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SYMBOLIC EXTENSIONS IN INTERMEDIATE
SMOOTHNESS ON SURFACES

 D BURGUET

A. – We prove that Cr maps with r > 1 on a compact surface have symbolic extensions,
i.e., topological extensions which are subshifts over a finite alphabet. More precisely we give a sharp
upper bound on the so-called symbolic extension entropy, which is the infimum of the topological
entropies of all the symbolic extensions. This answers positively a conjecture of S. Newhouse and
T. Downarowicz in dimension two and improves a previous result of the author [9].

R. – Nous montrons que toute dynamique de classe Cr avec r > 1 sur une surface compacte
admet une extension symbolique, i.e. une extension topologique qui est un sous-décalage à alphabet
fini. Nous donnons plus précisément une borne (optimale) sur l’infimum de l’entropie topologique
de toutes les extensions symboliques. Ceci répond positivement à une conjecture de S. Newhouse and
T. Downarowicz en dimension deux et améliore un résultat précédent de l’auteur [9].

1. Introduction

By a dynamical system (X,T ) we mean a continuous map T on a compact metrizable
space X. One well studied class of dynamical systems are the symbolic ones, i.e., closed
subsets Y of AZ, with a finite alphabet A, endowed with the shift S. Such a pair (Y, S)

is also called a subshift. Given a dynamical system (X,T ) one wonders if there exists a
symbolic extension (Y, S) of (X,T ), i.e., a subshift (Y, S) along a continuous surjective
map π : Y → X such that π ◦ S = T ◦ π. We first observe that dynamical systems with
symbolic extensions have necessarily finite topological entropy. When a dynamical system
has symbolic extensions we are interested in minimizing their entropy. The topological sym-
bolic extension entropy hsex(T ) = inf{htop(Y, S): (Y, S) is a symbolic extension of (X,T )}
estimates how the dynamical system (X,T ) differs from a symbolic extension from the
point of view of entropy. The problem of the existence of symbolic extensions leads to a
deep theory of entropy which was developed mainly by M. Boyle and T. Downarowicz, who
related the existence of symbolic extensions and their entropy with the convergence of the
entropy of (X,T ) computed at finer and finer scales [2].
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338 D. BURGUET

By using a result of J. Buzzi [12] involving Yomdin’s theory, M. Boyle, D. Fiebig and
U. Fiebig [3] proved that C∞ maps on a compact manifold admit principal symbolic exten-
sions, i.e., symbolic extensions which preserve the entropy of invariant measures [3]. On
the other hand C1 maps without symbolic extensions have been built in several works [20],
[1], [7], [16], [13], [14]. In the present paper we consider dynamical systems of intermedi-
ate smoothness, i.e., C r maps T on a compact manifold with 1 < r < +∞ (we mean
that T admits a derivative or order dr − 1e which is r − dr − 1e-Hölder). T. Downarow-
icz and A. Maass have recently proved that C r maps of the interval f : [0, 1] → [0, 1]

with 1 < r < +∞ have symbolic extensions [19]. More precisely they showed that
hsex(f) ≤ htop(f) + log ‖f ′‖∞

r−1 . The author built explicit examples [7] proving that this
upper bound is sharp. Similar C r examples with large symbolic extension entropy have
been previously built by T. Downarowicz and S. Newhouse for diffeomorphisms in higher
dimension [20]. The results of T. Downarowicz and A. Maass have been extended by the
author in any dimension to nonuniformly entropy expanding maps (i.e., C1 maps whose
ergodic measures with positive entropy have nonnegative Lyapunov exponents) of class
C r with 1 < r < +∞ [8]. More recently the author also proved the existence of symbolic
extensions for C2 surface local diffeomorphisms [9]. T. Downarowicz and S. Newhouse
have conjectured in [20] that C r maps on a compact manifold with r > 1 have symbolic
extensions. The following theorem answers affirmatively to this conjecture in dimension 2

and gives a sharp upper bound for the symbolic extension entropy in the case of diffeo-
morphisms. This extends thus the results of [9]. When T : M → M is a C1 map on a
compact Riemannian manifold (M, ‖ . ‖) we denote by R(T ) the exponential growth of the

derivative, i.e., R(T ) = limn→+∞
log+ ‖DTn‖

n . This quantity does not depend on the choice
of the Riemannian metric ‖ . ‖ on M .

T 1. – Let T : M → M be a C r map on a compact surface M with r > 1. Then
T admits symbolic extensions and

hsex(T ) ≤ htop(T ) +
4R(T )

r − 1
.

Moreover, if T is a local surface diffeomorphism, then

hsex(T ) ≤ htop(T ) +
R(T )

r − 1
.

The paper is organized as follows. We first recall the background of the theory of symbolic
extensions and properties of continuity of the sum of the positive Lyapunov exponents.
Following S. Newhouse we also recall how the local entropy is bounded from above by the
local volume growth of smooth disks. Then we state our main results and as in [9] we reduce
them to a Reparametrization Lemma of Bowen’s balls in a similar (but finer) approach of the
classical Yomdin theory. The last sections are devoted to the proof of the Reparametrization
Lemma.

2. Preliminaries

In the following we denote by M(X,T ) the set of invariant Borel probability measures
of the dynamical system (X,T ) and Me(X,T ) the subset of ergodic measures. We endow
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M(X,T ) with the weak star topology. Since X is a compact metric space, this topology
is metrizable. We denote by dist a metric on M(X,T ). It is well known that M(X,T ) is
compact and convex and its extreme points are exactly the ergodic measures. Moreover if
µ ∈ M(X,T ) there exists a unique Borel probability measure Mµ on M(X,T ) supported
by Me(X,T ) such that for all Borel subsets B of X we have µ(B) =

∫
ν(B)dMµ(ν). This is

the so called ergodic decomposition of µ. A bounded real Borel map f : M(X,T ) → R is
said to be harmonic if f(µ) =

∫
Me(X,T )

f(ν)dMµ(ν) for all µ ∈ M(X,T ). It is a well known
fact that affine upper semicontinuous maps are harmonic. The measure theoretical entropy
h : M(X,T ) → R+ is always harmonic [30] but is not upper semicontinuous in general. It
may not be upper semicontinuous even for C r map for any r ∈ R+ [24]. However h is upper
semicontinuous for C∞ maps [27].

If f is a bounded real Borel map defined on Me(X,T ), the harmonic extension f of f is
the function defined on M(X,T ) by:

f(µ) :=

∫
Me(X,T )

f(ν)dMµ(ν).

It is easily seen that f coincides with f on Me(X,T ) and that f is harmonic.

2.1. Entropy structure

The measure theoretical entropy function can be computed in many ways as limits of
nondecreasing sequences of nonnegative functions defined on M(X,T ) (with decreasing
sequences of partitions, formula of Brin-Katok, ...). The entropy structures are such partic-
ular sequences whose convergence reflect the topological dynamic: they allow for example
to compute the tail entropy [6] [17], but also especially the symbolic extension entropy [2]
[17] (see below for precise statements).

We skip the formal definition of entropy structures, but we recall a basic fact. Two nonde-
creasing sequences, (hk)k∈N and (gk)k∈N, of nonnegative functions defined on M(X,T ) are
said to be uniformly equivalent if for all γ > 0 and for all k ∈ N, there exists l ∈ N such
that hl > gk − γ and gl > hk − γ. Two entropy structures are uniformly equivalent and
any nondecreasing sequence of nonnegative functions which is uniformly equivalent to an
entropy structure is itself an entropy structure. In other terms the set of entropy structures is
an equivalence class for the above relation.

We recall now Lemma 1 of [9] which relates the entropy structures of a given dynamical
system with those of its inverse and powers.

L 1. – Let (X,T ) be a dynamical system with finite topological entropy and let
H = (hk)k∈N be an entropy structure of T p with p ∈ N \ {0} (when T is a homeomorphism we
consider p ∈ Z \ {0}). Then the sequence 1

|p| H |M(X,T ) =
Ä
hk| M(X,T )

|p|

ä
k∈N

defines an entropy
structure of T .

We finally check that the minimum of two entropy structures defines again an entropy
structure.

L 2. – Let (X,T ) be a dynamical system with finite topological entropy. If
H = (hk)k and G = (gk)k are two entropy structures, then min( H , G) := (min(hk, gk))k is
also an entropy structure.
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Proof. – Let γ > 0 and k ∈ N. As H and G are both entropy structures, they are in
particular uniformly equivalent. Therefore there exists an integer l such that hl > gk−γ and
gl > hk − γ. We can assume that l > k so that hl ≥ hk by monotonicity of H . Therefore
hl > min(hk, gk)− γ and min(hl, gl) > hk − γ.

2.2. Tail entropy

In order to study the properties of upper semicontinuity of the entropy function of a
dynamical system and in particular the existence of measures of maximal entropy, M. Misiu-
rewicz introduced in the seventies the following quantity which is now known as the tail
entropy of the system. Let us first recall some usual notions relating to the entropy of
dynamical systems (we refer to [30] for a general introduction to entropy).

