
� ∈ Ux \ Ex be the center of mass, in the sense of Definition 4.4, of the 0-cycle defined

by the scheme-theoretic intersection (ρo
x)−1(ρx(α)) ∩Hx. Then the collection {α�, α ∈ Ex}

defines a hypersurface E
�
x ⊂ Ux \Ex which is biregular to K x

∼= Ex by the restriction of the
morphism ρx.

Now identify Ex with Cx via the biregular morphism τx in Proposition 4.1. For a point
α ∈ Cx = Ex, define

µα := µx|ρ−1
x (ρx(α)) : ρ

−1
x (ρx(α)) → X.

Then µα is an immersion of P1 such that

µ
∗
αT (X) ∼= O(2)⊕ O(1)p ⊕ On−1−p

where p = dim Cx and n = dim X from Proposition 4.1. Let T
α ⊂ µ

∗
αT (X) be the

O(2)-factor corresponding to the image of T (ρ−1
x (ρx(α))). Let T

+ ⊂ µ
∗
αT (X) be the
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subbundle corresponding to the factor O(2) ⊕ O(1)p. Denote by mα the maximal ideal of
the point α on ρ

−1
x (ρx(α)). In terms of sections of the bundles T

α ⊂ T
+ on the curve

ρ
−1
x (ρx(α)), there are canonical identifications (cf. Proof of Proposition 8 in [8])

Tα( C) = H
0(µ∗αT (X))/H

0(Tα ⊗mα)

V α = H
0(T+ ⊗mα)/H

0(Tα ⊗mα)

F α = H
0(Tα)/H

0(Tα ⊗mα)

Pα = H
0(T+)/H

0(Tα ⊗mα).

It follows that

(P/ F )α = H
0(T+)/H

0(Tα)

(P/ T )α = H
0(T+)/ < H

0(Tα), H0(T+ ⊗mα) > .

For α
� ∈ E

�
x defined in the claim above, denote by mα� the maximal ideal at α

� and define
Sα ⊂ (P/ F )α by

Sα := H
0(T+ ⊗mα�)/(H0(T+ ⊗mα�) ∩H

0(Tα)).

Note
H

0(T+ ⊗mα ⊗mα�) = H
0(Tα ⊗mα ⊗mα�).

Thus

Sα ∩ V α = H
0(T+ ⊗mα ⊗mα�)/(H0(Tα ⊗mα) ∩H

0(T+ ⊗mα ⊗mα�)) = 0.

Furthermore H
0(T+)/H

0(Tα) is spanned by the images of H
0(T+ ⊗ mα) and

H
0(T+ ⊗mα�), because

H
0(P1

, O(1)) = H
0(P1

, O(1)⊗m0) + H
0(P1

, O(1)⊗m∞)

for any two distinct points 0,∞ ∈ P1. This means that

(P/ F )α = V α ⊕ Sα.

It follows that
{ Sα ⊂ (P/ F )α, α ∈ Ex}

defines a vector subbundle of (P/ F )| Cx
splitting the sequence (4.1).

Proof of Theorem 1.9 and Theorem 1.10. – Theorem 1.10 is a direct consequence of
Theorem 3.16 and Proposition 4.5. Theorem 1.9 is a corollary of Theorem 1.10 via Propo-
sition 2.4.

5. Proof of Theorem 1.4

In this section, we will derive Theorem 1.4 from Theorem 1.9. The overall strategy is the
following. By Theorem 1.9, we know that the VMRT-structure of X is Z-isotrivial for some
hypersurface Z ⊂ Pn−1 and locally flat. We will use this to construct a dominant rational
map Ψ from XZ to X, which sends general members of KZ to those of K . This construction
is done by modifying the arguments in [7]. After we obtain Ψ, we prove that Ψ is equivariant
with respect to an action of a finite group G on XZ and factors through a birational map
Φ : XZ/G ��� X.

