Eric LOMBARDI & Laurent STOLOVITCH

Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation

SOCIÉTÉ MATHÉMATIQUE DE FRANCE
NORMAL FORMS OF ANALYTIC PERTURBATIONS OF QUASIHOMOGENEOUS VECTOR FIELDS: RIGIDITY, INVARIANT ANALYTIC SETS AND EXPONENTIALLY SMALL APPROXIMATION

BY ERIC LOMBARDI AND LAURENT STOLOVITCH

This article is dedicated to Bernard Malgrange on the occasion of his 80th birthday

ABSTRACT. – In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of \(\mathbb{C}^n \), fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part \(S \) which ensures that if such a perturbation of \(S \) is formally conjugate to \(S \) then it is also holomorphically conjugate to it. We study the normal form problem relatively to \(S \). We give a condition on \(S \) that ensures that there always exists an holomorphic transformation to a normal form. If this condition is not satisfied, we also show, that under some reasonable assumptions, each perturbation of \(S \) admits a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an exponentially good approximation of the dynamic by a partial normal form.

RÉSUMÉ. – Dans cet article, nous étudions des germes de champs de vecteurs holomorphes qui sont des perturbations « d’ordres supérieurs » de champs de vecteurs quasi-homogènes au voisinage de l’origine de \(\mathbb{C}^n \), point fixe des champs considérés. Nous définissons une condition « diophantienne » sur le champ quasi-homogène initial \(S \) qui assure que si une telle perturbation de \(S \) est formellement conjuguée à \(S \) alors elle l’est aussi holomorphiquement. Nous étudions le problème de mise sous forme normale relativement à \(S \). Nous donnons une condition suffisante assurant l’existence d’une transformation holomorphe vers une forme normale. Lorsque cette condition n’est pas satisfaite, nous montrons néanmoins, sous une condition raisonnable, l’existence d’une normalisation formelle Gevrey vers une forme normale Gevrey. Enfin, nous montrons l’existence d’une approximation exponentiellement bonne de la dynamique par une forme normale partielle.

1. Introduction

The aim of this article is to study germs of holomorphic vector fields in a neighborhood of a fixed point, say \(0 \), in \(\mathbb{C}^n \). Lot of work is devoted to this problem mainly when the vector field is not too degenerate, that is when not all the eigenvalues of the linear part \(DX(0) \) of \(X \) at the origin are zero. In this situation, the aim is to compare the vector field to its linear
part. One way to achieve this, is to transform the vector field “as close as possible”, in some sense, to its linear part by mean of a regular change of variables.

In this article we shall focus on germs of vector fields which are degenerate and which may not have a nonzero linear part at the origin. This problem has been widely studied in dimension 2 mostly by mean of desingularizations (blow-ups). Unfortunately, this tool is not available in dimension greater than 3.

We shall be given a “reference” polynomial vector field S to which we would like to compare a suitable perturbation of it. This means that we would like to know if some of the geometric or dynamical properties of the model can survive for the perturbation. For instance, the models $S_1 = y\frac{\partial}{\partial x}$ and $S_2 = y\frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial y}$ are quite different although they have the same linear part at the origin of \mathbb{C}^2. In fact, for S_1, each point of $\{y = 0\}$ is fixed whereas the “cusp” $\{2x^3 - 3y^2 = 0\}$ is globally invariant by S_2.

In this article, we shall assume that the unperturbed vector field S is quasihomogeneous with respect to some weight $p = (p_1, \ldots, p_n) \in (\mathbb{N}^*)^n$. This means that each variable x_i has the weight p_i while $\frac{\partial}{\partial x_i}$ has the weight $-p_i$. Hence, the monomial x^Q is quasihomogeneous of quasidegree $(Q, p) := \sum p_i q_i$. In particular, the vector field $S = \sum_{i=1}^n S_i(x) \frac{\partial}{\partial x_i}$ is quasihomogeneous of quasidegree s if and only if S_i is a quasihomogeneous polynomial of degree $s + p_i$.

We shall then consider a germ of holomorphic vector field X which is a good perturbation of a quasihomogeneous vector field S, this means that the smallest quasidegree of nonzero terms in the Taylor expansion of $X - S$ is greater than s. In the homogeneous case $(p = (1, \ldots, 1))$, a linear vector field S is quasihomogeneous of degree 0 and a good perturbation is a nonlinear perturbation of S (i.e. the order at 0 of the components of $X - S$ is greater or equal than 2).

We shall develop an approach of these problems through normal forms. By this, we mean that the group of germs of holomorphic diffeomorphisms (biholomorphisms) of $(\mathbb{C}^n, 0)$ acts on the space of vector fields by conjugacy: if X (resp. Φ) is a germ of vector field (resp. biholomorphism) at 0 of \mathbb{C}^n, then the conjugacy of X by Φ is $\Phi_*(X)(y) := D\Phi(\Phi^{-1}(y))X(\Phi^{-1}(y))$. A normal form is a special representative of this orbit which satisfies some properties. Although, the formal normal form theory of vector fields which are non-linear perturbations of a semi-simple (resp. nilpotent, general) linear vector field is well known [1] (resp. [3, 12, 29]), it is much more difficult to handle the problem when the vector field does not have a nonzero linear part. It might also be useful in problems with parameters to consider some of the parameters as a variable with a prescribed weight.

First of all, we shall define a special Hermitian product $\langle \cdot, \cdot \rangle_{\delta}$ on each space \mathcal{H}_δ of quasihomogeneous vector fields of quasidegree δ (see (5)). Its main property is that the associated norm of a product is less than or equal to the product of the norms. Let us consider the cohomological operator:

$$d_0 : \mathcal{H}_\delta \rightarrow \mathcal{H}_{\delta + \delta}$$
$$U \mapsto [S, U]$$

where $[\cdot, \cdot]$ denotes the usual Lie bracket of vector fields. We emphasize that, contrary to the case where S is linear ($s = 0$), d_0 does not leave \mathcal{H}_δ invariant. Let $d'_0 : \mathcal{H}_{\delta + \delta} \rightarrow \mathcal{H}_\delta$ be the
adjoint of d_0 with respect to the Hermitian product. An element of the kernel of this operator will be called resonant or harmonic. The first result we have is the following:

Formal normal form transformation (see Proposition 4.4)

There exists a formal change of coordinates tangent to Id at the origin, such that, in the new coordinates, $X-S$ is resonant.

This means that there exists $\hat{\Phi} \in (\mathbb{C}[[x_1, \ldots, x_n]])^n$ such that $\hat{\Phi}(0) = 0$ and $D\hat{\Phi}(0) = Id$ and $d_0^*(\hat{\Phi}, X-S) = 0$. When S is linear, this corresponds to classical normal forms [1, 29]. In the homogeneous case, the first result in this direction is due to G. Belitskii [3, 4] using a renormalized scalar product. In the quasihomogeneous case, a general scheme has been devised by H. Kokubu and al. [22] in order to obtain a unique normal form. This scheme can be combined with our definition. For instance, a formal normal form of a nonlinear perturbation of

\[
\begin{align*}
\dot{x} &= y \\
\dot{y} &= z \\
\dot{z} &= 0
\end{align*}
\]

is of the form

\[
\begin{align*}
\dot{x} &= y + xP_1(x, u) \\
\dot{y} &= z + yP_1(x, u) + xP_2(x, u) \\
\dot{z} &= zP_1(x, u) + yP_2(x, u) + xP_3(x, u)
\end{align*}
\]

where $u = y^2 - 2xz$ and where the P_i's are formal power series [21].

One of the main novelties of this article is to consider the Box operator

\[
\Box_{\delta} : \mathcal{H}_{\delta} \to \mathcal{H}_{\delta} \\
U \mapsto \Box_{\delta}(U) := d_0d_0^*(U)
\]

which is self-adjoint and whose spectrum is non-negative. Its nonzero spectrum is composed of the (squared) small divisors of the problem. These are the numbers that we need to control. For instance in the homogeneous case, if $S = \sum_{i=1}^{n} \lambda_i x_i \frac{\partial}{\partial x_i}$, then the eigenvalues of \Box_{k-1} are the $|Q, \lambda| - \lambda_i^2$, where $Q \in \mathbb{N}^n$, $|Q| = k$ and $1 \leq i \leq n$.