Consider a continuous map T : X → X with (X, d) a compact metric space. Let n ∈ N
and δ > 0. A subset F of X is called a (n, δ) separated set when for all x, y ∈ F there exists
0 ≤ k < n such that d(T kx, T ky) ≥ δ. Let Y be a subset of X. A subset F of Y is called a
(n, δ) spanning set of Y when for all y ∈ Y there exists z ∈ F such that d(T ky, T kz) < δ for
all 0 ≤ k < n. Given a point x ∈ X we denote by B(x, n, δ) the Bowen’s ball centered at x
of radius δ and length n:

B(x, n, δ) := {y ∈ X, d(T ky, T kx) < δ for k = 0, . . . , n− 1}.

The tail entropy, h∗(T ), of (X,T ) is then defined by

h∗(T ) := lim
ε→0

lim sup
n→+∞

sup
x∈X

1

n
log min {]F F is a (n, δ) spanning set of B(x, n, ε)} .

This quantity is a topological invariant which estimates the entropy appearing at arbitrar-
ily small scales. The tail entropy bounds from above the defect of upper semicontinuity of the
entropy function [25]:

∀µ ∈ M(X,T ), lim sup
ν→µ

h(ν)− h(µ) ≤ h∗(T ).

In general the supremum of the defect of upper semicontinuity of the entropy function
differs from the tail entropy. But it is easily seen that for any entropy structure (hk)k of (X,T ),
we have lim supν→µ h(ν)−h(µ) ≤ limk lim supν→µ(h−hk)(ν) and T. Downarowicz proved
then the following variational principle [17] (see also [6]):

sup
µ∈M(X,T )

lim
k

lim sup
ν→µ

(h− hk)(ν) = lim
k

sup
µ∈M(X,T )

(h− hk)(µ) = h∗(T ).(1)

By using Yomdin’s theory J. Buzzi [12] established the following upper bound on the tail
entropy of C r maps T on a compact manifold M with r > 1:

h∗(T ) ≤ dim(M)

r
R(T ).(2)

This inequality is known to be sharp for noninvertible maps [12], [29]. We will prove in the
present paper a similar sharp upper bound on the tail entropy of C r surface diffeomorphisms
with r > 1 (see Theorem 5 below).

When h∗(T ) = 0 the dynamical system (X,T ) is said to be asymptotically h-expansive.
For example, uniformly hyperbolic dynamical systems or piecewise monotone interval maps
are asymptotically h-expansive. Then entropy structures are converging uniformly to the
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entropy function. There exist therefore measures of maximal entropy by upper semicontinu-
ity of the entropy function and also symbolic extensions preserving the entropy of invariant
measures (see Theorem 2 below). According to Inequality (2) it is also the case of C∞ maps
on a compact manifold.

2.3. Symbolic extension entropy function

A symbolic extension of (X,T ) is a subshift (Y, S) of a full shift on a finite number of
symbols, along with a continuous surjection π : Y → X such that T ◦ π = π ◦ S.
Given a symbolic extension π : (Y, S) → (X,T ) we consider the extension entropy
hπext : M(X,T )→ R+ defined for all µ ∈ M(X,T ) by:

hπext(µ) = sup
π∗ν=µ

h(ν).

Then the symbolic extension entropy function, hsex : M(X,T )→ R+, is:

hsex = inf hπext

where the infimum holds over all the symbolic extensions of (X,T ). By convention, if
(X,T ) does not admit any symbolic extension we simply put hsex ≡ +∞. Recall we defined
in the introduction the topological symbolic extension entropy hsex(T ) as the infimum
of the topological entropy of the symbolic extensions of (X,T ) (as previously we put
hsex(T ) = +∞ when there are no such extensions). M. Boyle and T. Downarowicz proved
that these two quantities are related by the following variational principle:

hsex(T ) = sup
µ∈M(X,T )

hsex(µ).(3)

We present now the major Symbolic Extension Entropy Theorem of [2] which allows to
compute the symbolic extension entropy function from the properties of convergence of any
entropy structure. We follow the exposition in [10]. Let S(X,T ) be the set of nonnegative
upper semicontinuous functions defined on M(X,T ) to which we add the function constant
equal to +∞. Let (hk)k be an entropy structure, we define an increasing operator on S(X,T ),
denoted by T sex, as follows:

T sex : S(X,T )→ S(X,T )

f 7→
ñ
µ 7→ lim

k
lim sup

ν∈M(X,T ),ν→µ
(f + h− hk) (ν)

ô
.

One easily checks from the uniform equivalence relation that T sex does not depend on the
choice of the entropy structure (hk)k. We also observe that the tail variational principle can
be written as supµ∈M(X,T ) T sex0(µ) = h∗(T ) where 0 denotes the zero function on M(X,T ).

The least fixed point of T sex can be obtained in a inductive way as the stationary limit
of the transfinite sequence ( T αsex0)α where T αsex0 is T sex( T α−1

sex 0) for successor ordinals α
and T αsex0 is the least upper bound of T βsex0 in S(X,T ) over β < α for limit ordinals α. The
order of accumulation of entropy, which is the least ordinal α such that T αsex0 = T α+1

sex 0, has
been extensively studied in [11] and [23].

By using the affine structure of the set of invariant probability measures M. Boyle and
T. Downarowicz proved that the least fixed point of T sex (whose existence is ensured by the
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Tarski-Knaster Theorem) coincides with the infimum of the affine fixed points of T sex. We
recall now the Symbolic Extension Entropy Theorem:

T 2 (Theorem 5.5 of [2]). – The affine fixed points of T sex are exactly the func-
tions hπext − h, i.e., f is a nonnegative affine upper semicontinuous function on M(X,T ) fixed
by T sex if and only if there exists a symbolic extension π such that f = hπext − h. Moreover
hsex − h is the least fixed point of T sex.

When (X,T ) is asymptotically h-expansive, then the zero function is a fixed point of T sex

because entropy structures are converging uniformly. Therefore such systems (including C∞

maps on compact manifold) admit symbolic extensions π : (Y, S) → (X,T ) with hπext = h.
This result was first proved by M. Boyle, D. Fiebig and U. Fiebig [3].

The Passage Theorem of T. Downarowicz and A. Maass [19] gives a weaker condition for
an affine upper semicontinuous function on M(X,T ) to be fixed by T sex: one only needs
to consider the lim sup in ergodic measures ν in the definition of T sex. More precisely a
nonnegative affine upper semicontinuous function f on M(X,T ) is a fixed point of T sex if
and only if lim supν∈Me(X,T ),ν→µ (f + h− hk) (ν) = f(µ) for all µ ∈ M(X,T ). This can be
restated as follows:

T 3 (Downarowicz, Maass [19, 18]). – Let (X,T ) be a dynamical system with
finite topological entropy. Let g be a nonnegative upper semicontinuous affine function
on M(X,T ) such that for every γ > 0, for every µ ∈ M(X,T ) and for every entropy
structure H = (hk)k∈N there exist kµ ∈ N and δµ > 0 such that for every ergodic measure ν
satisfying dist(ν, µ) < δµ it holds that:

(h− hkµ)(ν) ≤ g(µ)− g(ν) + γ.(4)

Then there exists a symbolic extensionπ : (Y, S)→ (X,T ) such thathπext−h = g. In particular
hsex − h ≤ g.

It follows from the uniform equivalence relation that the assumptions of Theorem 3 hold
as soon as they are satisfied by one particular entropy structure.

2.4. Newhouse local entropy

We recall now the “Newhouse local entropy”. Let x ∈ X, ε > 0, δ > 0, n ∈ N and F ⊂ X
a Borel set; we define:

H(n, δ|x, F, ε) := log max
¶
]E E ⊂ F

⋂
B(x, n, ε) and E is a (n, δ) separated set

©
H(n, δ|F, ε) := sup

x∈F
H(n, δ|x, F, ε)

h(δ|F, ε) := lim sup
n→+∞

1

n
H(n, δ|F, ε)

h(X|F, ε) := lim
δ→0

h(δ|F, ε).

Then for any ergodic measure ν we put:

hNew(X|ν, ε) := lim
α→1

inf
ν(F )>α

h(X|F, ε).
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Finally we extend the function hNew(X|·, ε) to M(X,T ) by the harmonic extension.
Given a nonincreasing sequence (εk)k∈N converging to 0, we consider the sequence
H New
T = (hNew

k )k∈N with hNew
k := h − hNew(X|., εk) for all integers k. A similar quan-

tity with minor differences was first introduced by S. Newhouse in [27]. T. Downarowicz
proved that this sequence defines an entropy structure [17] for homeomorphisms and the
author extended the result in the noninvertible case [4].