4 e SÉRIE – TOME 46 – 2013 – No 4



VMRT OF CODIMENSION 1 643

Let us begin with the construction of Ψ : XZ ��� X. We will follow the arguments in [7]
step-by-step and indicate what modifications should be made.

Pʀ����ɪ�ɪ�ɴ 5.1. – Let X
1 (resp. X

2) be a uniruled projective manifold with a family
K 1 (resp. K 2) of minimal rational curves. Assume that the VMRT C1

x1 ⊂ PTx1(X1) (resp.
C2

x2 ⊂ PTx2(X2)) at a general point x
1 ∈ X

1 (resp. x
2 ∈ X

2) is smooth, irreducible
and non-degenerate. Suppose there exist an analytic neighborhood x

1 ∈ U
1 ⊂ X

1 (resp.
x

2 ∈ U
2 ⊂ X

2) and a biholomorphic map ψ : U
1 → U

2, which makes the VMRT-structure
at x

1 and the VMRT-structure at x
2 equivalent in the sense of Definition 1.6. Then

(1) for a general curve C
1 ⊂ X

1 belonging to K 1
x1 , there exist a member C

2 ⊂ X
2

of K 2
x2 , an analytic neighborhood C

1 ⊂ W
1 (resp. C

2 ⊂ W
2) and a meromorphic map

ϕ : W
1 ��� W

2 such that ϕ|U1∩W1 = ψ|U1∩W1; and
(2) there exists a generically finite morphism p : X̃

1 → X
1 from a projective variety X̃

1

which is etale over a Zariski open subset X
1
o ⊂ X

1 and a dominant meromorphic map
Ψ : p

−1(X1
o ) ��� X

2 extending ϕ.

Proof. – (1) is contained in Proposition 2.1 of [7]. It is stated there under the additional
assumption that Pic(X1) ∼= Pic(X2) ∼= Z, but its proof does not use that assump-
tion. (2) is contained in Proposition 3.4 of [7], which is also stated with the assumption
Pic(X1) ∼= Pic(X2) ∼= Z. This assumption is needed only for the proof of Lemma 3.1 in [7],
which claims that if x is a general point of X

1 then for any irreducible subvariety A ⊂ X

containing x and any general point y ∈ A, there exists a member C of K 1 with y ∈ C and
C �⊂ A. But this claim is obvious in our case, from our assumption that the VMRT C1

y at a
general point y ∈ A is non-degenerate.

For the next step, we need the following property of XZ .

L���� 5.2. – Fix a hyperplane H ⊂ Pn
, n ≥ 3 and a smooth hypersurface Z ⊂ H of

degree m ≥ 2. Let D ⊂ Pn be an irreducible hypersurface different from H . Let XZ → Pn be
the blow-up of Pn along Z and let D̄ ⊂ XZ be the proper image of D. Then for a general line
� ⊂ Pn intersecting Z, its proper image �̄ ⊂ XZ intersects D̄.

Proof. – This is obvious if Z �⊂ D. Let us assume that Z ⊂ D.
Fix a general plane P ∼= P2 ⊂ Pn such that Z

� := Z ∩P consists of m distinct points, say
{z1, . . . , zm}. Z

� is contained in the intersection of the line H
� := H ∩P and the irreducible

plane curve D
� := D ∩ P. The degree d of D

� must be strictly bigger than the multiplicity
multz1(D

�) of D
� at z1. If we choose a general line � ⊂ P through the point z1, the local

intersection number of � with D
� at z1 is precisely multz1(D

�) < d. Thus � intersects D
� at

some point other than z1. Since � is disjoint from {z2, . . . , zm}, we see that � intersects D at
a point outside Z. This implies that �̄ intersects D̄.

The following lemma is to replace Lemma 4.2 in [7] in our setting.