For each quasidegree $\delta > s$, let us set

\[
a_\delta := \min_{\lambda \in \text{Spec}(\Box_{\delta}) \backslash \{0\}} \sqrt{\lambda}.
\]

Then, we shall construct inductively a sequence of positive numbers η_δ from the a_δ's (see (14)). We shall say that S is Diophantine if there exist positive constants M, c such that $\eta_\delta \leq Me^\delta$. Being Diophantine is a quantitative way of saying that the sequence $\{a_\delta\}$ does not accumulate the origin too fast. Hence, we have defined a small divisors condition for quasihomogeneous vector fields. For instance in the homogeneous case, $S = \sum_{i=1}^{n} \lambda_i x_i \frac{\partial}{\partial x_i}$ is Diophantine if it satisfies Brjuno’s small divisors condition [7]:

\[
(\omega) - \sum_{k \geq 1} \frac{\ln \omega_k}{2^k} < +\infty,
\]
where
\[\omega_k := \inf \{ (Q, \lambda) - \lambda_i \neq 0, Q \in \mathbb{N}^n, 2 \leq |Q| \leq 2^k, 1 \leq i \leq n \}. \]

Rigidity theorem (see Theorem 5.8). In the general quasihomogeneous case, assume that the quasihomogeneous vector field \(S \) is Diophantine. Let \(X \) be a good holomorphic deformation of \(S \). If \(X \) is formally conjugate to \(S \) then it is holomorphically conjugate to it.

For instance in the homogeneous case and if \(S = \sum_{i=1}^{n} \lambda_i x_i \frac{\partial}{\partial x_i} \), this is the classical Siegel-Brjuno linearization theorem: if \(S \) satisfies the Diophantine condition \((\omega) \) and if a holomorphic nonlinear perturbation \(X \) is formally linearizable, then \(X \) is holomorphically linearizable. For instance, a good holomorphic perturbation of \(S \):

\[
\begin{align*}
\dot{x} &= x^2 \\
\dot{y} &= xy
\end{align*}
\]

which is formally conjugate to it, is also holomorphically conjugate to \(S \). This is due to the fact that \(\min_{\lambda \in \text{Spec}(\mathcal{D}) \setminus \{0\}} \sqrt{\lambda} \geq M \sqrt{\delta} \). Hence, the “small divisors” are in fact large. The same statement holds for perturbations of \((1) \) since \(\min_{\lambda \in \text{Spec}(\mathcal{D}) \setminus \{0\}} \sqrt{\lambda} \) is bounded away from 0.

Assume that the ring of polynomial first integrals of \(S \) is generated by some quasihomogeneous polynomials \(h_1, \ldots, h_r \). Let us denote by \(\mathcal{I} \) (resp. \(\hat{\mathcal{I}} \)) the ideal they generate in the ring of germs of holomorphic functions at the origin (resp. formal power series). The germ of the variety \(\Sigma = \{ h_1 = \cdots = h_r = 0 \} \) at the origin is invariant by the flow of \(S \). Does a good perturbation of \(S \) still have an invariant variety of this kind?

Invariant variety theorem (see Theorem 5.6). In the general quasihomogeneous case, assume that the quasihomogeneous vector field \(S \) is Diophantine. Let \(X \) be a good holomorphic deformation of \(S \). If \(X \) is essentially formally conjugate to \(S \) modulo \(\hat{\mathcal{I}} \) then it is holomorphically conjugate to \(S \) modulo \(\mathcal{I} \).

This means that there exists a germ of holomorphic diffeomorphism \(\Phi \) such that

\[
\Phi_* X = S + \sum_{i=1}^{n} g_i(x) \frac{\partial}{\partial x_i}, \quad \text{with } g_i \in \mathcal{I}.
\]

Hence, in the new holomorphic coordinate system, \(\Sigma \) is an invariant variety of \(X \) since \(g_i|\Sigma = 0 \). The Diophantine condition can eventually be relaxed a little bit taking into account the ideal \(\mathcal{I} \). This is a first step toward the generalization to any dimension of Camacho-Sad’s theorem [8] about the existence of a holomorphic separatrix of a two dimensional foliation with an isolated singularity. If \(S = \sum_{i=1}^{n} \lambda_i x_i \frac{\partial}{\partial x_i} \), this was proved by L. Stolovitch [35]. Furthermore, for instance, if a formal normal form (2) of a perturbation of (1) satisfies \(P_i(x, 0) = 0, i = 1, 2, 3 \), then in good holomorphic coordinates, \(\{ y = z = 0 \} \) is an invariant analytic set of the perturbation.

What happens if instead of accumulating the origin, the sequence \(a_\delta \) tends to infinity with \(\delta \)? Let us set \(\nu := \max \left(1, \max_{2^{-n}} \right) \).
Poincaré’s domain like theorem (see Theorem 6.2). – Assume that there exists a constant M such that for all $\delta > s$,
\[
\min_{\lambda \in \text{Spec}(\mathbb{C}) \setminus \{0\}} \sqrt{\lambda} \geq M(\delta - s)^p.
\]
Then, any holomorphic good perturbation of S is holomorphically conjugate to a normal form.

For instance in the homogeneous case, if $S = \sum_{i=1}^{n} \lambda_i x_i \partial_{x_i}$ belongs to Poincaré’s domain [1] then the convex hull of the λ_i in the complex plane does not contain the origin. This implies that $|\langle Q, \lambda \rangle| \geq \varepsilon |Q|$ from which we infer that $|\langle Q, \lambda_i \rangle| \geq \varepsilon |Q|$ if $|Q|$ is large enough.

We refer to [37, 38, 39] for recent results and overview about the problem of holomorphic conjugacy to a normal form when S is a linear diagonal vector field.

Let $\hat{f} = \sum_{Q \in \mathbb{N}^n} f_Q x^Q$ be a formal power series of \mathbb{C}^n and $\alpha > 0$. We say that \hat{f} is α-Gevrey if for all $Q \in \mathbb{N}^n$, $|f_Q| \leq M e^{\alpha|Q|}.$ As we know from the linear diagonal case, normalizing transformations (that is formal transformation to a normal form) usually diverge. How bad can this divergence be? We show that if the spectrum of \Box_s is of Siegel type, then, at worst, there exists a formal Gevrey normalizing transformation:

GEVREY NORMAL FORM THEOREM (see Theorem 6.4). – Assume that there exists a positive constant M and nonnegative τ such that for all $\delta > s$,
\[
\min_{\lambda \in \text{Spec}(\mathbb{C}) \setminus \{0\}} \sqrt{\lambda} \geq \frac{M}{(\delta - s)^p}.
\]
Then any good holomorphic perturbation of S admits a formal $\bar{p}(\delta + \tau)$-Gevrey normalizing transformation to a $\bar{p}(\delta + \tau)$-Gevrey formal normal form. Here, $\bar{p} = \max(p_i)$, and δ is a positive number depending only on p.

In the homogeneous case with S a linear vector field, this result was proved (but not stated!) by G. Iooss and E. Lombardi [32, Lemma 1]. This kind of result was obtained in a very particular case. Namely, in the case of a two-dimensional saddle-node (resp. resonant saddle), X is a suitable perturbation of $x \partial_x + y^2 \partial_y$ (resp. $p x \partial_x - q x \partial_y + x^2 y^p + 1 \partial_y$) these are not quasihomogeneous, the Gevrey character with respect to y (resp. to the monomial $x^q y^p$) was obtained by J. Écalle [14], J. Martinet and J.-P. Ramis [25, 27, 28] and S. Voronin [42] (see also [19] for a general overview). In this case, there is no small divisor (i.e. $\tau = 0$). For general n-dimensional 1-resonant saddle, there are usually small divisors; the results were devised by J. Écalle [15], by L. Stolovitch [36] and B. Braaksma and L. Stolovitch [6]. In the case of the “cusp”, $S = 2y \partial_y + 3x^2 \partial_x$ ($p = (2, 3)$), a formal normal form of vector fields tangent to the cusp was given by F. Loray. A very precise study of this case with sharp estimates of the Gevrey order was done by M. Canalis-Durand and R. Schäfke [9]. T. Gramchev and M. Yoshino studied the cohomological equation (i.e. the linearized equation of the conjugacy equation) of a pair of commuting 4-dimensional vector fields having linear part with a Jordan block [43].

