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DERIVED INVARIANCE OF THE NUMBER OF
HOLOMORPHIC 1-FORMS AND VECTOR FIELDS

 M POPA  C SCHNELL

A. – We prove that smooth projective varieties with equivalent derived categories have
isogenous Picard varieties. In particular their irregularity and number of independent vector fields are
the same. This implies that all Hodge numbers are the same for arbitrary derived equivalent threefolds,
as well as other consequences of derived equivalence based on numerical criteria.

R. – Nous montrons que deux variétés projectives lisses dont les catégories dérivées sont
équivalentes, ont des variétés de Picard isogènes. En particulier, elles ont la même irrégularité et le
même nombre de champs de vecteurs indépendants. On en déduit l’invariance des nombres de Hodge
par l’équivalence dérivée pour les variétés de dimension trois, ainsi que quelques autres conséquences
numériques.

1. Introduction

Given a smooth projective variety X, we denote by D(X) the bounded derived category
of coherent sheaves Db(Coh(X)). All varieties we consider below are over the complex
numbers. A result of Rouquier, [17] Théorème 4.18, asserts that if X and Y are smooth
projective varieties with D(X) ' D(Y ) (as linear triangulated categories), then there is an
isomorphism of algebraic groups

Aut0(X)× Pic0(X) ' Aut0(Y )× Pic0(Y ).

We refine this by showing that each of the two factors is almost invariant under derived
equivalence. According to Chevalley’s theorem Aut0(X), the connected component of the
identity in Aut(X), has a unique maximal connected affine subgroup Aff(Aut0(X)), and
the quotient Alb(Aut0(X)) by this subgroup is an abelian variety, the Albanese variety of
Aut0(X). The affine parts Aff(Aut0(X)) and Aff(Aut0(Y )), being also the affine parts of
the two sides in the isomorphism above, are isomorphic. The main result of the paper is
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T A. – Let X and Y be smooth projective varieties such that D(X) ' D(Y ).
Then
(1) Pic0(X) and Pic0(Y ) are isogenous; equivalently, Alb(Aut0(X)) and Alb(Aut0(Y )) are
isogenous.
(2) Pic0(X) ' Pic0(Y ) unless X and Y are étale locally trivial fibrations over isogenous
positive dimensional abelian varieties (hence χ( OX) = χ( OY ) = 0).

The key content is part (1), while (2) simply says that Aut0(X) and Aut0(Y ) are affine
unless the geometric condition stated there holds (hence the presence of abelian varieties is
essentially the only reason for the failure of the derived invariance of the Picard variety).

C B. – If D(X) ' D(Y ), then

h0(X,Ω1
X) = h0(Y,Ω1

Y ) and h0(X,TX) = h0(Y, TY ).

The Hodge number h1,0(X) = h0(X,Ω1
X) is also called the irregularity q(X), the dimen-

sion of the Picard and Albanese varieties of X. The invariance of the sum
h0(X,Ω1

X) + h0(X,TX) was already known, and is a special case of the derived invari-
ance of the Hochschild cohomology of X ([15], [7]; cf. also [9] §6.1). Alternatively, it
follows from Rouquier’s result above. Corollary B, together with the derived invariance of
Hochschild homology (cf. loc. cit.), implies the invariance of all Hodge numbers for all
derived equivalent threefolds. This was expected to hold as suggested by work of Kontsevich
[12] (cf. also [1]).

C C. – LetX and Y be smooth projective threefolds with D(X) ' D(Y ). Then

hp,q(X) = hp,q(Y )

for all p and q.

Proof. – The fact that the Hochschild homology of X and Y is the same gives

(1.1)
∑
p−q=i

hp,q(X) =
∑
p−q=i

hp,q(Y )

for all i. A straightforward calculation shows that this implies the invariance of all Hodge
numbers except for h1,0 and h2,1, about which we only get that h1,0 + h2,1 is invariant. We
then apply Corollary B.