L���� 5.3. – Let Z ⊂ Pn−1 be a smooth hypersurface of degree ≥ 2 and let XZ be as in
Example 1.1. Let p : Y → XZ be a generically finite morphism from a normal projective variety
Y to XZ . Assume that for a general member C ⊂ XZ of KZ , if a component C

� of p
−1(C) is

dominant over C, then C
� is birational to C by p. Then p is a birational map from Y to XZ .
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Proof. – By Lemma 2.1 of [4], p−1(C) is contained in the smooth locus of Y for a general
member C of KZ . The assumption implies that for a component C

� of p
−1(C) dominant

over C, local deformations of C
� correspond to local deformations of C. Hence the canonical

degrees of C and C
� are equal, i.e., KY ·C � = KXZ ·C (cf. Proof of Lemma 4.2 in [7]). Suppose

that p is not birational, i.e., has degree > 1. We will derive a contradiction.

Since XZ is simply-connected, there exists a ramification divisor R ⊂ Y such that
p(R) ⊂ XZ is a non-zero divisor. We claim that C ∩ p(R) = ∅. If not, some component
C
� of p

−1(C) dominant over C intersects R. This contradicts KY · C � = KXZ · C.

By the claim, the divisor p(R) in XZ is disjoint from a general member C of KZ .
Thus under the projection β : XZ → Pn, the image β(p(R)) must be contained in the
hyperplane Pn−1 ⊂ Pn by Lemma 5.2. This holds for any ramification divisor R with
dim β(p(R)) = n− 1. It follows that β ◦ p : Y → XZ → Pn is unramified of degree > 1 over
Cn = Pn \ Pn−1, a contradiction.

The next proposition corresponds to Proposition 4.3 of [7]. In fact, the two claims (i) and
(ii) in its proof are exactly the ‘two problems’ mentioned at the end of the first paragraph in
Section 4 of [7]. But its proof requires an argument different from the one in [7], because a
hypersurface in XZ can be disjoint from minimal rational curves.

Pʀ����ɪ�ɪ�ɴ 5.4. – In the setting of Theorem 1.4, there exists a dominant rational map
Ψ : XZ ��� X whose differential sends the VMRT-structure of XZ to the VMRT-structure
of X.

Proof. – Applying Proposition 5.1 (2) to X
1 = XZ and X

2 = X, we have a Zariski open
subset U ⊂ XZ , a generically finite morphism p : X̃Z → X étale over U and a dominant
meromorphic map Ψ : p

−1(U) ��� X which induces an equivalence of VMRT-structures at
a general point of XZ and a general point of X. It suffices to prove that (i) Ψ is univalent,
i.e., it descends to a meromorphic map U ��� X, and (ii) Ψ has no essential singularity along
XZ \ U , i.e., it extends to a rational map XZ ��� X.

(i) can be proved by the same argument as the proof of Proposition 4.1 in [7], by using
our Lemma 5.3 in place of Lemma 4.2 of [7]. In particular, we can find a Zariski open subset
U ⊂ XZ and regard Ψ as a meromorphic map Ψ : U ��� X.

To prove (ii), we recall Hartog’s extension theorem that a meromorphic map defined
outside an analytic subset of codimension 2 in a projective manifold can be extended to a
rational map. Suppose there exists a hypersurface D ⊂ XZ \ U . It suffices to show that Ψ
can be extended in a neighborhood of a general point of D.

If a general member of KZ intersects D, then Ψ can be extended in a neighborhood of a
general point of D by Proposition 5.1 (1). Thus we may assume that D is disjoint from general
members of KZ . By Lemma 5.2, this implies that β(D) is the hyperplane Pn−1 ⊂ Pn.

Fix a line � ⊂ Pn such that � �⊂ Pn−1 and � ∩ Z = ∅. Let Y := Bl�(Pn) → Pn be the
blow-up along �. Then we have a P2-bundle fibration

δ : Y → B ∼= Pn−2
.
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Let �̄ ⊂ XZ be the proper transform of � under β : XZ → Pn. Let Y
� → XZ be the blow-

up of �̄. Then we have the induced morphism Y
� → Y giving rise to a surjective morphism

γ : Y
� → B whose general fibers are P2 blown up at m distinct points, m = deg(Z).