2.5. Lyapunov exponents

Let (M, ‖ . ‖) be a compact Riemannian manifold of dimension d and let T : M →M

be a C1 map. We denote by ‖DxT‖ = supv∈TxM−{0}
‖DxT (v)‖
‖v‖ the induced norm of the

differential DxT of T at x and ‖DT‖ = supx∈M ‖DxT‖ the supremum norm of the
differential of T . We consider an ergodic T -invariant measure ν. According to Oseledet’s
theorem [28], there exist real numbersχ1(ν) ≥ · · · ≥ χd(ν) ≥ −∞, an increasing sequence of
measurable invariant subbundles of the tangent space {0} = Gd+1 ⊆ Gd ⊆ · · · ⊆ G1 = TM

and a Borel set F with ν(F ) = 1 such that for all x ∈ F and all vi ∈ Gi \ Gi+1 with
i = 1, . . . , d we have

lim
n→+∞

1

n
log ‖DxT

n(vi)‖ = χi(ν).

The real numbers χi(ν) are the well-known Lyapunov exponents of ν (sometimes we
also use the notations χi(ν, T ) to avoid ambiguities). We prove now elementarily that the
harmonic extension of the sum of the positive Lyapunov exponent is upper semicontinuous.
In the one dimensional case it was proved by T. Downarowicz and A. Maass by using a clever
argument of convexity (see Fact 2.5 of [19]). We just adapt the proof of [9] which only deals
with the dimension d = 2. If S : M → M is a C1 map we denote by ΛkDxS the map
induced by the differential map DxS on the kth exterior power ΛkTxM (with 1 ≤ k ≤ d) of
the tangent space of M at x ∈M and by ‖ . ‖k the induced norm on the space of multilinear
maps on ΛkTxM .

L 3. – For all 1 ≤ e ≤ d and for all µ ∈ M(M,T ), we have:

e∑
i=1

χ+
i (µ) = inf

n∈N

1

n

∫
max

k=1,...,e
log+ ‖ΛkDxT

n‖kdµ(x).

In particular
∑e
i=1 χ

+
i : M(M,T )→ R+ is upper semicontinuous.

Proof. – For all integers n > 0 we consider the function fn : M(M,T ) → R+ defined
by:

∀µ ∈ M(M,T ), fn(µ) =

∫
max

k=1,...,e
log+ ‖ΛkDxT

n‖kdµ(x).

This function is clearly continuous and affine, and therefore harmonic. Also (fn(µ))n∈N is a
subadditive sequence for all µ ∈ M(M,T ).
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It follows from Oseledet’s theorem that
∑e
i=1 χ

+
i (ν) = limn→+∞

fn(ν)
n for all ergodic

measures ν. Consider now a general measure µ ∈ M(M,T ). We have:

e∑
i=1

χ+
i (µ) :=

∫
Me(M,T )

e∑
i=1

χ+
i (ν)dMµ(ν)

=

∫
Me(M,T )

lim
n→+∞

fn(ν)

n
dMµ(ν).

Obviously fn(ν) ≤ e log+ ‖DT‖ for all ergodic measures ν. Therefore by applying the
theorem of dominated convergence we get:

e∑
i=1

χ+
i (µ) = lim

n→+∞

∫
Me(M,T )

fn(ν)

n
dMµ(ν)

and by harmonicity of fn:
e∑
i=1

χ+
i (µ) = lim

n→+∞

fn(µ)

n
.

But the sequence (fn(µ))n∈N is subadditive so that:

e∑
i=1

χ+
i (µ) = inf

n∈N

fn(µ)

n
.

We conclude that
∑e
i=1 χ

+
i is an upper semicontinuous function as an infimum of a family

of continuous functions.

Clearly the function
∑e
i=1 χ

+
i is uniformly bounded from above by

Re(T ) := lim sup
n

sup
x∈X

1

n
max

k=1,...,e
log+ ‖ΛkDxT

n‖k.

With the previous notations we have alsoRe(T ) ≤ eR(T ) andR1(T ) = R(T ). In fact the
following variational principle holds [4]:

sup
µ

e∑
i=1

χ+
i (µ) = Re(T ).

We notice that the harmonic extension
∑e
i=1 χ

+
i can be rewritten in the most common way

as
∑e
i=1 χ

+
i =

∫
M

∑e
i=1 χ

+
i (x)dµ(x) where (χi(x))i=1,...,d denotes the Lyapunov exponents

of a regular point x ∈M .
In the special case e = dwe also recall that the sum of all the Lyapunov exponents (positive

or not) are given by
d∑
i=1

χi(µ) =

∫
M

log Jacx(T )dµ(x).

In the following we are interested in the entropy of ergodic measures. We denote by
∑
χ+

(resp.
∑
χ−) the sum of all the positive (resp. negative) Lyapunov exponents. The Ruelle-

Margulis inequality states that for a C1 map T : M → M on a compact manifold M the
entropy hT (ν) of an ergodic measure ν is bounded from above by the sum of its positive
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Lyapunov exponents. When T is a diffeomorphism it is easily seen by applying the Ruelle-
Margulis inequality to T and its inverse T−1 and by using the equality hT (ν) = hT−1(ν) that
any ergodic measure ν ∈ Me(M,T ) with non zero entropy has at least one positive and one
negative Lyapunov exponent, moreover

h(ν) ≤ min
Ä∑

χ+(ν),−
∑

χ−(ν)
ä
.

2.6. Local entropy and volume growth

In this section we recall Theorem 2 of [27] (in fact an intermediate result in its proof) which
relates the Newhouse local entropy of an ergodic measure with the local volume growth of
smooth disks. We begin with some definitions. Let T : M → M be a C r map on a compact
manifold with r > 1. We fix a Riemannian metric ‖ . ‖ on the manifold M and we endow M

with the induced distance.

A C1 map σ from the unit square [0, 1]k of Rk to M , which is a diffeomorphism onto its
image, is called a k-disk. For any k-disk σ and for any χ > 0, γ > 0 and C > 1, we consider
the set H n

T (σ, χ, γ, C) of points of [0, 1]k whose exponential growth of the derivative of the
n-first iterations of T composed with σ is almost equal to χ:

H n
T (σ, χ, γ, C) :=

¶
t ∈ [0, 1]k ∀1 ≤ j ≤ n, C−1e(χ−γ)j ≤ ‖Dt

(
T j ◦ σ

)
‖ ≤ Ce(χ+γ)j

©
.

We also denote by |σ| the k-volume of σ, i.e., |σ| =
∫
‖ΛkDtσ‖kdλ(t) where dλ is the

Lebesgue measure on [0, 1]k. Then given χ > 0, γ > 0, C > 1, x ∈ M , n ∈ N and ε > 0 we
define the local volume growth of σ at x with respect to these parameters as follows:

V n,εx (σ|χ, γ, C) :=
∣∣∣Tn−1 ◦ σ| H nT (σ,χ,γ,C)∩σ−1(B(x,n,ε))

∣∣∣ .
Fix an ergodic measure ν and let lν be the codimension of the first Lyapunov eigenspace

Gi with χi(ν) < 0. In [27] S. Newhouse proved by using Pesin’s theory that for some ε > 0

depending only on the manifold M and for any 1 > α > 0 and γ > 0 there exist a Borel set
Fα of ν-measure larger than α and a lν-disk σ of class C∞, such that for all δ > 0 one can
find a constant C > 1 depending only on Fα and another constant D depending only on δ
and Fα satisfying for all n ∈ N and for all x ∈ Fα:

H(n, δ|x, Fα, ε) ≤ DeγnV n,εx (σ|χ1(ν), γ, C).(5)

In fact Fα is a Pesin block and the lν-disk can be chosen to be the exponential map
restricted to a neighborhood of the unstable distribution at some point ofFα. In the following
we will consider only smooth 1-disks σ : [0, 1] → Rd. We denote by σ′ the derivative Dσ of
the curve σ.

3. Statements

We first state in this section the main result of this paper by specifying Theorem 1 at the
measure theoretic level. It will be deduced, by using the Estimate theorem, from the below
Main Proposition which gives an upper bound on the Newhouse local entropy involving the
positive Lyapunov exponents. The proof of this proposition is the topic of the next sections.
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T 4. – Let T : M →M be a C r surface map (resp. local surface diffeomorphism)
with r > 1. Then there exists a symbolic extension π : (Y, S)→ (X,T ) with

hπext − h =
2
∑
χ+(µ)

r − 1

Ç
resp. =

χ+
1 (µ)

r − 1

å
.

In particular, for all µ ∈ M(M,T ),

hsex(µ)− h(µ) ≤ 2
∑
χ+(µ)

r − 1

Ç
resp.

χ+
1 (µ)

r − 1

å
.

The above theorem will follow from the following Main Proposition by applying the

Estimate Theorem to the upper semicontinuous affine function g =
2
∑

χ+

r−1 or g =
χ+

1

r−1 .
Remark that Theorem 1 stated in the introduction is the topological version of Theorem 4:
it is deduced by the usual variational principle for the entropy and the variational principle
for the symbolic extension entropy (Equation (3)). According to the examples built in [20] the
upper bound on the symbolic extension entropy function in Theorem 4 is sharp in the case
of local surface diffeomorphism. More precisely S. Newhouse and T. Downarowicz exhibit
examples of C r surface diffeomorphisms with r > 1 which admit an hyperbolic periodic

measure γp with hsex(γp) =
χ+

1 (γp)

r−1 . However the optimality of the upper bound in the
general case is open.