Corollary C is already known (in arbitrary dimension) for varieties of general type: for
these derived equivalence implies K-equivalence by a result of Kawamata [11], while
K-equivalent varieties have the same Hodge numbers according to Batyrev [2] and
Kontsevich, Denef-Loeser [8]. It is also well known for Calabi-Yau threefolds; more
generally it follows easily for threefolds with numerically trivial canonical bundle (condition
which is preserved by derived equivalence, see [11] Theorem 1.4). Indeed, since for threefolds
Hirzebruch-Riemann-Roch gives χ(ωX) = 1

24c1(X)c2(X), in this case χ(ωX) = 0, hence
h1,0(X) can be expressed in terms of Hodge numbers that are known to be derived invariant
as above. Finally, in general the invariance of h1,0 would follow automatically if X and Y
were birational, but derived equivalence does not necessarily imply birationality.
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The proof of Theorem A in §3 uses a number of standard facts in the study of derived
equivalences: invariance results and techniques due to Orlov and Rouquier, Mukai’s descrip-
tion of semi-homogeneous vector bundles, and Orlov’s fundamental characterization of de-
rived equivalences. The main new ingredients are results of Nishi-Matsumura and Brion
on actions of non-affine algebraic groups (see §2). Further numerical applications of Corol-
lary B to fourfolds or abelian varieties are provided in Remark 3.3.

Finally, the case of abelian varieties shows the existence of Fourier-Mukai partners with
non-isomorphic Picard varieties. We expect however the following stronger form of Theo-
rem A(1).

C. – If D(X) ' D(Y ), then D(Pic0(X)) ' D(Pic0(Y )).

Derived equivalent curves must be isomorphic (see e.g. [9], Corollary 5.46), while in the
case of surfaces the conjecture is checked in the upcoming thesis of Pham [16] using the
present methods and the classification of Fourier-Mukai equivalences in [3] and [11].

Acknowledgements. – We thank A. Căldăraru, L. Ein, D. Huybrechts and M. Mustat,ă for
useful comments, and a referee for suggesting improvements to the exposition.

2. Actions of non-affine algebraic groups

Most of the results in this section can be found in Brion [5], [4], or are at least implicit
there. Let G be a connected algebraic group. According to Chevalley’s theorem (see e.g. [5]
p. 1),G has a unique maximal connected affine subgroup Aff(G), and the quotientG/Aff(G)

is an abelian variety. We denote this abelian variety by Alb(G), since the map G→ Alb(G)

is the Albanese map of G, i.e. the universal morphism to an abelian variety (see [19]). Thus
G→ Alb(G) is a homogeneous fiber bundle with fiber Aff(G).

L 2.1 ([4], Lemma 2.2). – The map G → Alb(G) is locally trivial in the Zariski
topology.

Now letX be a smooth projective variety. We abbreviateGX := Aut0(X), and let a(X) be
the dimension of the abelian variety Alb(GX). The groupGX naturally acts on the Albanese
variety Alb(X) as well (see [5] §3).

L 2.2. – The action of GX on Alb(X) induces a map of abelian varieties

Alb(GX)→ Alb(X),

whose image is contained in the Albanese image albX(X). More precisely, the composition
GX → Alb(X) is given by the formula g 7→ albX(gx0 − x0), where x0 ∈ X is an arbitrary
point.

Proof. – From GX ×X → X, we obtain a map of abelian varieties

Alb(GX)×Alb(X) ' Alb(GX ×X)→ Alb(X).

It is clearly the identity on Alb(X), and therefore given by a map of abelian varieties
Alb(GX)→ Alb(X). To see what it is, fix a base-point x0 ∈ X, and write the Albanese map
of X in the form X → Alb(X), x 7→ albX(x− x0). Let g ∈ GX be an automorphism of X.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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By the universal property of Alb(X), it induces an automorphism g̃ ∈ Aut0
(
Alb(X)

)
,

making the diagram

X
g - X

Alb(X)
? g̃- Alb(X)

?

commute; in other words, g̃
(
albX(x − x0)

)
= albX(gx − x0). Any such automorphism

is translation by an element of Alb(X), and the formula shows that this element has to be
albX(gx0−x0). It follows that the map GX → Alb(X) is given by g 7→ albX(gx0−x0). By
Chevalley’s theorem, it factors through Alb(GX).