B
γ← Y

� → XZ

� ↓ ↓ β

B
δ← Y → Pn

.

Let D
� ⊂ Y

� be the proper transform of D. It suffices to show that the meromorphic map
Ψ, defined on the inverse image of U in Y

� can be extended in a neighborhood of a general
point of D

�. Choose a small open subset W ⊂ B, such that γ
−1(W ) is the P2-bundle δ

−1(W )
blown up at m distinct sections. Then after blowing down m − 1 of these sections, we get a
complex manifold Y with a fibration ρ : Y → W whose fiber ρ

−1(w) over w ∈ W is P2

blown up at one point, to be denoted by µw : ρ
−1(w) → P2. The image of D

� in Y is a
hypersurface D ⊂ Y such that for each w ∈ W , ρ

−1(w)∩ D is the proper transform of a line
in P2 passing through the blow-up center of µw : ρ

−1(w) → P2. Thus we can contract D in Y
to get a P2-bundle Ȳ → W . Consider the restriction of the meromorphic map Ψ on Y \ D. It
descends to a meromorphic map defined on Ȳ outside a set of codimension 2, i.e., outside the
contracted image of D. Thus it can be extended to a meromorphic map on Ȳ. This implies
that Ψ can be extended to a meromorphic map on Y, and consequently on γ

−1(W ), which
includes a neighborhood of a general point on D

�.

Now we need to get the finite group G acting on XZ . It is convenient to introduce the
following notion.

D��ɪɴɪ�ɪ�ɴ 5.5. – Given a cone structure C ⊂ PT (M) on a complex manifold, a
holomorphic vector field v on a neighborhood of a point x ∈ M preserves the cone structure
if the natural lift of v to a holomorphic vector field on PT (M), defined by integrating v to
local biholomorphisms, is tangent to the submanifold C ⊂ PT (M).

The C∗-action on Cn by scalar multiplication is generated by a vector field E on the
complex manifold Cn, called the Euler vector field. In terms of a linear coordinate system
(z1, . . . , zn) on Cn,

E = z1
∂

∂z1
+ · · · + zn

∂

∂zn
.

The Euler vector field preserves the flat cone structure Z ⊂ PT (Cn) of Definition 3.14.

The following is standard, e.g., Section 2.1 of [15].

L���� 5.6. – Let Z ⊂ PV be a non-degenerate non-singular projective subvariety with
H

0(Z, T (Z)) = 0. For the flat Z-isotrivial cone structure Z ⊂ PT (V ) on V , the Lie algebra g
of germs of holomorphic vector fields at 0 ∈ V preserving the cone structure has the structure
of a graded Lie algebra g = g−1 +g0 with g−1 = V and g0 = C ·E. Here g0 is the subalgebra
of vector fields vanishing at 0.
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L���� 5.7. – Let Z ⊂ PV be a non-degenerate non-singular projective subvariety with
H

0(Z, T (Z)) = 0. In Example 1.1, the automorphism group Aut(XZ) contains the vector
group Cn acting with the open orbit Cn ∼= β

−1(Pn \ Pn−1) ⊂ XZ . Given two connected
open subsets U1, U2 ⊂ Cn and a biholomorphic map ϕ : U1 → U2 preserving the locally
flat VMRT-structure of XZ , there exists ϕ̃ ∈ Aut(XZ) extending ϕ, i.e., ϕ = ϕ̃|U1 .

Proof. – The vector group Cn acts on Pn \ Pn−1 ∼= Cn by translations. It extends to a
Cn-action on Pn, fixing the hyperplane Pn−1. This Cn-action lifts to XZ . Fixing a base point
0 ∈ β

−1(Pn \ Pn−1), we get an open orbit Cn · 0 ∼= β
−1(Pn \ Pn−1).