As the functions hπext, χ
+
1 and

∑
χ+ are upper semicontinuous it follows from Theorem 4

that the entropy function of a C r surface map with r > 1 is a difference of nonnegative
upper semicontinuous functions. In particular generic measures are continuity points of the
entropy function. In general this is false for C1 maps. We refer to [10] for further details on the
links between the symbolic extension entropy and the properties of continuity of the entropy
function.

We give now a new upper bound on the tail entropy of C r surface diffeomorphisms with
r > 1. The examples built in [20] show that this upper bound is sharp.

T 5. – Let T : M →M be a C r surface diffeomorphisms with r > 1. Then, for all

µ ∈ M(X,T ), we have T sex0(µ) ≤ χ+
1 (µ)

r and in particular,

h∗(T ) ≤ R(T )

r
.

Theorem 4 and Theorem 5 will both follow from the following proposition.

M P . – Let T : M →M be a C r map with r > 1 on a compact manifold
M of dimension d. Let µ be a T -invariant measure and fix some γ > 0.

Then there exist δµ > 0, an entropy structure (hk)k and kµ ∈ N such that for every ergodic
T -invariant measure ν with dist(ν, µ) < δµ and either with at most one nonnegative Lyapunov
exponent or with all Lyapunov exponents nonnegative (i.e., lν is equal to either 0, 1 or d) it
holds that:

(h− hkµ)(ν) ≤ lν
r − 1

Ñ
lν∑
i=1

χ+(µ)−
∑

χ+(ν)

é
+ γ.(6)
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In the case lν = d it is a direct consequence of the Main Theorem of [8] that we recall
below. Then, to prove the proposition we only need to consider the case lν ≤ 1 and we finally
conclude by considering the minimum of the two entropy structures, the one corresponding
to the case lν ≤ 1 and the other corresponding to the case lν = d (see Lemma 2). It is
worth noting that when d = 1 Inequality (6) can be obtained by two ways which seem to
be different: the first one due to T. Downarowicz and A. Maass by studying the critical set
and the second one presented in the present paper which follows from the Reparametrization
Lemma stated in the next section.

We think that this statement should hold for any ergodic measure without condition on
its Lyapunov spectrum. It will imply Theorem 4 in any dimension. Let us just do it in the
two dimensional case. We first recall the main result of [8] which is a generalization of the
approach of T. Downarowicz and A. Maass.

P 1 (Main Theorem of [8]). – Let T : M → M be a C r map, with r > 1, on
a compact manifold of dimension d. Let µ be an invariant measure and fix some γ > 0.

Then there exist δµ > 0, an entropy structure (hk)k and kµ ∈ N such that for every ergodic
measure ν with dist(ν, µ) < δµ it holds that:

(7) (h− hkµ)(ν) ≤ d (f(µ)− f(ν))

r − 1
−
∑

χ−(ν) + γ

where f(ξ) = max
(∫

log Jacx(T )dξ(x), 0
)

for all invariant measures ξ.

When T is a local diffeomorphism then ξ 7→
∫

log Jacx(T )dξ(x) is continuous on M(M,T ).
Then, with the notations of the above theorem, we have (h − hkµ)(ν) ≤ −

∑
χ−(ν) + 2γ

for ν close enough to µ. In particular if (h − hkµ)(ν) > 2γ then ν has at least one negative
Lyapunov exponent (and also at least a positive one by Ruelle-Margulis inequality).

We deduce now the theorems of this section from the above proposition.

Proof of Theorem 4. – As we follow the strategy of [19] we only sketch the proof. First
we consider the case of local surface diffeomorphisms. According to the above remark it is
enough to consider ergodic measures with one negative and one positive Lyapunov exponent.

Then one just applies the Estimate Theorem with g =
χ+

1

r−1 which is an upper semicontinuous
function satisfying (4) by assumption. We prove similarly Theorem 4 for general surface maps

by applying the Estimate Theorem with g =
2
∑

χ+

r−1 .

Let us observe that unfortunately we are not able to deduce the existence of symbolic
extensions for C r diffeomorphisms with r > 1 on compact manifolds of dimension 3 from
Proposition 1, since the ergodic measure ν may have exactly one positive, one zero and one
negative Lyapunov exponent (lTν = lT

−1

ν = 2).

Proof of Theorem 5. – Let (hk)k be an entropy structure of (M,T ) and let µ ∈ M(X,T ).
By Ruelle-Margulis inequality we have for all ν ∈ M(M,T )

(h− hk)(ν) ≤ min

Ç
χ+

1 (ν),

Ç
h− hk +

χ+
1

r − 1

å
(ν)− χ+

1 (ν)

r − 1

å
.
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By taking the lim sup when ν goes to µ we have for all integers k

lim sup
ν→µ

(h− hk)(ν) ≤ sup
ν∈M(X,T )

min

Ç
χ+

1 (ν), lim sup
ξ→µ

Ç
h− hk +

χ+
1

r − 1

å
(ξ)− χ+

1 (ν)

r − 1

å
and since χ+

1

r−1 is a fixed point of T sex by Theorem 4 we have when k goes to infinity

lim
k

lim sup
ν→µ

(h− hk)(ν) ≤ sup
ν∈M(X,T )

min

Ç
χ+

1 (ν), lim
k

lim sup
ξ→µ

Ç
h− hk +

χ+
1

r − 1

å
(ξ)− χ+

1 (ν)

r − 1

å
≤ sup

ν∈M(X,T )

min

Ç
χ+

1 (ν),
χ+

1 (µ)

r − 1
− χ+

1 (ν)

r − 1

å
.

As a continuous piecewise affine function in χ+
1 (ν) the right member

min

Ç
χ+

1 (ν),
χ+

1 (µ)

r − 1
− χ+

1 (ν)

r − 1

å
attains its maximum at χ+

1 (µ)

r and is therefore bounded from above by χ+
1 (µ)

r . We conclude

according to the tail variational principle (1) that h∗(T ) ≤ R(T )
r .

We already have noticed that the inequality h∗(T ) ≤ dR(T )
r due to J. Buzzi holds for any

C r maps on a compact manifold M of dimension d. By adapting the proof it is not difficult

to also prove T sex0(µ) ≤ dχ+
1 (µ)

r for all µ ∈ M(M,T ) [4]. But we do not know if in this

inequality we can replace dR(T ) (resp. dχ+
1 (µ)) by max1≤e≤dRe(T ) (resp.

∑
χ+(µ)).

4. Bounding local entropy of curves with a Reparametrization Lemma of Bowen balls

In a similar way as in [9] we reduce now the Main Proposition to a result of reparametri-
zation of 1-disk σ in Bowen balls by volume contracting maps. Then the local volume growth
and thus the Newhouse local entropy of some ergodic measure ν is just bounded from above
by the logarithmic growth of the number of reparametrizations. In fact we only need to
reparametrize Bowen balls on a set of large ν measure. As one can assume the entropy
and thus the maximal Lyapunov exponent χ1(ν) to be nonzero it is enough to consider the
intersection of Bowen balls with the set H n

T (σ, χ1(ν), γ, C) for small γ > 0 and for any
C > 1. This is one of the main differences with Yomdin theory where the whole Bowen ball
is reparametrized by volume contracting maps.

In [9] we do not use the Newhouse estimate (which involves Pesin theory) of the local
entropy with the local volume growth. Then we had to reparametrize not only curves but
the intersection of Bowen balls with finite hyperbolic sets which are in general not one
dimensional. The present situation is of course easier and allows us to get C r estimates.

We denote by H : [1,+∞[→ R the function defined by H(t) = − 1
t log( 1

t )− (1− 1
t ) log(1− 1

t ).
Moreover [x] is the usual integer part of x if x > 0 and zero if not (i.e., [x] is the largest
nonnegative integer k such that max(x, 0) ≥ k). Afterwards we also use the notation dxe to
denote the usual ceiling function (i.e., dxe is the smallest integer k such that x ≤ k). We recall
that a map T between two smooth Riemannian manifolds is said of class C r with r > 0

when it admits a derivative of order dr − 1e which is r − dr − 1e-Hölder. We denote then
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by ‖T‖r the r−dr − 1e-Hölder norm of the dr − 1e-derivative of T . Observe that if T is C r

then T is C s for all 0 ≤ s ≤ r. When dr − 1e < s ≤ r we have moreover ‖T‖s ≤ C‖T‖r
with a constant C depending only on the Riemannian manifolds. Finally ‖T‖0 will denote
the usual supremum norm of T .

R L . – Let T : M →M be a C r map with r > 1 on a compact
Riemannian manifold M .

Then for all χ > 0, γ > 0 and C > 1, there exist ε > 0 depending only on ‖T‖s,
s = 1, . . . , [r], r and a universal constant A > 0 with the following properties.