A crucial fact is the following theorem of Nishi and Matsumura (cf. also [5]).

T 2.3 ([13], Theorem 2). – The map Alb(GX)→ Alb(X) has finite kernel. More
generally, any connected algebraic group G of automorphisms of X acts on Alb(X) by
translations, and the kernel of the induced homomorphism G→ Alb(X) is affine.

Consequently, the image of Alb(GX) is an abelian subvariety of Alb(X) of dimension
a(X). This implies the inequality a(X) ≤ q(X). Brion observed thatX can always be fibered
over an abelian variety which is a quotient of Alb(GX) of the same dimension a(X); the
following proof is taken from [5], p. 2 and §3, and is included for later use of its ingredients.

L 2.4. – There is an affine subgroup Aff(GX) ⊆ H ⊆ GX with H/Aff(GX) finite,
such that X admits a GX -equivariant map ψ : X → GX/H. Consequently, X is isomorphic
to the equivariant fiber bundle GX ×H Z with fiber Z = ψ−1(0).

Proof. – By the Poincaré complete reducibility theorem, the map Alb(GX) → Alb(X)

splits up to isogeny. This means that we can find a subgroup H containing Aff(GX), such
that there is a surjective map Alb(X) → GX/H with Alb(GX) → GX/H an isogeny.
It follows that H/Aff(GX) is finite, and hence that H is an affine subgroup of GX whose
identity component is Aff(GX). Let ψ : X → GX/H be the resulting map; it is equivariant
by construction. Since GX acts transitively on GX/H, we conclude that ψ is an equivariant
fiber bundle over GX/H with fiber Z = ψ−1(0), and therefore isomorphic to

GX ×H Z = (GX × Z)/H,

where H acts on the product by (g, z) · h = (g · h, h−1 · z).

Note that the group H naturally acts on Z; the proof shows that we obtain X from the
principal H-bundle GX → GX/H by replacing the fiber H by Z (see [18], §3.2). While
X → GX/H is not necessarily locally trivial, it is so in the étale topology.

L 2.5. – Both GX → GX/H and X → GX/H are étale locally trivial.
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Proof. – Consider the pullback of X along the étale map Alb(GX)→ GX/H,

X ′ - X

Alb(GX)
?

- GX/H.
?

One notes that X ′ → Alb(GX) is associated to the principal bundle GX → Alb(GX). The
latter is locally trivial in the Zariski topology by Lemma 2.1.

C 2.6. – If a(X) > 0 (i.e. GX is not affine), then χ( OX) = 0.

Proof. – Clearly χ( OX′) = 0 since X ′ is locally isomorphic to the product of Z and
Alb(GX). But χ( OX′) = deg(X ′/X) · χ( OX).

3. Proof of the main result

Let Φ: D(X) → D(Y ) be an exact equivalence between the derived categories of two
smooth projective varieties X and Y . By Orlov’s criterion, F is uniquely up to isomorphism
a Fourier-Mukai functor, i.e. Φ ' Φ E with E ∈ D(X × Y ), where Φ E(·) = pY ∗(p

∗
X(·)⊗ E).