By applying a polynomial change of coordinates $\Psi_{s-\delta}$ of some quasidegree $\delta - s$, one can transform the perturbation X into a normal form $S + \mathcal{N}_s$ up to some quasiorder δ, that is $(\Psi_{s-\delta})_* X - (S + \mathcal{N}_s)$ is of quasiorder greater than δ. Hence, the norm of $(\Psi_{s-\delta})_* X - (S + \mathcal{N}_s)$ on a ball of radius ε centered at the origin is bounded by a power of ε. Nevertheless, the
formal normalizing diffeomorphism Φ we obtained from the previous theorem allows us to obtain a much better estimate, that is an exponentially small estimate. Namely, let us consider the “twisted ball” $\tilde{B}_\varepsilon = \{ (\sum_{i=1}^n p_i |x_i|^{2/p_i})^{1/2} < \varepsilon \}$.

Exponentially small approximation by a partial normal form theorem (see Theorem 6.11)

For each $\varepsilon > 0$ sufficiently small, there exists a quasidegree δ_{opt} such that

$$\| (\Phi_{\delta_{opt}})_\ast X - (S + N_{\delta_{opt}}) \|_{q,\varepsilon} < M \exp \left(-\frac{A}{\varepsilon^b} \right)$$

for some exponent b that depends on τ, the order of small divisors. Here, $\|X\|_{q,\varepsilon}$ is a “twisted norm” of the vector field X that measures its size on the twisted ball \tilde{B}_ε.

Some of these results were announced in [23].

2. Notation

Let us set some notation which will be used throughout this article.

- \tilde{X}_n denotes the \mathbb{C}-space of formal vector fields on \mathbb{C}^n.
- X_n denotes the \mathbb{C}-space of germs of holomorphic vector fields on $(\mathbb{C}^n, 0)$.
- \tilde{O}_n denotes the ring of formal power series in \mathbb{C}^n.
- O_n denotes the ring of germs at 0 of holomorphic functions in \mathbb{C}^n.

Let $Q = (q_1, \ldots, q_n) \in \mathbb{N}^n$. Let $|Q| := q_1 + \cdots + q_n$ be the length of Q. As usual, if $x = (x_1, \ldots, x_n)$, x^Q denotes the monomial $x_1^{q_1} \cdots x_n^{q_n}$. Let $n, k \in \mathbb{N}$ with $k \leq n$; we denote by $C^k_n := \frac{n!}{k!(n-k)!}$ the binomial coefficients.

3. Quasihomogeneous vector fields and polynomials

3.1. Definitions and notation

Let $p = (p_1, \ldots, p_n) \in (\mathbb{N}^+)^n$ be such that the largest common divisor of its components $p_1 \wedge \cdots \wedge p_n$ is equal to 1. Let us denote by

$$R_p := \sum_{i=1}^n p_i x_i \frac{\partial}{\partial x_i}$$

the p-radial vector field \mathbb{C}^n. Let $Q = (q_1, \ldots, q_n) \in \mathbb{N}^n$. Let (Q, p) stand for $\sum_{i=1}^n q_i p_i$.

A polynomial will be called quasihomogeneous of degree δ if it can be written as a finite sum

$$\sum_{(Q, p) = \delta} p_Q x^Q$$

with complex coefficients. It is equivalent to say that the Lie derivative $R_p(f) := \sum_{i=1}^n p_i x_i \frac{\partial f}{\partial x_i} = \delta f$ since $R_p(x^Q) = (Q, p)x^Q$. The integer $\delta = (Q, p)$ is the p-degree of
quasihomogeneity (or p-quasidegree) of x^Q. When there is no possible confusion, we shall omit the reference to p, which is fixed once for all. Let us define

$$\bar{p} := \max_{1 \leq i \leq n} p_i, \quad \underline{p} := \min_{1 \leq i \leq n} p_i.$$

Let us define Δ to be the totally ordered set of p-quasihomogeneity degrees of polynomials; that is to say $\Delta = \{\delta_1, \delta_2, \delta_3, \ldots\}$ where $\delta_1 < \delta_2 < \delta_3 < \cdots$. It is the set

$$\Delta = \{d \in \mathbb{N} | d = (\alpha, p), \text{ with } \alpha \in \mathbb{N}^n\}.$$

An element of Δ will be called a quasidegree.

For $\delta \in \Delta$, we shall denote by \mathcal{P}_δ the complex vector space of p-quasihomogeneous polynomials of degree δ. If $\delta \notin \Delta$, we set $\mathcal{P}_\delta := \{0\}$. Hence, for any $\delta \in \mathbb{N}$,

$$\mathcal{P}_\delta := \left\{ f \in \mathbb{C}[x], \ f(x) = \sum_{(Q,p) = \delta} f_Q x^Q \right\} \text{ if } \delta \in \Delta, \quad \mathcal{P}_\delta := \{0\} \text{ otherwise.}$$

A vector field $X = \sum_{i=1}^n X_i \frac{\partial}{\partial x_i}$ is quasihomogeneous of quasidegree $\delta \geq 0$ if, for each $1 \leq i \leq n$, X_i belongs to $\mathcal{P}_{\delta + p_i}$. It is equivalent to say that $[R_p, X] = \delta X$ where $[\cdot, \cdot]$ denotes the Lie bracket. In other words, x_i has weight p_i and $\frac{\partial}{\partial x_i}$ has weight $-p_i$.

We shall denote by $\tilde{\Delta}$ the totally ordered set of p-quasihomogeneity degrees of non zero polynomial vector fields. As a set, we have

$$\tilde{\Delta} = \{\tilde{\delta} \in \mathbb{Z} | \tilde{\delta} = \delta - p_i, \text{with } \delta \in \Delta, 1 \leq i \leq n\}.$$

For $\delta \in \tilde{\Delta}$, we shall denote by \mathcal{H}_δ the complex vector space of p-quasihomogeneous polynomial vector fields of quasidegree δ. If $\delta \notin \tilde{\Delta}$, we shall set $\mathcal{H}_\delta := \{0\}$.

Remark 3.1. – Let us notice that if $\delta \in \tilde{\Delta}$, then there exists $1 \leq j_0 \leq n$ such that $p_{j_0} + \delta \in \Delta$. It may happen that for some $1 \leq j \leq n$, $p_j + \delta \notin \Delta$. This simply means that any polynomial vector field $X = \sum_{i=1}^n X_i \frac{\partial}{\partial x_i}$ belonging to \mathcal{H}_δ has a j-th component X_j which is equal to 0.

Remark 3.2. – There is only a finite number of elements of $\tilde{\Delta}$ which are negative. In fact, if $\delta \in \tilde{\Delta}$, then $\delta \geq -p_i$ for some i.

In general, the sets Δ and $\tilde{\Delta}$ do not contain all the integers. However we have the following lemma (inspired by a remark of J.-C. Yoccoz):

Lemma 3.3. – Let $p = (p_1, \ldots, p_n) \in (\mathbb{N}^*)^n$ as above.

(a) There exists δ_0 such that, for every integer, $\delta \geq \delta_0$ belongs to Δ.

(b) We have $\tilde{\Delta} \supset \Delta$.

(c) Δ is stable by multiplication by any nonnegative integer and by addition (this is a priori not the case for $\tilde{\Delta}$).
Proof. – The following proof of (a) is due to Marc Revesat: let $N > 0$ be an integer. Then, we can write it as $N = p_1u_1 + \cdots + p_nu_n$, where the u_i’s are integers. For all i, there exists an integer k_i such that $0 \leq p_iu_i + k_i p_1 \cdots p_n < p_1 \cdots p_n$. Let us set $v_i = p_1 \cdots p_{i-1} p_1 + p_n v_i$ and $\tilde{v}_i = u_i + k_i v_i$ and $k = k_1 + \cdots + k_n$. Hence we have: $N + k p_1 \cdots p_n = p_1 \tilde{v}_1 + \cdots + p_n \tilde{v}_n$ with $0 \leq p_i \tilde{v}_i < p_1 \cdots p_n$.

Let us assume that $N \geq np_1 \cdots p_n$. Therefore, according to the previous computations, we have $N + k p_1 \cdots p_n = p_1 \tilde{v}_1 + \cdots + p_n \tilde{v}_n < np_1 \cdots p_n$. Hence, k is negative. We obtain the result by changing, for instance, v_1 into $v_1 - k p_2 \cdots p_n$. Since for any $\delta \in \Delta$, $\delta = (\alpha, p) = (\alpha + e_j, p) - p j$ where $\alpha \in \mathbb{N}^n$ and e_j is the j-th vector of the canonical basis of \mathbb{R}^n, we get that $\Delta \supset \Delta$ holds. Finally statement (c) readily follows from the definition of Δ.