For all x ∈M , for all positive integers n and for all 1-disks σ : [0, 1]→M of class C r with
maxs=1,...,[r],r ‖σ‖s ≤ 1, there exist a family F n of affine maps from [0, 1] to [0, 1] and a real
positive number B depending only on σ, such that with λ+

n (x, T ) := 1
n

∑n−1
j=0 log+ ‖DT jxT‖

the following properties hold:

(i) ∀ψ ∈ F n, ∀0 ≤ l ≤ n, ‖D(T l ◦ σ ◦ ψ)‖ ≤ 1,

(ii) H n
T (σ, χ, γ, C) ∩ σ−1 (B(x, n+ 1, ε)) ⊂

⋃
ψ∈ F n ψ([0, 1]),

(iii) log ] F n ≤ 1
r−1 (1 +H([λ+

n (x, T )− χ] + 3)) (λ+
n (x, T )− χ)n+An+B.

We deduce now the Main Proposition from the above statement by following [9]. In the
proof the terms λ+

n (x, T ) for typical ν points x and χ will be respectively related with the
maximal Lyapunov exponent of µ and ν where ν is an ergodic measure near an invariant
measure µ. Moreover the quantity H([λ+

n (x, T )− χ] + 3) will be negligible.

Proof of the Main Proposition assuming the Reparametrization Lemma
Let µ ∈ M(M,T ) and let γ > 0. By Lemma 3 we choose pµ ∈ N \ {0} such that

χ+
1 (µ) = inf

n∈N

∫
log+ ‖DxT

n‖dµ(x)

n
≥
∫

log+ ‖DxT
pµ‖dµ(x)

pµ
− (r − 1)γ

4
.

One can also assume pµ large enough such that H
Ä
pµ

(r−1)γ
4

ä
R(T ) < (r−1)γ

4 and
A+2γ
pµ

< γ
4 . We will prove the statement of the Main Proposition with the entropy structure

1
pµ

H New
Tpµ |M(M,T ) (see Lemma 1).

By continuity of µ 7→
∫

log+ ‖DyT
pµ‖dµ(y) and by upper semicontinuity of χ+

1 one can
choose the parameter δµ > 0 such that for all ergodic measures ν with dist(ν, µ) < δµ we
have: ∣∣∣∣∫ log+ ‖DyT

pµ‖dν(y)−
∫

log+ ‖DyT
pµ‖dµ(y)

∣∣∣∣ < (r − 1)γ

4
,

χ+
1 (µ) > χ+

1 (ν)− (r − 1)γ

4
.

We fix some ergodic measure ν with dist(µ, ν) < δµ with at most one nonnegative
Lyapunov exponent. One can assume h(ν) > 3γ

4 because 1
pµ
hNew
Tpµ (M |ν, εµ) ≤ h(ν) and the

right member of Inequality (6), 1
r−1

Ä
χ+

1 (µ)− χ+
1 (ν)

ä
+γ, is larger than 3γ

4 . In particular we

have by Ruelle-Margulis inequality χ+
1 (ν) ≥ h(ν) > 0. The measure ν need not be ergodic

under T pµ but has at most pµ ergodic components ν̃ which all satisfy χi(ν̃, T pµ) = pµχi(ν)

for all i = 1, . . . , d and thus lν̃ = lν = 1.
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We fix such an ergodic component ν̃. For any 0 < α < 1 we let Fα be the Borel set of ν̃
measure larger than α as in Section 2.6.

One can also assume by the ergodic theorem that (λ+
n (x, T pµ))n∈N are converging uni-

formly in x ∈ Fα to
∫

log+ ‖DyT
pµ‖dν̃(y) and that Fα ⊂ Gα with Gα as in Section 2.6

for T pµ and ν̃.

Let σ : [0, 1]→M be a 1-disk associated to Fα and ν̃ satisfying Inequality (5), i.e., with ε
and D as in (5)

HTpµ (n, δ|x, Fα, ε) ≤ DeγnV n,εx,Tpµ (σ|χ1(ν̃), γ, C).

Now, we apply the Reparametrization Lemma to T pµ , σ and to a given point x ∈ Fα: there
exist ε > εµ > 0 depending only on ‖T pµ‖s, s = 1, . . . , [r], r, a real number B depending
only on χ1(ν̃), γ, C and ‖σ‖s, ‖T pµ‖s, s = 1, . . . , [r], r, and families ( F n)n of affine maps
from [0, 1] to [0, 1] satisfying the properties (i)-(ii)-(iii) of the Reparametrization Lemma. By
(i) the volume of Tn−1 ◦ σ ◦ ψ is less than or equal to 1 for all ψ ∈ F n. Therefore we have
with (ii)

V n,εx,Tpµ (σ|χ1(ν̃), γ, C) ≤ ] F n
and it follows from (iii) that:

hTpµ (M |Fα, εµ)

≤ lim
n→+∞

sup
x∈Fα

1

r − 1

(
1 +H([λ+

n (x, T pµ)− χ1(ν̃)] + 3)
) (
λ+
n (x, T pµ)− χ1(ν̃)

)
+A+2γ.

According to the definition of Fα we have:

lim
n→+∞

inf
x∈Fα

λ+
n (x, T pµ)− χ1(ν̃) = lim

n→+∞
sup
x∈Fα

λ+
n (x, T pµ)− χ1(ν̃)

=

∫
log+ ‖DyT

pµ‖dν̃(y)− χ1(ν̃) ≥ 0.

Now we distinguish cases:

– either
∫

log+ ‖DyT
pµ‖dν̃(y) < χ1(ν̃) + pµ

(r−1)γ
4 , then the term

limn→+∞ supx∈Fα H([λ+
n (x, T pµ)−χ1(ν̃)]+3) (λ+

n (x, T pµ)− χ1(ν̃)) is bounded from

above by log(2)
(∫

log+ ‖DyT
pµ‖dν̃(y)− χ1(ν̃)

)
which is less than log(2)pµ

(r−1)γ
4 .

– or
∫

log+ ‖DyT
pµ‖dν̃(y) ≥ χ1(ν̃) + pµ

(r−1)γ
4 , then we have

lim
n→+∞

inf
x∈Fα

λ+
n (x, T pµ)− χ1(ν̃) ≥ pµ

(r − 1)γ

4
.

But we choose pµ large enough so that R(T )H
Ä
pµ

(r−1)γ
4

ä
< (r−1)γ

4 . It follows that:

lim
n→+∞

sup
x∈Fα

H([λ+
n (x, T pµ)− χ1(ν̃)] + 3)

(
λ+
n (x, T pµ)− χ1(ν̃)

)
≤ H

Å
pµ

(r − 1)γ

4

ã
pµR(T )

≤ pµ
(r − 1)γ

4
.
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We get finally in both cases:

hTpµ (M |Fα, εµ) ≤ 1

r − 1

Å∫
log+ ‖DyT

pµ‖dν̃(y)− χ1(ν̃)

ã
+ pµ

γ

4
+A+ 2γ.

Then by letting α go to 1 we obtain since A+2γ
pµ

< γ
4 :

1

pµ
hNew
Tpµ (M |ν̃, εµ) ≤ 1

(r − 1)pµ

Å∫
log+ ‖DyT

pµ‖dν̃(y)− χ1(ν̃)

ã
+
γ

2
.

The above inequality holds for all ergodic components ν̃ of ν and then also for ν by
harmonicity:

1

pµ
hNew
Tpµ (M |ν, εµ) ≤ 1

(r − 1)pµ

Å∫
log+ ‖DyT

pµ‖dν(y)− pµχ1(ν)

ã
+
γ

2
.(8)

Now we deduce from the choice of δµ that:∫
log+ ‖DyT

pµ‖dν(y)− pµχ1(ν) ≤
∫

log+ ‖DyT
pµ‖dµ(y)− pµχ1(ν) +

(r − 1)γ

4

and then by the choice of pµ we get:

1

pµ

Å∫
log+ ‖DyT

pµ‖dν(y)− pµχ1(ν)

ã
≤ χ+

1 (µ)− χ+
1 (ν) +

(r − 1)γ

2
.

Together with Inequality (8) we conclude that

1

pµ
hNew
Tpµ (M |ν, εµ) ≤ 1

r − 1

Ä
χ+

1 (µ)− χ+
1 (ν)

ä
+ γ.

The end of this paper deals with the proof of the Reparametrization Lemma. We first
state the key ingredients. The first one is a combinatorial argument which allows us to work
with subsets of Bowen balls of length n where the defect of multiplicativity of the norm
‖DT‖ . ‖DTk◦σ‖
‖DTk+1◦σ‖ is fixed for k = 0, . . . , n − 1. Then we recall the Yomdin reparametrization

lemma and a Landau-Kolmogorov inequality which will be used to get C r estimates of the
Newhouse local entropy. Finally we explain how to bound the local volume of a C1 curve by
assuming that the derivative of this curve oscillates little.

5. Technical lemmas

This section is devoted to some useful technical lemmas for the proof of the Reparametri-
zation Lemma presented in the last section.
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5.1. Combinatorial Lemma

We first begin with a usual combinatorial lemma which was already used by T. Downarow-
icz and A. Maass in [19] and by the author in [9].