(Here and in what follows all functors are derived.) A result of Rouquier, [17] Théorème 4.18
(see also [9], Proposition 9.45), says that Φ induces an isomorphism of algebraic groups(1)

(3.1) F : Aut0(X)× Pic0(X) ' Aut0(Y )× Pic0(Y )

in the following manner: A pair of ϕ ∈ Aut(X) and L ∈ Pic(X) defines an auto-
equivalence of D(X) by the formula ϕ∗

(
L⊗ (·)

)
; its kernel is (id, ϕ)∗L ∈ D(X×X). When

(ϕ,L) ∈ Aut0(X) × Pic0(X), Rouquier proves that the composition Φ E ◦ Φ(id,ϕ)∗L ◦ Φ−1
E

is again of the form Φ(id,ψ)∗M for a unique pair (ψ,M) ∈ Aut0(Y ) × Pic0(Y ). We then
have F (ϕ,L) = (ψ,M). The following interpretation in terms of the kernel E was proved
by Orlov (see [15], Corollary 5.1.10) for abelian varieties; the general case is similar, and we
include it for the reader’s convenience.

L 3.1. – One has F (ϕ,L) = (ψ,M) if and only if

p∗1L⊗ (ϕ× id)∗ E ' p∗2M ⊗ (id× ψ)∗ E.

Proof. – By construction, F (ϕ,L) = (ψ,M) is equivalent to the relation

Φ E ◦ Φ(id,ϕ)∗L = Φ(id,ψ)∗M ◦ Φ E.

Since both sides are equivalences, their kernels have to be isomorphic. Mukai’s formula for
the kernel of the composition of two integral functors (see [9], Proposition 5.10) gives

(3.2) p13∗
(
p∗12(id, ϕ)∗L⊗ p∗23 E

)
' p13∗

(
p∗12 E⊗ p∗23(id, ψ)∗M

)
.

(1) Note that in the quoted references the result is stated for the semidirect product of Pic0(X) and Aut0(X).
One can however check that the action of Aut0(X) on Pic0(X) is trivial. Indeed, Aut0(X) acts on Pic0(X) by
elements in Aut0(Pic0(X)), which are translations. Since the origin is fixed, these must be trivial. This shows in
particular that Aut0(X) and Pic0(X) commute as subgroups of Aut(D(X)).
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To compute the left-hand side of (3.2), let λ : X × Y → X × X × Y be given by
λ(x, y) = (x, ϕ(x), y), making the following diagram commutative:

X × Y
λ- X ×X × Y

p13- X × Y

X

p1

? (id, ϕ)- X ×X.

p12

?

By the base-change formula, p∗12(id, ϕ)∗L ' λ∗p
∗
1L; using the projection formula and the

identities p13 ◦ λ = id and p23 ◦ λ = ϕ× id, we then have

p13∗
(
p∗12(id, ϕ)∗L⊗ p∗23 E

)
' p∗1L⊗ λ∗p∗23 E ' p∗1L⊗ (ϕ× id)∗ E.

To compute the right-hand side of (3.2), we similarly define µ : X × Y → X × Y × Y by the
formula µ(x, y) = (x, y, ψ(y)), to fit into the diagram

X × Y
µ- X × Y × Y

p13- X × Y

Y

p2

? (id, ψ)- Y × Y.

p23

?

Since p13 ◦ µ = (id× ψ) and p12 ◦ µ = id, the same calculation as above shows that

p13∗
(
p∗12 E⊗ p∗23(id, ψ)∗M

)
' (id× ψ)∗

(
E⊗ p∗2M

)
' (id× ψ)∗ E⊗ p∗2M,

where the last step uses that the action of Aut0(Y ) on Pic0(Y ) is trivial, so
(id× ψ)∗p∗2M ' p∗2M .

We now give the proof of Theorem A. It is in fact more convenient to start directly with the
numerical Corollary B. Note that Rouquier’s result (or the invariance of the first Hochschild
cohomology) implies the derived invariance of the quantity h0(X,Ω1

X) +h0(X,TX). Hence
it suffices to show that q(X) = q(Y ), where we set q(X) = h0(X,Ω1

X), and similarly for Y .
We continue to write GX = Aut0(X) and GY = Aut0(Y ). Let E be the kernel defining

the equivalence, and let F : GX×Pic0(X)→ GY ×Pic0(Y ) be the isomorphism of algebraic
groups from Rouquier’s theorem, as above. To prove the assertion, we consider the map

β : Pic0(X)→ GY , β(L) = p1

(
F (id, L)

)
,

and let B = Imβ. Similarly, we define

α : Pic0(Y )→ GX , α(M) = p1

(
F−1(id,M)

)
,

and let A = Imα. One easily verifies that F induces an isomorphism

F : A× Pic0(X)→ B × Pic0(Y ).