Proposition 3.4. – Let $k, \ell \in \mathbb{Z}$ be two integers.

(a) Let f, g be two quasihomogeneous polynomials belonging respectively to \mathcal{P}_k and \mathcal{P}_ℓ. Then, fg belongs to $\mathcal{P}_{k+\ell}$.

(b) Let f be a quasihomogeneous polynomial belonging to \mathcal{P}_k and let X be a quasihomogeneous polynomial vector field belonging to \mathcal{H}_ℓ. Then,

(i) the Lie derivative $X(f)$ belongs to $\mathcal{P}_{k+\ell}$;

(ii) $f X$ belongs to $\mathcal{H}_{k+\ell}$.

(c) Let S, U be two quasihomogeneous vector fields belonging to \mathcal{H}_k and \mathcal{H}_ℓ respectively. Then,

(i) DSU belongs to $\mathcal{H}_{k+\ell}$;

(ii) the Lie bracket $\{S, U\}$ belongs to $\mathcal{H}_{k+\ell}$.

Proof. – The proof readily follows from the definition of \mathcal{P}_k and \mathcal{H}_ℓ observing that if f lies in \mathcal{P}_k then $\frac{df}{dx}$ lies in \mathcal{P}_{k-pj}.

3.2. Decomposition of functions and vector fields as sum of homogeneous and quasihomogeneous components.

Let $f \in \mathbb{C}[[x_1, \ldots, x_n]]$ be a formal power series. Hence f reads

$$f(x) = \sum_{Q \in \mathbb{N}^n} f_Q x^Q \quad \text{where} \quad f_Q \in \mathbb{C}.$$

It admits a unique decomposition into a sum of homogeneous polynomials, $f_{\bullet, r}$, of different degree r:

$$f = \sum_{r \geq 0} f_{\bullet, r} \quad \text{where} \quad f_{\bullet, r}(x) = \sum_{|Q|=r} f_Q x^Q.$$

In a similar way, f admits a unique decomposition as a sum of quasihomogeneous polynomials f_δ of different quasidegree δ:

$$f = \sum_{\delta \in \Delta} f_\delta \quad \text{with} \quad f_\delta(x) = \sum_{(Q, p)=\delta} f_Q x^Q.$$

We shall say that f is of p-order δ_0 if $f_{\delta_0} \neq 0$ and $f_\delta = 0$ for all quasidegree $\delta < \delta_0$. Let μ be a quasidegree. We shall define the μ-quasijet of f (at 0) to be

$$J^\mu(f) := \sum_{\delta \in \Delta, \delta \leq \mu} f_\delta.$$
Furthermore, if \(f \) is a germ of holomorphic function at the origin of \(\mathbb{C}^n \), we will denote by \(\{ f \}_\mu := f_\mu \) the quasihomogeneous component of degree \(\mu \) in the Taylor expansion of \(f \) at the origin.

Finally, \(f \) admits a unique decomposition as a sum of polynomials \(f_{\delta,r} \) which are simultaneously quasihomogeneous of quasidegree \(\delta \) and homogeneous of degree \(r \):

\[
f = \sum_{\delta \in \Delta} \sum_{\frac{r}{p} \leq \frac{\delta}{p} \leq \frac{\delta'}{p}} f_{\delta,r} \quad \text{with} \quad f_{\delta,r}(x) = \sum_{|Q|=r, (Q,p)=\delta} \frac{\partial^r f}{\partial x^Q}.
\]

In the last decomposition of \(f \), we have \(\delta/p \leq r \leq \delta/p \) since for every \(Q \in \mathbb{N}^n \), \(p|Q| \leq (Q,p) \leq p|Q| \).

Any formal vector field \(V \) can be written as an element of \((\mathbb{C}[[x_1, \ldots, x_n]])^n \). Hence it can be decomposed along the quasihomogeneous filtration:

\[
V = \sum_{\delta \in \Delta} V_\delta
\]

where \(V_\delta \) is a quasihomogeneous vector field of quasidegree \(\delta \). By definition, we have \(V_\delta = \sum_{i=1}^{n} V_i \frac{\partial f}{\partial x_i} \) with \(V_i, \delta \in \mathfrak{g}_{\delta+p_i} \). We recall that \(\mathfrak{g}_{\delta+p} \) is equal to \(\{0\} \) when \(\delta + p_j \notin \Delta \). Moreover, each quasihomogeneous component \(V_\delta \) can be decomposed into homogeneous components \(V_{\delta,r} \) of degree \(r \):

\[
V_\delta = \sum_{\delta \leq r \leq \delta^*} V_{\delta,r} \text{ with } V_{j,\delta,r}(x) = \sum_{|Q|=r, (Q,p)=\delta+p_j} V_{j,Q} x^Q
\]

where

\[
\delta_* := \min\{\delta + p_i \mid \delta + p_i \in \Delta\} \quad \text{and} \quad \delta^* := \max\{\delta + p_i \mid \delta + p_i \in \Delta\}.
\]

We recall that, for any \(q \geq 1 \) and for any homogeneous polynomial \(\phi \in (\mathbb{C}[[x_1, \ldots, x_n]])^q \) of degree \(r \), there exists a unique \(r \)-linear, symmetric, operator \(\tilde{\phi} : (\mathbb{C}^n)^r \to \mathbb{C}^q \) such that \(\tilde{\phi}(x, \ldots, x) = \phi(x) \) where \(x = (x_1, \ldots, x_n) \). Moreover, for every \(x^{(\ell)} \in \mathbb{C}^n \) with \(1 \leq \ell \leq r \), \(\tilde{\phi} \) is given by

\[
\tilde{\phi}(x^{(1)}, \ldots, x^{(r)}) = \frac{1}{r!} D_{x} \phi(0)[x^{(1)}, \ldots, x^{(r)}] = \frac{1}{r!} \Delta x^{(1)} \cdots \Delta x^{(r)} \phi
\]

where \(\Delta h \phi(x) = \phi(x + h) - \phi(x) \) and where one checks that \(\Delta x^{(1)} \cdots \Delta x^{(r)} \phi(x) \) does not depend on \(x \) (see for instance the book of Cartan [10, corollaire 6.3.3]).

The homogeneous and quasihomogeneous components of sums, products and derivatives of formal power series and vector fields can be computed with the standard rules (see Lemmas A.1, A.2 in Appendix A). Computation of quasihomogeneous components of the composition of a function or a vector field by a map is given by the following lemma:

Lemma 3.5 (Components of the composition). Let \(f \in \mathbb{C}[[x_1, \ldots, x_n]] \) and \(U, V \) in \((\mathbb{C}[[x_1, \ldots, x_n]])^n \). Then,
(a) \(\{ f \circ U \}_\delta = \sum_{\delta \leq \delta', \frac{\delta + r}{2} \leq \frac{\delta'}{2}} \tilde{f}_{\delta,r}(U_{\delta_1}, \ldots U_{\delta_r}) \),
\(\{ V \circ U \}_\delta = \sum_{\delta \leq \delta', \delta \leq r \leq \delta'} \tilde{V}_{\delta,r}(U_{\delta_1}, \ldots U_{\delta_r}) \),
where \(\delta_1 \) and \(\delta' \) are defined in (3).

The proof of this lemma is given in Appendix A.

3.3. Hermitian product for quasihomogeneous polynomials and vector fields

We shall provide on \(\mathbb{C}[x_1, \ldots, x_n] \) a Hermitian product compatible with the grading into quasihomogeneous space. Moreover, on each \(P_\delta \), this Hermitian product will induce a submultiplicative norm, i.e. the associated norm of the product of two functions is less than or equal to the product of the norms. There are several ways for defining an inner product with such a property (see Appendix A Subsection A.2). In this paper, we shall choose the following one:

- for quasihomogeneous functions \(f, g \in \mathcal{P}_\delta \), we define the following inner product
 \[
 \langle f, g \rangle_{p,\delta} := \sum_{Q \in \mathbb{N}^n} \frac{(Q!)^p}{(Q, p) = \delta} f_Q \overline{g_Q} (Q!)^p_{p,\delta} \text{ where } (Q!)^p := (q_1!)^{p_1} \ldots (q_n!)^{p_n}.
 \]

Hence, we have

\[
\langle x^R, x^Q \rangle_{p,\delta} := \begin{cases} \prod_{i=1}^n (r_i!)^{p_i} \prod_{i=1}^n (r_i!)^{p_i} & \text{if } R = Q \\ 0 & \text{otherwise} \end{cases}
\]

the associated norm will be denoted by \(|.|_{p,\delta} \). If \(p = (1, \ldots, 1) \) (i.e. in the homogeneous case), this is the Fischer scalar product [13, 17, 21, 32].