D 1. – Let S ∈ N and n ∈ N. We say that a sequence of n positive integers
Kn := (k1, . . . , kn) admits the value S if 1

n

∑n
i=1 ki ≤ S.

The number of sequences of n positive integers admitting the value S is exactly the
binomial coefficient

(
nS
n

)
. When S is large enough this term is exponentially small in nS.

More precisely we have the following lemma (recall thatH denotes the function defined from
[1,+∞[ by H(t) = − 1

t log( 1
t )− (1− 1

t ) log(1− 1
t )).

L 4. – The logarithm of the number of sequences of n positive integers admitting the
value S is at most nSH(S) + 1.

We refer to [21] (Lemma 16.19) for a proof. In the two next subsections we present the tools
which allow us to get C r estimates of the symbolic extension entropy function in contrast
with [9] where the author only deals with C2 maps.

5.2. Estimates à la Yomdin

We recall now the heart of Yomdin’s theory which estimates the “local differential com-
plexity” of intermediate smooth maps. The proof is based on a powerful Semi-algebraic
Lemma due to M. Gromov [22] (see also [5] for a complete proof of Gromov’s statement).

L 5 ([22]). – Let k and d be positive integers and let s > 0 be a positive real number.
For any positive real number a > 0 and for any C s map g : [0, 1]k → Rd with ‖g‖s ≤ a, there
exists a family of real analytic maps F from [0, 1]k to itself such that:

–
⋃
φ∈ F φ([0, 1]k) ⊃

{
x ∈ [0, 1]k, ‖g(x)‖ ≤ a

}
,

– ‖φ‖t ≤ 1 for all t = 1, 2, . . . , [s] + 1,
– ‖g ◦ φ‖t ≤ a

12e for t = min(1, s), 2, . . . , [s], s,
– ] F ≤ C with a universal constant C depending only on k, d and s.

In fact this is a functional version of Lemma 3.4 of [22] but the proofs are the same.
The constant 1

12e may be replaced by any other universal constant. We choose this one for
convenience of computation in the final proof of the Reparametrization Lemma.

The Semi-algebraic Lemma [22] claims that the statement holds for polynomial functions
without any condition on the derivatives, but the constant C may depend on the degree.
Then to prove the general case one approximates the given intermediate smooth function
by its Lagrangian polynomial. The hypothesis on the highest order derivative makes the
approximation good enough to conclude the proof.

To bound the local volume growth of k-disks Y. Yomdin uses Lemma 5 in a dynamical
context. More precisely, given a C r map T : M → M on a compact manifold M and a
k-disk σ with ‖Tn ◦ σ‖s ≤ 1, he applies it with a = 1, s = r and g = Tn ◦ σ. Then it
follows from (iii) that the k-volume of Tn◦σ is universally bounded from above. To ensure the
condition on the s-norm we have to subdivide a general disk inCste‖DT‖

nk
r subdisks so that
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the exponential rate of the local volume growth of a k-disk is bounded by kR(T )
r replacing if

necessary T by an iteration of T .
Here we use Lemma 5 only to reparametrize areas where the oscillation of the derivative

of (Tn ◦ σ)′ is small compared to its size. Thus we will apply Lemma 5 with s = r− 1 to the
derivative (Tn ◦ σ)′. That is why we get the factor 1

r−1 (and not 1
r as above) in the estimates

of the Newhouse local entropy given by the Main Proposition. The constant awill be chosen
to be the norm of the derivative of Tn ◦ σ at typical points. Then in the case of 1-disks an
easy geometrical argument presented in Subsection 5.4 allows us to bound the local volume
growth.

5.3. A Landau-Kolmogorov type inequality

Yomdin’s reparametrization maps are semi-algebraic and it seems difficult to control
from below the size of their derivative. Therefore we just use affine maps in the proof of
the Reparametrization Lemma. The key ingredient to control the derivatives is then the
following classical Landau-Kolmogorov type inequality due to L. Neder [26].

L 6 ([26]). – Let g : [0, 1] → Rd be a C s map with s > 0. Then, there exists a
universal constant C depending only on s and d such that

∀k = 0, 1, . . . , [s], ‖g‖k ≤ C (‖g‖0 + ‖g‖s) .

For the sake of completeness we give a short proof of this result, that we borrow from [15]
(Theorem 5.6). In this reference the result is stated for integers 2 ≤ s but it can be easily
extended to the general case 1 < s ∈ R as follows.

Proof. – Without loss of generality we may assume d = 1. Let x ∈ [0, 1
2 ]. From Taylor’s

formula, we have for all 0 ≤ u ≤ 1
2 :

g(x+ u) = g(x) + ug′(x) + · · ·+ uds−2e

ds− 2e!
g(ds−2e)(x) +

∫ u

0

(u− t)ds−2e

ds− 2e!
fds−1e(x+ t)dt

= g(x) + ug′(x) + · · ·+ uds−2e

ds− 2e!
g(ds−2e)(x) +

uds−1e

ds− 1e!
g(ds−1e)(x)

+

∫ u

0

(u− t)ds−2e

ds− 2e!
Ä
gds−1e(x+ t)− gds−1e(x)

ä
dt.

As g(ds−1e) is s− ds− 1e-Hölder the integral remainder term

R(x, u) =

∫ u

0

(u− t)ds−2e

ds− 2e!
Ä
gds−1e(x+ t)− gds−1e(x)

ä
dt

can be bounded as follows

|R(x, u)| ≤
∫ u

0

(u− t)ds−2ets−ds−1e

ds− 2e!
‖g‖sdt

≤
us
∫ 1

0
(1− x)ds− 2exs−ds−1edx

ds− 2e!
‖g‖sdt

≤ usB(s+ 1− ds− 1e , ds− 1e)‖g‖s
ds− 1e!

(9)
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where B denotes the usual beta function. Then we choose arbitrarily real numbers
0 < λ1 < · · · < λds−1e < 1 and we let A be the Vandermonde matrix given by

A :=
Ä
λji

ä
1≤i,j≤ds−1e

. We haveÅ
g

Å
x+

λi
2

ã
− g(x)−R

Å
x,
λi
2

ãã
i

= A

Ç
g(i)(x)

i!2i

å
i

.

As the determinant of A is nonzero this system of equations can be solved and we have
according to Inequality (9) for all x ∈ [0, 1

2 ]∣∣g(i)(x)
∣∣

i!
≤ C (‖g‖0 + ‖g‖s)

where C is a constant depending only on s and on the real numbers λ1 < · · · < λds−1e. We
argue similarly for x ∈ [ 12 , 1] by considering − 1

2 ≤ u ≤ 0. This concludes the proof of the
lemma.

We will apply this lemma with s = r−1 to the derivative (Tn ◦σ)′ with Tn := Tn ◦· · ·◦T1

for a sequence (Tn)n of C r maps defined on the unit ball of Rd and for a smooth 1-disk
σ : [0, 1]→ Rd.

5.4. Curves with small oscillations of the derivative

In the present subsection we give an alternative strategy to bound the local volume of a
C1 curve σ : [0, 1]→ Rd, that is the length of σ|σ−1(B(0,1)). We assume now that we control
the oscillation of the derivative of σ (instead of the r-derivative in Yomdin’s approach). More
precisely we want the ratio ‖σ

′(t)−σ′(s)‖
‖σ‖1 to be small uniformly in t, s ∈ [0, 1]. Then the

following easy geometrical argument allows us to bound the local volume of σ. This idea was
already exploited in [9] under a slightly different form (Proposition 8 of [9]). In the following
the space Rd is always endowed with the usual euclidean norm ‖ . ‖ and B(x, r) will denote
the ball of radius r centered at x ∈ Rd.

L 7. – Let σ : [0, 1]→ Rd be a C1 curve satisfying the following properties

1. σ([0, 1]) ∩B(0, 1) 6= ∅,
2. ‖σ′(t)− σ′(s)‖ ≤ ‖σ‖13 for all t, s ∈ [0, 1].

Then, there exists [a, b] ⊂ [0, 1] such that

– σ([0, 1]) ∩B(0, 1) ⊂ σ([a, b]) ⊂ B(0,
√
d),

– (b− a)‖σ‖1 ≤
√

3d.

Proof. – Let w ∈ [0, 1] with σ(w) ∈ B(0, 1). The hypothesis (2) on the derivative σ′ of σ
implies that σ′(s) lies in the cone C := {u ∈ Rd, |]u, σ′(w)| ≤ π

6 } for all s ∈ [0, 1]. Indeed
we have for all s ∈ [0, 1]:

‖σ′(s)‖ sin |]σ′(s), σ′(w)| ≤ ‖σ′(s)− σ′(w)‖

≤ ‖σ‖1
3

≤ ‖σ
′(s)‖
2
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where the last inequality follows, with s0 ∈ [0, 1] such that ‖σ′(s0)‖ = ‖σ‖1, from:

‖σ′(s)‖ ≥ ‖σ′(s0)‖ − ‖σ′(s)− σ′(s0)‖

≥ ‖σ‖1 −
1

3
‖σ‖1 =

2

3
‖σ‖1.