If both A and B are trivial, we immediately obtain Pic0(X) ' Pic0(Y ). Excluding this case
from now on, we let the abelian varietyA×B act onX×Y by automorphisms. Take a point
(x, y) in the support of the kernel E, and consider the orbit map

f : A×B → X × Y, (ϕ,ψ) 7→
(
ϕ(x), ψ(y)

)
.
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By Lemma 2.2 and the Nishi-Matsumura Theorem 2.3, the induced mapA×B → Alb(X)×
Alb(Y ) has finite kernel. Consequently, the dual map f∗ : Pic0(X) × Pic0(Y ) → Â × “B is
surjective.

Now let F := f∗ E ∈ D(A × B); it is nontrivial by our choice of (x, y). For
F (ϕ,L) = (ψ,M), the formula in Lemma 3.1 can be rewritten in the more symmetric
form (again using the fact that ψ∗M 'M ):

(3.3) (ϕ× ψ)∗ E ' (L−1 �M)⊗ E.

For (ϕ,ψ) ∈ A×B, let t(ϕ,ψ) ∈ Aut0(A×B) denote translation by (ϕ,ψ). The identity in
(3.3) implies that t∗(ϕ,ψ) F ' f

∗(L−1 �M)⊗ F , whenever F (ϕ,L) = (ψ,M). We introduce
the map

π = (π1, π2) : A× Pic0(X)→ (A×B)× (Â× “B), π(ϕ,L) =
(
ϕ,ψ, L−1|A,M |B

)
,

where we write L−1|A for the pull-back from Alb(X) to A, and same for M . We can then
write the identity above as

(3.4) t∗π1(ϕ,L) F ' π2(ϕ,L)⊗ F .

Since π1 : A × Pic0(X) → A × B is surjective, it follows that each cohomology object
Hi( F ) is a semi-homogeneous vector bundle on A×B, and that
dim(Imπ) ≥ dimA + dimB. On the other hand Mukai [14], Proposition 5.1, shows
that the semi-homogeneity of Hi( F ) is equivalent to the fact that the closed subset

Φ(Hi( F )) := {(x, α) ∈ (A×B)× (Â× “B) | t∗xHi( F ) ' Hi( F )⊗ α}

has dimension precisely dimA+dimB. This implies that dim(Imπ) = dimA+dimB (and
in fact that Imπ = Φ0(Hi( F )), the neutral component, for any i, though we will not use
this; note that Φ is denoted by Φ0, and Φ0 is denoted by Φ00 in [14]). Furthermore, we have

Ker(π) =
{

(id, L) ∈ A× Pic0(X)
∣∣ F (id, L) = (id,M) and L|A ' OA and M |B ' OB

}
⊆
{
L ∈ Pic0(X)

∣∣ L|A ' OA
}

= Ker
(
Pic0(X)→ Â

)
.

Now the surjectivity of f∗ implies in particular that the restriction map Pic0(X) → Â is
surjective, so we get dim(Kerπ) ≤ q(X)− dimA, and therefore

dimA+ dimB = dimA+ q(X)− dim(Kerπ) ≥ 2 dimA.

Thus dimA ≤ dimB; by symmetry, dimA = dimB, and finally, q(X) = q(Y ). This
concludes the proof of the fact that Pic0(X) and Pic0(Y ) have the same dimension.