By composing ϕ with an action of the vector group in Aut(XZ), we may assume that
0 ∈ U1 and ϕ(0) = 0. Thus ϕ defines an automorphism of the Lie algebra g in Lemma 5.6,
inducing a linear transformation ϕ

� of g−1 = V preserving Z ⊂ PV . Then ϕ
� determines an

element ϕ̃ of Aut(XZ), which acts on β
−1(Pn \ Pn−1) as a linear transformation ϕ

� on Cn.
Then ϕ ◦ ϕ̃

−1 is a germ of biholomorphic map at 0 ∈ Cn, fixing elements of g. Since the
group of affine transformations with Lie algebra g acts transitively on Cn, this implies that
ϕ ◦ ϕ̃

−1 is the germ of the identity map. Thus ϕ = ϕ̃|U1 .

The next proposition is inspired by Propositions 13 in [6].

Pʀ����ɪ�ɪ�ɴ 5.8. – In the setting of Proposition 5.4, assume that Ψ is not birational. Fix
a general point z ∈ X. Pick x �= y ∈ XZ with Ψ(x) = Ψ(y) = z. The biholomorphic
map η sending a neighborhood Ux of x to a neighborhood Uy of y induced by Ψ extends to an
automorphism η̃ ∈ Aut(XZ). Let G ⊂ aut(XZ) be the subgroup generated by η̃ for all possible
choices of x and y. Then G is a finite group in Aut(XZ) preserving Cn, acting transitively
on Ψ−1(z).

Proof. – We may assume that Ux, Uy ⊂ β
−1(Pn \ Pn−1). Note that η : Ux → Uy

preserves the flat cone structure given by the VMRT-structure on XZ , because Ψ sends the
VMRT-structure of XZ to that of X. This implies that η extends to η̃ ∈ Aut(XZ) by
Lemma 5.7.

Pick open subsets W ⊂ XZ and z ∈ U ⊂ X such that ΨW : W → U is an
unramified holomorphic map. Then η̃|W is a covering transformation over U for any choice
of x �= y in the fiber Ψ−1(z). Thus the covering Ψ|W is Galois and G is the finite Galois
group of Ψ|W .

Now we can finish the proof of Theorem 1.4. Recall that Ψ in Propositions 5.4 and
5.8 has been constructed by applying Proposition 5.1 to the setting of Theorem 1.4. From
Proposition 5.1 (1), the map Ψ sends members of KZ to members of K . By Proposition 5.8,
Ψ factors through the quotient XZ/G, defining a birational map Φ : XZ/G ��� X.

6. Proof of Theorem 1.11

The following theorem is a direct consequence of Theorem 1.7.
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Tʜ��ʀ�� 6.1. – Let X be a Fano manifold of Picard number 1 different from projective
space. Assume that there exists a family of minimal rational curves such that the VMRT Cx at
a general point x ∈ X is smooth and irreducible. Let M ⊂ X be a neighborhood of a general
point such that C ∩ PT (M) is a cone structure on M . If v is a holomorphic vector field on M

preserving the cone structure in the sense of Definition 5.5, then v extends to a global vector
field ṽ ∈ H

0(X,T (X)), i.e., v = ṽ|M .

Theorem 6.1 has the following consequence when the VMRT-structure is locally flat.

Pʀ����ɪ�ɪ�ɴ 6.2. – Let X be a Fano manifold of Picard number 1 different from projective
space. Assume that there exists a family K of minimal rational curves such that the VMRT Cx

at a general point x ∈ X is smooth and irreducible. If C is locally flat at a general point x ∈ X,
then the following hold.