We consider the cube S of size
√
d containing the unit ball B(0, 1) whose faces are either

orthogonal or parallel to σ′(w). If σ(t) does not belong to S for some t > w then σ(s)

stays out of S for s > t (see the picture above). Similarly if σ(t) is not in S for some
t < w then so does σ(s) for s < t. Therefore if we set a = sup{s ≤ w σ(s) ∈ S} and
b = inf{s ≥ w σ(s) ∈ S} we have

σ([0, 1]) ∩B(0, 1) ⊂ σ([a, b]) ⊂ B(0,
√
d).

Finally we check the second item:

(b− a)‖σ‖1 ≤
3

2

∫ b

a

‖σ′(u)‖du

≤
√

3

∫ b

a

σ′(u).σ′(w)

‖σ′(w)‖
du

≤
√

3

∥∥∥∥∥
∫ b

a

σ′(u)du

∥∥∥∥∥
≤
√

3 ‖σ(a)− σ(b)‖ ≤
√

3d.
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6. Reparametrization of (n, ε) Bowen balls: proof of the Reparametrization Lemma

Let M be a compact manifold of dimension d and let T : M → M be a C r map
with r > 1. As in Yomdin theory, we consider the local dynamic at one point. We fix a
Riemannian structure ‖ . ‖ on M and we denote by Rinj the radius of injectivity and by
exp : TM(Rinj)→M the exponential map, where TM(r) := {(x, u), u ∈ TxM, ‖u‖x < r}.
We fix R < R′ < Rinj such that T (B(x,R)) ⊂ B(Tx,R′) for all x ∈M .

Let x ∈ M and n ∈ N. We consider the map T xn : TTn−1xM(R) → TTnxM(R′) defined
by T xn = exp−1

Tnx ◦ T ◦ expTn−1x. For all ε < R√
d

, we put T xn,ε = ε−1T xn (ε.) : B(0,
√
d) →

TTnxM ' Rd and T xε := (T xn,ε)n∈N. Observe that for all small universal constant A there
exists ε > 0 depending only on maxs=min(2,r),3,...,[r],r ‖DsT‖ such that ‖DsT xn,ε‖ ≤ A−1 for
all s = min(2, r), 2, . . . , [r], r and n ∈ N.

From now on we consider a general sequence T := (Tn)n∈N of C r maps with r > 1

from B(0,
√
d) ⊂ Rd to Rd with Tn(0) = 0 for all n ∈ N. By convention we set

T0 = Id|B(0,
√
d). For each n ∈ N we denote by Tn the composition Tn ◦ · · · ◦ T0 defined

on B(n,
√
d) where B(n, ρ) is the Bowen ball centered at 0 of length n and size ρ > 0, i.e.,

B(n, ρ) := {y ∈ Rd ∀k = 0, . . . , n− 1, ‖T ky‖ < ρ}.
We extend the definition of H n

T to this framework by defining for all 1-disks σ and for all
real numbers χ > 0, γ > 0 and C > 1 the set:

H n
T (σ, χ, γ, C) :=

{
t ∈ [0, 1] ∩ σ−1

Ä
B(n,

√
d)
ä

∀1 ≤ i ≤ n, C−1e(χ−γ)i ≤ ‖Dt

(
T i ◦ σ

)
‖ ≤ Ce(χ+γ)i

}
.

We define now subsets of the Bowen ball B(n+ 1, 1) where the defect of multiplicativity
of the norm of the composition DTi+1 ◦D(T i ◦ σ) is prescribed at each step 1 ≤ i ≤ n.

D 2. – Let T := (Tn)n∈N be a sequence of C1 maps fromB(0,
√
d) ⊂ Rd to Rd

and let σ : [0, 1] → Rd be a 1-disk of class C1. Let Kn := (k1, . . . , kn) be a sequence of
n positive integers, we denote by H ( Kn) the subset of σ−1 (B(n+ 1, 1)) defined by:

(10) H ( Kn) :=

{
t ∈ [0, 1] ∩ σ−1 (B(n+ 1, 1))

∀1 ≤ i ≤ n,
ñ

log+ ‖Dt(T
i ◦ σ)‖max(1, ‖DT i◦σ(t)Ti+1‖)
‖Dt(T i+1 ◦ σ)‖

ô
+ 1 = ki

}
.

In the next lemma we estimate as in [9] the number of such sets intersecting H n
T (σ, χ, γ, C)

by using the combinatorial argument of Lemma 4. We write λ+
n := 1

n

∑n−1
i=0 log+ ‖D0Ti‖.

When T is the sequence T xε for some ε > 0 and x ∈ M we have λ+
n = λ+

n (x, T ) =
1
n

∑n−1
i=0 log+ ‖DT ixT‖. If we assume

(11) ∀n ∈ N ∀z, z′ ∈ B(0,
√
d),

max(‖DzTn‖, 1)

max(‖Dz′Tn‖, 1)
≤ 2
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then we have for all y ∈ B(n,
√
d)∣∣∣∣∣λ+

n −
1

n

n−1∑
i=0

log+ ‖DyTi‖
∣∣∣∣∣ ≤ log 2.

The condition (11) is fulfilled as soon as the uniform norm of second derivative (or the r−1

Hölder norm when r < 2) of each Tn is less than 1/
√
d. Under this condition we also notice

that that for two points t, s lying in H ( Kn) and satisfying 1
2‖Dt(T

n ◦σ)‖ ≤ ‖Ds(T
n ◦σ)‖ ≤

2‖Dt(T
n ◦ σ)‖ the derivatives of Tn+1 ◦ σ at t and s have also almost the same size. More

precisely we have
1

4e
‖Dt(T

n+1 ◦ σ)‖ ≤ ‖Ds(T
n+1 ◦ σ)‖ ≤ 4e‖Dt(T

n+1 ◦ σ)‖.(12)

This last remark will be used in the proof of Proposition 2. We state now the application
of the combinatorial fact of Lemma 4.

L 8. – Let χ > 0, 1
3 > γ > 0 and C > 1 and let T := (Tn)n∈N be a sequence

of C r maps from B(0,
√
d) to Rd such that max(‖DzTn‖,1)

max(‖Dz′Tn‖,1)
≤ 2 for all n ∈ N and for all

z, z′ ∈ B(0,
√
d).

Then there exists an integer N depending only on C such that for all n > N and for all
1-disks σ : [0, 1] → Rd of class C1 the number of sequences Kn−1 such that H ( Kn−1) has a
non empty intersection with H n

T (σ, χ, γ, C) is bounded above by

e3n−2e(n−1)(λ+
n−χ)H([λ+

n−χ]+3).

Proof. – Indeed if t ∈ H n
T (σ, χ, γ, C), then

n−1∑
i=0

log+ ‖DT i◦σ(t)Ti+1‖ − log ‖Dt(T
n ◦ σ)‖ ≤ n(λ+

n + log 2− χ+ γ) + logC.

Thus the sequenceÇñ
log
‖Dt(T

i ◦ σ)‖max(‖DT i◦σ(t)Ti+1‖, 1)

‖Dt(T i+1 ◦ σ)‖

ô
+ 1

å
i=1,...,n−1

admits the value [λ+
n −χ]+3 for n > logC

1−log 2− 1
3

. We apply finally the combinatorial Lemma 4

to conclude the proof.

The Reparametrization Lemma follows now directly from Lemma 8 and the following
Proposition 2 applied to the sequences T = T xε for all x ∈M and for ε > 0 small enough.

P 2. – Let T := (Tn)n∈N be a sequence of C r maps with r > 1 from
B(0,

√
d) ⊂ Rd to Rd with supn∈N ‖T ′n‖ < +∞ and sup n∈N,

2≤s≤r
‖Tn‖s ≤ A−1 where A is a

universal constant depending only on r and d which we specify later on in the proof.
Then for all integers n, for all 1-disks σ of class C r with maxs=1,...,[r],r ‖σ‖s ≤ 1 and for all

sequences Kn−1 = (k1, . . . , kn−1) of n− 1 positive integers there exists a family Gn of affine
maps φn : [0, 1]→ [0, 1] satisfying the following properties:

(i) ∀φn ∈ Gn, σ ◦ φn([0, 1]) ⊂ B(n+ 1,
√
d),

(ii) ∀φn ∈ Gn, ∀k = 0, . . . , n, ∀s = 1,min(2, r), 3, . . . , [r], r, ‖T k ◦ σ ◦ φn‖s ≤ 1,
(iii) ∀φn ∈ Gn, ∀min(1, r − 1) ≤ s ≤ r − 1, ‖(Tn ◦ σ)′ ◦ φn‖s ≤ 1

3‖(T
n ◦ σ)′ ◦ φn‖0,
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(iv) H ( Kn−1) ∩ σ−1 (B(n+ 1, 1)) ⊂
⋃
φn∈ Gn

φn([0, 1]),
(v) log ] Gn ≤ B +An+ 1

r−1

∑n−1
i=1 ki,

with B depending only on σ.