We now use this to show that they are in fact isogenous. Let d = dimA = dimB.
The reasoning above proves that Imπ is an abelian subvariety of (A × B) × (Â × “B), with
dim(Imπ) = 2d. For dimension reasons, we also have

(3.5) (Kerπ)0 '
(
Ker(Pic0(X)→ Â)

)0 ' (Ker(Pic0(Y )→ “B)
)0
,

where the superscripts indicate neutral components. We claim that the projection
p : Imπ → A × Â is an isogeny (likewise for B × “B). Indeed, a point in p−1(id, OA)

is of the form
(
id, ψ, OA,M |B

)
, where F (id, L) = (ψ,M) and L|A ' OA. By (3.5), a

fixed multiple of (id, L) belongs to Kerπ, and so Ker p is a finite set. It follows that Imπ is
isogenous to both A× Â and B × “B; consequently, A and B are themselves isogenous.
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To conclude the proof of part (1), note that we have extensions

0→ Kerβ → Pic0(X)→ B → 0 and 0→ Kerα→ Pic0(Y )→ A→ 0.

By definition, Kerβ consists of those L ∈ Pic0(X) for which F (id, L) = (id,M); obviously,
F now induces an isomorphism Kerβ ' Kerα, and therefore Pic0(X) and Pic0(Y ) are
isogenous. Now by Rouquier’s isomorphism (3.1) and the uniqueness of Aff(G) in Cheval-
ley’s theorem we have Aff(GX) ' Aff(GY ) and

Alb(GX)× Pic0(X) ' Alb(GY )× Pic0(Y ).

Therefore we also have equivalently that Alb(GX) and Alb(GY ) are isogenous.

It remains to check part (2). Clearly a(X) = a(Y ). If a(X) = 0, we obviously have
Pic0(X) ' Pic0(Y ). On the other hand, if a(X) > 0, Lemmas 2.4 and 2.5 show that X
can be written as an étale locally trivial fiber bundle over a quotient of Alb(GX) by a finite
subgroup, so an abelian variety isogenous to Alb(GX). The same holds for Y by symmetry.
Note that in this case we have χ( OX) = χ( OY ) = 0 by Corollary 2.6.

R 3.2. – Results of Mukai [14], §5 and §6, imply that each Hi( F ) on A × B in
the proof above has a filtration with simple semi-homogeneous quotients, all of the same
slope, associated to the subvariety Imπ. In line with Orlov’s work on derived equivalences of
abelian varieties [15] §5, one may guess that these simple bundles induce derived equivalences
betweenA andB, and that Imπ induces an isomorphism betweenA× Â andB× “B, but we
have not been able to prove this.

R 3.3 (Further numerical applications). – In the case of fourfolds, in addition to
the Hodge numbers that are equal due to the general invariance of Hochschild homology
(namely h3,0 and h4,0), Corollary B implies:

C 3.4. – Let X and Y be smooth projective fourfolds with D(X) ' D(Y ).
Then h2,1(X) = h2,1(Y ). If in addition Aut0(X) is not affine, then h2,0(X) = h2,0(Y ) and
h3,1(X) = h3,1(Y ).

Proof. – The analogue of (1.1) for fourfolds implies that h2,1 is invariant if and only if
h1,0 is invariant, and h2,0 is invariant if and only if h3,1 is invariant. On the other hand, if
Aut0(X) is not affine, then χ( OX) = 0 (cf. Lemma 2.6), which implies that h2,0 is invariant
if and only if h1,0 is invariant. We apply Corollary B.

It is also worth noting that Corollary B can help in verifying the invariance of classification
properties characterized numerically. We exemplify with a quick proof of the following
statement ([10] Proposition 3.1): If D(X) ' D(Y ), and X is an abelian variety, then
so is Y . Indeed, the derived invariance of the pluricanonical series [15] Corollary 2.1.9 and
Theorem A imply that P1(Y ) = P2(Y ) = 1 and q(Y ) = dimY . The main result of [6]
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implies that Y is birational, so it actually has a birational morphism, to an abelian varietyB.
But ωX ' OX , so ωY ' OY as well (see e.g. [9] Proposition 4.1), and therefore Y ' B.
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