- for quasihomogeneous vector field of degree \(\delta \in \Delta \) we define the associated inner product and norm to be:

\[
\langle U, V \rangle_{p,\delta} := \sum_{i=1}^n \langle U_i, V_i \rangle_{p,\delta+p_i} \quad \text{and} \quad \| U \|_{p,\delta}^2 := \sum_{i=1}^n |U_i|_{p,\delta+p_i}^2
\]

where \(U = \sum_{i=1}^n U_i \frac{\partial}{\partial x_i} \in \mathcal{H}_\delta \) and \(V = \sum_{i=1}^n V_i \frac{\partial}{\partial x_i} \in \mathcal{H}_\delta \).

One of the main features of these Hermitian products is their good behavior with respect to the product. More precisely, we have

Proposition 3.6 (submultiplicativity of the norms). – (a) Let \(f, g \) be \(p \)-quasihomogeneous polynomials of \(\delta, \delta' \) respectively. Then,
\[
|fg|_{p,\delta+p'} \leq |f|_{p,\delta} |g|_{p,\delta'}.
\]

(b) Let \(f_{\delta,r} \) be a polynomial which is simultaneously quasihomogeneous of degree \(\delta \) and homogeneous of degree \(r \). Let \(\tilde{f}_{\delta,r} \) be the unique \(r \)-linear, symmetric form such that \(\tilde{f}_{\delta,r}(X, \ldots, X) = f_{\delta,r}(X) \) where \(X = (x_1, \ldots, x_n) \). For each \(i = 1, \ldots, r \), let \(U_{\delta_i} \) be a \(p \)-quasihomogeneous vector field of degree \(\delta_i \).
Then, \(\tilde{f}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \) is \(p \)-quasihomogeneous of degree \(\delta + \delta_1 + \cdots + \delta_r \) and

\[
(7) \quad \| \tilde{f}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \|_{p,\delta + \delta_1 + \cdots + \delta_r} \leq N_1(\tilde{f}_{\delta,r}) \| U_{\delta_1} \|_{p,\delta_1} \cdots \| U_{\delta_r} \|_{p,\delta_r},
\]

with \(N_1(\tilde{R}_{\delta,r}) := \sum_{1 \leq \nu \leq n} \left| \tilde{f}_{\delta,r}(e_{\nu_1}, \ldots, e_{\nu_n}) \right| \) where \((e_1, \ldots, e_n)\) is the canonical basis of \(\mathbb{C}^n \).

(c) Let \(R_{\delta,r} \) be a vector field of \(\mathbb{C}^n \) which is simultaneously quasihomogeneous of degree \(\delta \) and homogeneous of degree \(r \). Let \(\tilde{R}_{\delta,r} \) be the unique \(r \)-linear, symmetric operator such that \(\tilde{R}_{\delta,r}(X, \ldots, X) = R_{\delta,r}(X) \). For each \(i = 1, \ldots, r \), let \(U_{\delta_i} \) be a \(p \)-quasihomogeneous \(r \) times vector field of degree \(\delta_i \).

Then, \(\tilde{R}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \) is \(p \)-quasihomogeneous of degree \(\delta + \delta_1 + \cdots + \delta_r \) and we have

\[
(8) \quad \| \tilde{R}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \|_{p,\delta + \delta_1 + \cdots + \delta_r} \leq N_{2,1}(\tilde{R}_{\delta,r}) \| U_{\delta_1} \|_{p,\delta_1} \cdots \| U_{\delta_r} \|_{p,\delta_r},
\]

with \(N_{2,1}(\tilde{R}_{\delta,r}) := \left(\sum_{j=1}^{n} \left(N_1(\tilde{R}_{\delta,r,j}) \right)^2 \right)^{1/2} \) where \(\tilde{R}_{\delta,r,j} \) denotes the \(j \)-th component of \(\tilde{R}_{\delta,r} \) in the canonical basis of \(\mathbb{C}^n \).

(d) Let \(U \) and \(N \) be two \(p \)-quasihomogeneous vector fields of quasidegree \(\delta > 0 \) and \(\alpha \) respectively. Then \(DU \cdot N \) is a \(p \)-quasihomogeneous vector field of degree \(\delta + \alpha \) satisfying

\[
\| DU \cdot N \|_{p,\delta + \alpha} \leq n(\delta + \overline{p})^{\nu} \| U \|_{p,\delta} \| N \|_{p,\alpha} \leq M \delta^{\nu} \| U \|_{p,\delta} \| N \|_{p,\alpha},
\]

where \(\nu := \max(1, \frac{p}{2}) \) and \(M_p = \sup_{\delta \in \Delta} \left(\frac{4+\overline{p}}{2} \right)^{\nu} \).

The proof of this proposition is given in Appendix A, Subsection A.2. In the homogeneous case, this result is due to G. Iooss and E. Lombardi [21, Lemma A.8].

Finally, the convergence of a formal power series is linked with the growth of the norms of its quasihomogeneous components. More precisely we have:

Proposition 3.7. – (a) For a formal power series \(f \), the following properties are equivalent:

(i) \(f \) is uniformly convergent in a neighborhood of the origin,
(ii) There exist \(M, R > 0 \) such that for every \(\delta \in \Delta \), \(|f_\delta|_{p,\delta} \leq \frac{M}{\delta^r} \).
(iii) There exist \(M, R > 0 \) such that for every \(\delta \in \Delta \) and \(r \geq 0 \), \(N_1(f_{\delta r}) \leq \frac{M}{\delta^r} \).

(b) For a formal vector field \(V \), the following properties are equivalent:

(i) \(V \) is uniformly convergent in a neighborhood of the origin,
(ii) There exist \(M, R > 0 \) such that for every \(\delta \in \Delta \), \(\| V_\delta \|_{p,\delta} \leq \frac{M}{\delta^r} \).
(iii) There exist \(M, R > 0 \) such that for every \(\delta \in \Delta \) and \(r \geq 0 \), \(N_{2,1}(V_{\delta r}) \leq \frac{M}{\delta^r} \).

The proof of this lemma is given in Appendix A, Subsection A.2. In the homogeneous case, this result is due to H. Shapiro [32, Lemma 1].
Lemma 3.8. – Let $f = \sum_{\delta \in \Delta} f_\delta = \sum_{Q \in \mathbb{N}} f_Q x^Q$ be a formal power series. If there exists a constant C such that, for all $\delta \in \Delta$, $|f_\delta|_{p,\delta} \leq C^\delta(\delta!)^b$, then f is a (pb)-Gevrey formal power series. This means that there exists a positive constant D such that $|f_Q| \leq C Q(|Q|)!^{\|b\|}$ for all multiindices $Q \in \mathbb{N}^n$.

The proof of this lemma is given in Appendix A.4.

4. Normal forms for perturbation of quasihomogeneous vector fields

4.1. Good perturbations

Let $n \geq 2$ be an integer. Let $p = (p_1, \ldots, p_n) \in (\mathbb{N}^*)^n$ be fixed such that the largest common divisor of its components $p_1 \wedge \cdots \wedge p_n$ is equal to 1. Let S be a quasihomogeneous vector field of \mathbb{C}^n of quasidegree s. We are interested in suitable holomorphic perturbations of S.

Definition 4.1. – Let X be a germ of holomorphic vector field at the origin of \mathbb{C}^n. We shall say that X is a good perturbation of S if the Taylor expansion of $X - S$ at the origin is of quasiorder greater than s.

Example 4.2. – Let us consider the germ of vector field at the origin of \mathbb{C}^2

$$X = (2y + x^p U(x)) \frac{\partial}{\partial x} - nx^{n-1} \frac{\partial}{\partial y}$$

where $U(0) = 1$. This example was considered by Cerveau and Moussu [11]. Let us define $S = 2y \frac{\partial}{\partial x} - nx^{n-1} \frac{\partial}{\partial y}$. If $n = 2m$ is even, then it is $(1, m)$-quasihomogeneous of degree $m - 1$. If $n = 2m + 1$ is odd, then it is $(2, n)$-quasihomogeneous of degree $n - 2$. In both cases X is good perturbation of S whenever $2p > n$.

4.2. Formal normal form of a good deformation

In this section, we shall define a formal normal form of a good perturbation of a quasihomogeneous vector field S.