When d = 1 it follows from the property ‖(Tn ◦ σ)′ ◦ φn‖min(1,r−1) ≤ 1
3‖(T

n ◦ σ)′ ◦ φn‖0
that the derivative of Tn ◦ σ does not vanish on the image of each φn, which lies thus in a
monotone branch of Tn ◦ σ. Therefore our result recovers the estimates on the number of
monotone branches intersecting H ( Kn) obtained in [19].

The main difference with the reparametrization result presented in [9] is the affine property
of the reparametrization charts. Moreover, as these charts are in this paper one dimensional
this makes much easier the proof because the changes of charts φn+1 ◦ φ−1

n are just affine
maps of [0, 1]. Observe also that we do not assume any hyperbolicity condition on the
reparametrized subset of the Bowen ball contrarily to Proposition 12 of [9].

The conditions on the reparametrization maps are stronger than in Yomdin theory where
only (ii) is required. However we only consider here one dimensional disks - Yomdin’s
approach applies in any dimension - and we do not reparametrized the whole Bowen ball
but only a subset with a fixed growth of the derivative.

Proof. – We argue by induction on n. The initial step is easily checked. We assume the
existence of the family Gn and we build Gn+1. Let φn ∈ Gn. We cover the unit interval into

[e
kn
r−1 ]+1 subintervals of size e−

kn
r−1 . We reparametrize them from [0, 1] by affine contractions

θn+1. We letψn+1 := φn◦θn+1. From now on we focus on mapsψn+1 whose image intersects
the set

H ( Kn) ∩ σ−1 (B(n+ 2, 1)) .

Fix such a map ψn+1 and choose w ∈ [0, 1] such that ψn+1(w) belongs to the previous
set. Let us first prove that

‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1 ≤ 2‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖.

To simplify the notations we write T ′n+1 for the differentialDTn+1 of Tn+1. Then, accord-
ing to the chain rule derivative we have

(Tn+1 ◦ σ)′ ◦ ψn+1 = T ′n+1 ◦ (Tn ◦ σ ◦ ψn+1)× (Tn ◦ σ)′ ◦ ψn+1.

By the induction hypothesis (iii) the s-norm of (Tn◦σ)′◦ψn+1 for min(1, r−1) ≤ s ≤ r−1

satisfies

‖(Tn ◦ σ)′ ◦ ψn+1‖s ≤
1

3
‖θn+1‖s1‖(Tn ◦ σ)′ ◦ φn‖0.

We consider now the first term T ′n+1 ◦ (Tn ◦ σ ◦ ψn+1) of the product. We first recall that

– for an integer β the β-derivative of a product or a composition of smooth functions is
a universal polynomial in the α-derivatives of each term with integers α = 0, . . . , β,

– for a positive real number 0 < β ≤ 1 the β-Hölder norm ‖f × g‖β of a product fg
is less than or equal to ‖f‖0‖g‖β + ‖g‖0‖f‖β while the β-Hölder norm ‖f ◦ g‖β of a
composition f ◦ g is less than or equal to ‖f‖β‖g‖β1 .
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Therefore, by the induction hypothesis (ii), we have for all min(1, r − 1) ≤ s ≤ r − 1∥∥T ′n+1 ◦ (Tn ◦ σ ◦ ψn+1)
∥∥
s
≤ C‖θn+1‖s1 sup

min(2,r)≤k≤r
‖Tn+1‖k

where C is a constant depending only on r and d. Finally we get by replacing this constant
by another one which we denote again by C:

‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1

≤ ‖θn+1‖r−1
1 ‖(Tn ◦ σ)′ ◦ φn‖0

(
1

3
‖T ′n+1 ◦ (Tn ◦ σ ◦ ψn+1) ‖0 + C sup

min(2,r)≤k≤r
‖Tn+1‖k

)

≤ e−kn‖(Tn ◦ σ)′ ◦ φn‖0 max(‖T ′n+1‖0, 1)

Ç
1

3
+ C sup

min(2,r)≤k≤r
‖Tn+1‖k

å
.

But it follows from the induction hypothesis (iii) with s = min(1, r − 1) that

‖(Tn ◦ σ)′ ◦ ψn+1(w)‖ ≥ 2

3
‖(Tn ◦ σ)′ ◦ φn‖0

and we can choose the constant A large enough to ensure firstly

C sup
p∈N,

min(2,r)≤k≤r

‖Tp‖k ≤ CA−1 ≤ 1

3

and secondly for all x ∈ B(0,
√
d)

max(‖T ′n+1‖0, 1) ≤ 2 max(1, ‖T ′n+1(x)‖).

Therefore we have

‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1 ≤
2

3
e−kn‖(Tn ◦ σ)′ ◦ φn‖0 max(‖T ′n+1‖0, 1)

≤ e−kn‖(Tn ◦ σ)′ ◦ ψn+1(w)‖max(‖T ′n+1‖0, 1)

≤ 2e−kn‖(Tn ◦ σ)′ ◦ ψn+1(w)‖max(‖T ′n+1 (Tn ◦ σ ◦ ψn+1(w)) ‖, 1)

and since ψn+1(w) belongs to H ( Kn) we obtain

‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1 ≤ 2‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖.(13)

Now we apply Lemma 5 to the C r−1 map (Tn+1 ◦ σ)′ ◦ ψn+1 with
a = 4e‖(Tn+1 ◦σ)′ ◦ψn+1(w)‖. We let F ψn+1 be the associated family of reparametrization
maps. For any ξn+1 ∈ F ψn+1 we have in particular

‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ξn+1‖min(1,r−1) ≤
1

3
‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖.

From now on we only consider the maps ξn+1 ∈ F ψn+1
such that the image ofψn+1◦ξn+1

meets H ( Kn). Since ‖(Tn ◦ σ)′ ◦ φn‖min(1,r−1) ≤ 1
3‖(T

n ◦ σ)′ ◦ φn‖0 which as seen earlier
implies ‖(Tn ◦ σ)′ ◦ φn(t)‖ ≤ 2‖(Tn ◦ σ)′ ◦ φn(s)‖ for all t, s ∈ [0, 1] we have by the
inequalities (12)

1

8e
‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖ ≤ ‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ξn+1‖0 ≤ 8e‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖.
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Let ηn+1 : [0, 1] → ξn+1([0, 1]) ⊂ [0, 1] be an affine reparametrization of ξn+1([0, 1]). It
follows from the above Landau-Kolmogorov Inequality of Lemma 6 that for all
min(1, r − 1) ≤ s ≤ r − 1 we have

‖(Tn+1 ◦ σ)′◦ψn+1 ◦ ηn+1‖s
≤ C

(
‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ηn+1‖0 + ‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ηn+1‖r−1

)
≤ C

(
‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ξn+1‖0 + ‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1

)
≤ C‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖

≤ C‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ηn+1‖0
where the universal constantC may change at each step of the previous sequence of inequal-
ities.

By dividing the unit interval into [3C]+1 subintervals of size< 1/3C and by reparametriz-
ing them affinely one can assume ‖(Tn+1◦σ)′◦ψn+1◦ηn+1‖s ≤ 1

3‖(T
n+1◦σ)′◦ψn+1◦ηn+1‖0.

Now for any map Tn+1 ◦ σ ◦ ψn+1 ◦ ηn+1 we let [aηn+1 , bηn+1 ] be the subinter-
val of [0, 1] given by Lemma 7. We reparametrize ψn+1 ◦ ηn+1|[aηn+1

,bηn+1
] from [0, 1]

by an affine contraction to get new maps that we denote by φn+1, i.e., φn+1(t) :=

ψn+1 ◦ ηn+1

(
aηn+1 + (bηn+1 − aηn+1)t

)
for all t ∈ [0, 1]. By construction the family Gn+1

of affine maps φn+1 satisfies properties (i) and (iv). Moreover, since the map ψn+1 ◦ ηn+1

satisfies (iii) then so does φn+1. Therefore, we only need to check (ii) for the family Gn+1 at
step n+ 1.

By Lemma 7 we have ‖Tn+1 ◦ σ ◦ φn+1‖1 ≤
√

3d. It only remains to check (ii) for
the family Gn+1 at step n + 1 for the derivative of order min(2, r) ≤ s ≤ r. By using
successively the affine property of φn+1, property (iii) and the above case s = 1, we have
for min(2, r) ≤ s ≤ r:

‖Tn+1 ◦ σ ◦ φn+1‖s = ‖(Tn+1 ◦ σ)′ ◦ φn+1‖s−1 × ‖φn+1‖1

≤ 1

3
‖(Tn+1 ◦ σ)′ ◦ φn+1‖0 × ‖φn+1‖1

≤ 1

3
‖Tn+1 ◦ σ ◦ φn+1‖1 ≤

…
d

3
.

As previously done we may suppose this last constant to be one, should we multiply the

number of reparametrization maps by
[»

d
3

]
+1. This concludes the proof of the lemma.
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