(i) X is quasi-homogeneous, i.e., the identity component Auto(X) of the automorphism
group of X has a dense open orbit X

o ⊂ X.
(ii) For each point x ∈ X

o, there exists a C×-action on X with an isolated fixed point at x

such that each member of K x is the closure of an orbit of the C×-action.
(iii) If H

0( Cx, T ( Cx)) = 0, then X
o is affine.

Proof. – In Definition 5.5, if the cone structure is locally flat, holomorphic vector fields
in a neighborhood of x preserving the cone structure span the tangent space at x. By Theo-
rem 6.1, these vector fields extend to vector fields on X. It follows that Auto(X) acts with a
dense open orbit X

o in X, proving (i).

By the local flatness, C is Z-isotrivial for some projective manifold Z ⊂ PV , where V is a
vector space with dim V = dimX. For each point x ∈ X

o, the Euler vector field E on V from
Definition 5.5 induces a local vector field Ex in a neighborhood of x ∈ X

o with an isolated
zero at x which preserves the locally flat cone structure C . This vector field can be extended
to a global holomorphic vector field Ẽx on X with an isolated zero at x, by Theorem 6.1. By
integrating Ẽx, we get an analytic 1-parameter subgroup G

� ⊂ Aut(X). This analytic group
G
� acts on X with an isolated fixed point at x and the induced action on Tx(X) is by the

scalar multiplication. Let G ⊂ Aut(X) be the algebraic closure of this analytic 1-parameter
subgroup G

�. Then G is a commutative algebraic group with an isolated fixed point at x with
an induced representation G → GL(Tx(X)) whose image is the diagonal multiplicative
group. It follows that G contains a multiplicative subgroup Gm

∼= C× acting as the scalar
multiplication on Tx(X). This is the desired C×-action on X. To show that each member
of K x is the closure of an orbit of Gm, it suffices to show that Gm sends each member of K x

to itself. But Gm acts trivially on PTx(X). Thus Gm-action deforms a member C of K x with
the point x ∈ C fixed and also the tangent direction PTx(C) fixed. This is a contradiction
to Proposition 4.1, unless the deformation is trivial, i.e., Gm sends the curve to itself. This
proves (ii).

For (iii), recall from Lemma 5.6 that if H
0( Cx, T ( Cx)) = 0, the Lie algebra of holomor-

phic vector fields preserving the flat cone structure Z on V is just V >� (C · E) where E is
the Euler vector field. By Theorem 6.1 again, the Lie algebra of holomorphic vector fields
on X is isomorphic to V >� (C · Ẽx). It follows that Auto(X) contains a connected normal
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subgroup A whose Lie algebra is V such that Auto(X) ∼= A >� C×. Since A is the normal
subgroup, the A-orbit A · x is preserved by the C×-action. It follows that

X
o = Auto(X) · x = A · x.

Since A is a commutative affine algebraic group with dim A = dimX and A · x open in X,
the isotropy subgroup Ax of A at x is finite and X

o ∼= A/Ax is affine.

Proof of Theorem 1.11. – When dim X = 3, this is well-known from the classification of
Fano threefolds. Thus we may assume that dim X ≥ 4. Applying Proposition 6.2, we see that
X\X

o is a divisor H . Let H1 be an irreducible component of H . All members of K x intersect
H1 from Pic(X) ∼= Z. This hypersurface H1 is invariant under Auto(X), and in particular,
under the C×-action at x given in Proposition 6.2 (ii). Thus the set-theoretic intersection
H1 ∩ C is one point for each member C of K x because C×-action on P1 has exactly two
fixed points. On the other hand, a general member of K intersects H1 transversally by the
deformation theory of minimal rational curves (for example, from the splitting type of T (X)
in Proposition 4.1). Thus we get the intersection number H1 · C = 1. Since deg(K ) =
C · (−KX) = dimX and Pic(X) ∼= Z, we see that−KX = (dim X) ·H1 in Pic(X). Thus X

is biregular to the hyperquadric by Kobayashi-Ochiai criterion [10].
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