Let $\delta \in \tilde{\Delta}$. Let us define the coboundary operator $d_0 : \mathcal{H}_\delta \to \mathcal{H}_{\delta + \delta}$ to be the linear map $d_0(U) = [S, U]$ where $[\cdot, \cdot]$ denotes the Lie bracket of vector fields.

For any quasidegree $\alpha \in \tilde{\Delta}$ such that $\alpha > s$, we consider the selfadjoint operator

$$\square_\alpha : \mathcal{H}_\alpha \to \mathcal{H}_\alpha$$

$$U \mapsto \square_\alpha U := d_0 d_0^* U$$

where d_0^* denotes the adjoint operator of d_0 relatively to the scalar product $\langle \cdot, \cdot \rangle_{p,\delta}$ (defined by (4)). Let $\text{spec} \ (\square_\alpha)$ denote its spectrum. It is included in the nonnegative real axis.

Definition 4.3. – (a) We shall say that a vector field of \mathcal{H}_α is resonant (or harmonic) if it belongs to the kernel $\text{Ker} \ \square_\alpha$ of \square_α.

(b) A formal vector field will be called resonant if all of its quasihomogeneous components are resonant.
(c) *A good perturbation* $X = S + R$ of S is a normal form relatively to S if R is resonant.

Proposition 4.4. — Let S be a p-quasihomogeneous vector field of \mathbb{C}^n. Let $X := S + R$ be a good holomorphic perturbation of S in a neighborhood of the origin of \mathbb{C}^n. Then,

(a) (Formal normal form) there exists a formal diffeomorphism $\hat{\Phi}$ tangent to the identity which conjugates X to a formal normal form; that is $\hat{\Phi}^* X = S$ is resonant. Moreover, there exists a unique normalizing diffeomorphism $\Phi = \text{Id} + \mathcal{U}_\alpha$ such that \mathcal{U}_α has a zero projection on the kernel of $d_0 = [S, \cdot]$.

(b) (Partial Normal Form) for every $\alpha \in \Delta$, there exists a polynomial diffeomorphism tangent to identity $\Phi^{-1}_\alpha = \text{Id} + \mathcal{U}_\alpha$ where $\mathcal{U}_\alpha = \sum_{0 \leq \delta \leq \alpha - s} U_\delta$, with $U_\delta \in \mathcal{H}_\delta \cap (\ker d_0)^\perp$ such that

$$\tag{9} (\Phi_\alpha)_*(X) = S + \mathcal{N}_\alpha + \mathcal{R}_{>\alpha},$$

where $\mathcal{N}_\alpha = \sum_{s < \delta \leq \alpha} N_\delta$, $N_\delta \in \ker \square_\delta = \ker d^{\alpha}_0 \mathcal{H}_\delta$ and $\mathcal{R}_{>\alpha}$ is of quasiorder $> \alpha$.

Remark 4.5. — We emphasize that, in the expansions of \mathcal{N}_α and \mathcal{U}_α in (b), $U_\delta = 0$ and $N_\delta = 0$ for $\delta \not\in \Delta$ since $\mathcal{H}_\delta = \{0\}$.

Proof. — First of all, we notice that (a) follows directly from (b). Let us prove (b). A basic identification of the quasihomogeneous components in the conjugacy equation (9) leads to

$$\tag{10} \left\{ \mathcal{N}_\alpha + [S, \mathcal{U}_\alpha] \right\}_{\mathcal{H}_\delta} = \left\{ R(\text{Id} + \mathcal{U}_\alpha) - D\mathcal{U}_\alpha \mathcal{N}_\alpha + S(\text{Id} + \mathcal{U}_\alpha) - S - DS \mathcal{U}_\alpha \right\}_{\mathcal{H}_\delta},$$

where $\delta \in \Delta$ and $s < \delta \leq \alpha$. Hence, using Proposition 3.4, Lemma 3.5 and (20), we get the following “hierarchy” of cohomological equations in \mathcal{H}_δ for $\delta \in \Delta$ with $s < \delta \leq \alpha$:

$$\tag{11} N_\delta + d_0(U_{\delta-s}) = K_\delta$$

where K_δ depends only on R, S which are given and on N_β and $U_{\beta-s}$ for $s < \beta < \delta$ (the explicit formula of K_δ which is useless here is given in Section 6: see (25)). So the “hierarchy” of equations (11) for $s < \delta \leq \alpha$ can be solved by induction starting with the smallest $\delta \in \Delta$ greater than s.

If $\delta - s \not\in \Delta$, then $\mathcal{H}_{\delta-s} = \{0\}$. Hence, $d_0|_{\mathcal{H}_{\delta-s}} \equiv 0$ so that $K_\delta \in \ker d^{\alpha}_0 \mathcal{H}_\delta$. Hence, if $\delta - s \not\in \Delta$, we set $U_{\delta-s} := 0$ and $N_\delta := K_\delta \in \ker d^{\alpha}_0$.

If $\delta - s \in \Delta$ (and $\delta \in \Delta$), then let us decompose \mathcal{H}_δ along the direct sum

$$\mathcal{H}_\delta = \text{Im} \ d_0|_{\mathcal{H}_{\delta-s}} \bigoplus \ker d^{\alpha}_0|_{\mathcal{H}_\delta} = \text{Im} \ \square_\delta \bigoplus \ker \square_\delta$$

where $\text{Im} \ d_0|_{\mathcal{H}_{\delta-s}} = \text{Im} \ \square_\delta$ and $\ker d^{\alpha}_0|_{\mathcal{H}_\delta} = \ker \square_\delta$. Let π_δ denote the orthogonal projection onto $(\ker d^{\alpha}_0|_{\mathcal{H}_\delta})^\perp = (\ker \square_\delta)^\perp$. Then, the cohomological equation (11) is equivalent to

$$\tag{12} N_\delta = (\text{Id} - \pi_\delta)(K_\delta) \in \ker d^{\alpha}_0|_{\mathcal{H}_\delta}, \quad d_0(U_{\delta-s}) = \pi_\delta(K_\delta) \in \text{Im} \ d_0|_{\mathcal{H}_{\delta-s}}.$$

Then since d_0 induces an isomorphism from $\ker (d_0|_{\mathcal{H}_{\delta-s}})^\perp$ onto $\text{Im} \ d_0|_{\mathcal{H}_{\delta-s}}$, there exists a unique $U_{\delta-s} \in (\ker (d_0|_{\mathcal{H}_{\delta-s}}))^\perp$ such that $d_0(U_{\delta-s}) = \pi_\delta(K_\delta) \in \text{Im} \ d_0|_{\mathcal{H}_{\delta-s}}$.

Annales Scientifiques de l’École Normale Supérieure
Example 4.6. – Let \(S = \sum_{i=1}^{n} \lambda_i x_i \frac{\partial}{\partial x_i} \) be a linear diagonal vector field. It is \((1, \ldots, 1)\)-quasihomogeneous of degree 0. An easy computation shows that \((\text{ad}_S)^* = \text{ad}_{\bar{S}}\) where \(\bar{S} = \sum_{i=1}^{n} \bar{\lambda}_i x_i \frac{\partial}{\partial x_i} \). Hence, \(\text{Ker}(\text{ad}_S)^* = \text{Ker} \text{ad}_{\bar{S}} \). Moreover, the spectrum of \(\Box_{\delta} \) is the set \(\{(Q, \lambda) - \lambda_i \}^2, Q \in \mathbb{N}^n, |Q| = \delta + 1, 1 \leq i \leq n, \}

Example 4.7. – Let \(S = y \frac{\partial}{\partial x} \) in \(\mathbb{C}^2 \). It is \((1, 1)\)-quasihomogeneous of degree 0. The adjoint of the Lie derivative is \(L^* = x \frac{\partial}{\partial y} \); the adjoint of the Lie bracket with \(S \) is \((\text{ad}_S)^* v = -x \frac{\partial v_1}{\partial y} \frac{\partial}{\partial x} + \left(v_1 - x \frac{\partial v_2}{\partial y} \right) \frac{\partial}{\partial y} \). Its formal kernel is the \(\mathbb{C}[x]\)-module generated by the radial vector field \(R = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \) and \(x \frac{\partial}{\partial y} \). According to [21, p. 36], the spectrum of \(\Box_{k-1} \) is composed of the following numbers \((1)\):

\(0, k + 1, (\alpha - 1)(\beta + 1), \alpha(\beta + 2), \quad \alpha = 1, \ldots, k, \alpha + \beta = k.\)

An easy computation shows that the non-zero eigenvalues of \(\Box_{k-1} \) are \(\geq k - 1 \).

A similar definition of normal form of perturbation of homogeneous vector fields was given by G. Belitskii [3, 4] using a renormalized scalar product. Another definition of normal form of perturbation of quasihomogeneous vector fields was given by Kokubu and al. [22]. It is a general scheme that provides a unique abstract normal form. This scheme can also be combined with our techniques to provide a unique normal form as well.

The perturbation of a nilpotent linear vector field has been treated by R. Cushman and J.A Sanders [12] using \(\mathfrak{sl}_2 \)-triple representation. Computational aspects with another definition of normal forms in any dimension was done by L. Stolovitch [34]. Two dimensional aspects were initiated by R. Bogdanov and [5] and F. Takens [41]. Analytic conjugacy of perturbations of a nilpotent 2-dimensional to such a normal form was obtained in [40].

For very particular examples of \(S \) in dimension 2, normal forms have been obtained by V. Basov (see [2] and references therein) without using a general framework. When the perturbation of \(\bar{S} = y \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial y} \) is tangent to the germ of \(3x^2 = 2y^3 \) at the origin, then a formal normal form of vector fields tangent to the cusp has been devised by F. Loray [24]. It is described in terms of a basis of the local algebra of the function \(3x^2 - 2y^3 \). This work has been improved by E. Paul [30].

4.3. Vector fields with symmetries

In this section, we show how to adapt our normal form scheme in order to study vector fields that preserve a differential form or vector fields that are reversible. We shall show that we need to consider restrictions of the cohomological operator \(d_0 \) to some subspace of the space of quasihomogeneous vector fields with range in another subspace of a space of quasihomogeneous vector fields. On these subspaces, we shall consider the induced Hermitian product.

\(^{(1)}\) In fact, it is the spectrum of \(d_0^* d_0 \) that is computed there.
Vector fields leaving a differential form invariant. – One may be interested in studying vector fields leaving invariant a polynomial differential form ω (i.e. the Lie derivative $\mathcal{L}_X \omega = 0$) such as a symplectic or a volume form, for instance. First of all, we have to check that ω is also p-quasihomogeneous (with the same p as for the vector fields). This means that $\mathcal{L}_B \omega = d\omega$ for some integer d. For instance, let $\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$ be the standard symplectic form of \mathbb{C}^{2n}. Let q_i (resp. r_i) be the weight of x_i (resp. y_i). If h_0 denotes a p-quasihomogeneous polynomial of \mathbb{C}^{2n}, in order that the associated Hamiltonian vector field

$$\sum_{i=1}^{n} \frac{\partial h_0}{\partial y_i} \frac{\partial}{\partial x_i} + \frac{\partial h_0}{\partial x_i} \frac{\partial}{\partial y_i},$$

be also p-quasihomogeneous, it is necessary and sufficient that $q_i + r_i = q_j + r_j$, for all i, j.

In this situation, it is sufficient to work on the space $\mathcal{H}_{\delta,\omega} := \{ X \in \mathcal{H}_\delta \mid \mathcal{L}_X (\omega) = 0 \}$ of quasihomogeneous vector fields preserving the form ω instead of \mathcal{H}_δ. Indeed, the Lie bracket of the two such vector fields still preserves ω since $\mathcal{L}_{[S,Y]} (\omega) = \mathcal{L}_S \mathcal{L}_Y (\omega) - \mathcal{L}_Y \mathcal{L}_S (\omega) = 0$. Moreover, the flow $\exp(tX)$ of a vector field X that preserves ω leaves ω invariant:

$$\frac{d}{dt} \exp(tX)^* \omega = \exp(tX)^* (\mathcal{L}_X \omega) = 0.$$ Hence, we can consider the restriction maps $d_0 : \mathcal{H}_{\delta,\omega} \to \mathcal{H}_{\delta+s,\omega}$, $d_0^* : \mathcal{H}_{\delta+s,\omega} \to \mathcal{H}_{\delta,\omega}$ and the box operator $\Box : \mathcal{H}_{\delta,\omega} \to \mathcal{H}_{\delta,\omega}$. The scheme goes as follows: assume that X is normalized up to order $\delta - 1$ and that $\mathcal{L}_X \omega = 0$. Let us conjugate X by U_{s-s} where $\mathcal{L}_{U_{s-s}} \omega = 0$ and U_{s-s} is quasihomogeneous of order $\delta - s$. As above, one has to solve the cohomological equation of the form $N_\delta + d_0(U_{s-s}) = K_\delta$. Since ω is p-quasihomogeneous, it is easy to see that K_δ leaves ω invariant (see [18] for a similar problem). Hence, we can apply our scheme on the spaces $\mathcal{H}_{\delta,\omega}$. As a consequence, if S and its good perturbation X preserve ω, then there is a formal transformation (fixing ω) into a normal form (an element of Ker d_0^*) which leaves ω invariant.

Reversible vector fields. – Let $R : \mathbb{C}^n \to \mathbb{C}^n$ be a linear map such that $R^2 = \text{Id}$. A vector field Z is said to be reversible if it satisfies to $Z(Rx) = -RZ(x)$. Let U be a germ of holomorphic (or formal) vector field such that $R.U(x) = U(Rx)$ at the origin (a point at which it vanishes). Then, one can show that the transformation $y = x + U(x)$ conjugates a reversible vector field to a reversible vector field. As for the case of differential form, we require a compatibility condition on R with respect to the weight p. Namely, we assume that the linear vector field Rx is p-quasihomogeneous of quasidegree 0. This implies that a formal vector field is reversible if and only if each of its quasihomogeneous components is reversible. Let us consider the space of quasihomogeneous transformations

$$\mathcal{I}_\delta := \{ U \in \mathcal{H}_\delta \mid R.U(x) = U(Rx) \}$$

and the spaces of quasihomogeneous reversible vector fields

$$\mathcal{R}_\delta := \{ U \in \mathcal{H}_\delta \mid R.U(x) = -U(Rx) \}.$$ If S is reversible, then $d_0 : \mathcal{I}_\delta \to \mathcal{R}_{\delta+s}$. In fact, we have

$$R[S,U](x) = RDS.U - RDU.S = -DS(Rx)RU - DU(Rx)RS = -DS(Rx)U(Rx) + DU(Rx)S(Rx) = -[S,U](Rx).$$
Hence, we will consider the operator $d_0^\alpha : \mathcal{R}_{s+\delta} \to \mathcal{J}_{\delta}$ as well as the box operator $\square_{\delta} : \mathcal{J}_{\delta} \to \mathcal{J}_{\delta}$. The normal form scheme goes as in the general case except that in equation (11), $N_{\delta} + d_0(U_{\delta-s}) = K_{\delta}$, we have $K_{\delta}, N_{\delta} \in \mathcal{R}_{\delta}$ and $U_{\delta-s} \in \mathcal{J}_{\delta-s}$.

4.4. Spectral properties of \square_{α}

Lemma 4.8. (a) Let $f_{\lambda} \in \mathcal{H}_{s+\alpha}$ belong to the λ-eigenspace of the operator $\square_{s+\alpha}$, λ being a nonzero eigenvalue of $\square_{s+\alpha}$. Let v_{λ} be such that $\square_{s+\alpha}v_{\lambda} = f_{\lambda}$ (i.e. $f_{\lambda} = \lambda v_{\lambda}$) and let us set $U_{\lambda} := d_0^0 v_{\lambda} \in \mathcal{H}_{\alpha}$. Then, we have

$$\|U_{\lambda}\|_{p,\alpha} = \frac{1}{\sqrt{\lambda}} \|f_{\lambda}\|_{p,s+\alpha}.$$

Moreover, if λ and λ' are two different nonzero eigenvalues of $\square_{s+\alpha}$, then U_{λ} and $U_{\lambda'}$ are orthogonal.

(b) Let $f \in \mathcal{H}_{\alpha+s}$ belong to $\text{Im} \ d_0|_{\mathcal{H}_{\alpha}} = \text{Im} \ \square_{\alpha}$ and let $U \in \mathcal{H}_{\alpha}$ be such that $U \in \text{Im} \ d_0^*|_{\mathcal{H}_{\alpha+s}} = (\text{Ker} \ d_0|_{\mathcal{H}_{\alpha}})^\perp$ and $d_0(U) = f$. Then

$$\|U\|_{p,\alpha} \leq \frac{1}{\text{min} \sqrt{\lambda}} \|f\|_{p,\alpha+s}$$

where $\phi_{\alpha+s} = \text{spec} \ \square_{\alpha+s}$.

Proof. (a): In fact, we have

$$\langle U_{\lambda}, U_{\lambda}' \rangle_{p,\alpha} = \langle d_0^0 \overline{v}_{\lambda}, d_0^0 \overline{v}'_{\lambda} \rangle_{p,\alpha} = \langle d_0 d_0^0 v_{\lambda}, v_{\lambda} \rangle_{p,\alpha+s} = \langle f_{\lambda}, v_{\lambda} \rangle_{p,\alpha+s} = \frac{1}{\lambda} \langle f_{\lambda}, f_{\lambda} \rangle_{p,\alpha+s}$$

since $f_{\lambda} = \lambda v_{\lambda}$. About the second point, we have

$$\langle U_{\lambda}, U_{\lambda}' \rangle_{p,\alpha} = \langle d_0^0 \overline{v}_{\lambda}, d_0^0 \overline{v}'_{\lambda} \rangle_{p,\alpha} = \langle v_{\lambda}, d_0 d_0^0 v_{\lambda} \rangle_{p,\alpha+s} = \lambda' \langle v_{\lambda}, v_{\lambda} \rangle_{p,\alpha+s} = 0.$$

(b): Let $f \in \mathcal{H}_{s+\alpha+s} \cap \text{Im} \ d_0|_{\mathcal{H}_{\alpha}}$ and let $U \in \mathcal{H}_{\alpha}$ be such that $U \in \text{Im} \ d_0^*|_{\mathcal{H}_{\alpha+s}} = (\text{Ker} \ d_0|_{\mathcal{H}_{\alpha}})^\perp$ and $d_0(U) = f$. Then there exits $v \in (\text{Ker} \ d_0^*|_{\mathcal{H}_{\alpha+s}})^\perp$ such that $d_0^0(v) = U$. Hence, $\square_{\alpha+s} v = f$. Since $\square_{\alpha+s}$ is a self-adjoint operator, we have the spectral decomposition

$$\mathcal{H}_{s+\alpha} = \bigoplus_{\lambda \in \phi_{\alpha+s}} \text{Ker} (\text{Ad} - \square_{\alpha+s}).$$

Moreover, since $f \in \text{Im} \ d_0|_{\mathcal{H}_{\alpha}} = \text{Im} \ \square_{\alpha+s}$, $v \in (\text{Ker} \ d_0^*|_{\mathcal{H}_{\alpha+s}})^\perp$ and $\square_{\alpha+s} v = f$, we also have the spectral decompositions

$$f = \bigoplus_{\lambda \in \phi_{\alpha+s} \setminus \{0\}} f_{\lambda}, \quad v = \bigoplus_{\lambda \in \phi_{\alpha+s} \setminus \{0\}} v_{\lambda}, \quad \square_{\alpha+s} v_{\lambda} = f_{\lambda}.$$

Then, using (a) and setting $U_{\lambda} = d_0^0(v_{\lambda})$, we finally obtain

$$\|U\|_{p,\alpha}^2 = \sum_{\lambda \in \phi_{\alpha+s} \setminus \{0\}} \|U_{\lambda}\|_{p,\alpha}^2 \leq \sum_{\lambda \in \phi_{\alpha+s} \setminus \{0\}} \frac{1}{\lambda} \|U_{\lambda}\|_{p,\alpha}^2 \leq \left(\frac{1}{\text{min} \sqrt{\lambda}} \right)^2 \|f\|_{p,\alpha+s}^2. \quad \square$$
5. Rigidity of quasihomogeneous vector fields

Let \mathcal{I} be a quasihomogeneous ideal of \mathcal{O}_n generated by quasihomogeneous polynomials h_1, \ldots, h_r of p-quasidegree e_1, \ldots, e_r respectively. We shall denote by $\widehat{\mathcal{I}} = \mathcal{I} \otimes \widehat{\mathcal{O}_n}$ its formal completion, that is the ideal in the ring of formal power series $\widehat{\mathcal{O}_n}$ generated by the h_i’s. Let us denote by \mathcal{M}_i the operator of multiplication by h_i in $\widehat{\mathcal{O}_n}$ (\mathcal{M}_i will also denote the multiplication operator, componentwise, on the space of formal vector field $\widehat{\mathcal{O}_n}$). Let us denote by $\mathcal{M} = \mathcal{M}_1 \mathcal{X}_n + \cdots + \mathcal{M}_r \mathcal{X}_n$ (resp $\mathcal{M} = \mathcal{M}_1 \widehat{\mathcal{X}_n} + \cdots + \mathcal{M}_r \widehat{\mathcal{X}_n}$) the submodule of germs of holomorphic (resp. formal) vector fields at the origin whose components belong to the ideal generated by the h_i’s.

Let $\delta \in \Delta$, let us set $\mathcal{M}_\delta := \mathcal{M} \cap \mathcal{H}_\delta$. Let \mathcal{V}_δ be the orthogonal complement of \mathcal{M}_δ in \mathcal{H}_δ and let $\pi_{\mathcal{M}_\delta}$ be the projection onto \mathcal{V}_δ: $\mathcal{H}_\delta = \mathcal{V}_\delta \oplus \mathcal{M}_\delta$. We shall set $\widehat{\mathcal{V}} := \bigoplus_{\delta \in \Delta} \mathcal{V}_\delta$ as well as

$$\widehat{\mathcal{W}} := \left\{ U \in (\text{Ker } d_0)^\perp \mid [S, U] \in \widehat{\mathcal{V}} \right\}.$$

Lemma 5.1. With the notation above, we have $\mathcal{V}_\delta = \bigcap_{i=1}^r \text{Ker } \mathcal{M}_i^{\ast} |_{\mathcal{H}_{\delta+e_i}}$, where $\mathcal{M}_i^{\ast} |_{\mathcal{H}_{\delta+e_i}}$ denotes the adjoint operator of $\mathcal{M}_i |_{\mathcal{H}_{\delta}}: \mathcal{H}_\delta \rightarrow \mathcal{H}_{\delta+e_i}$ with respect to the family of Hermitian products $\langle \cdot, \cdot \rangle_p$.

Proof. Let $v \in \mathcal{V}_\delta$. By definition, we have $\langle v, \mathcal{M}_1 w_1 + \cdots + \mathcal{M}_r w_r \rangle = 0$, for all $w_i \in \mathcal{H}_{\delta-e_i}$. In particular, we may choose $w_i = \mathcal{M}_i^\ast v$ for all i. We obtain $0 = \| \mathcal{M}_1^\ast v \|^2 + \cdots + \| \mathcal{M}_r^\ast v \|^2$. □

Let $\delta \in \Delta$ such that $\delta > s$. Let us denote by $\sigma_{\delta, \setminus s}$ the set of nonzero eigenvalues of \Box_δ for which there exists an associated (quasihomogeneous of degree δ) eigenvector which is orthogonal to \mathcal{M}_δ. Let us set

$$a_\delta := \min_{\lambda \in \sigma_{\delta, \setminus s}} \sqrt{\lambda},$$

as well as

$$\delta_* := \frac{\min \{ \delta + p_i \mid \delta + p_i \in \Delta \} }{p} \text{ and } \delta^* := \frac{\max \{ \delta + p_i \mid \delta + p_i \in \Delta \} }{p}.$$

Let us set

$$\Delta^- := \Delta \cap (\Delta - s), \quad \Delta^+ := \Delta \cap (\Delta + s), \quad \delta_0 := \max(\min \delta, 1).$$

The integer δ_0 is the smallest positive integer of Δ^-. It might happen that $\delta_0 > 1$ for some p. Let us define the sequence of positive real numbers $\{ \eta_\delta \}_{\delta \in \Delta^- \cap N^* \cup \{0\}}$ as follows: $\eta_0 = 1$; for any positive $\delta \in \Delta^-$ (i.e. $\delta \geq \delta_0$),

$$a_{s+\delta} \eta_\delta = \max_{s \leq \mu \leq s+\delta} \max_{\mu \in A_{s+\delta} \cup \{0\}} \eta_{\delta_1} \cdots \eta_{\delta_r},$$

where if $\mu = s$ then the maximum is taken over the r-tuples $(\delta_1, \ldots, \delta_r)$ of nonnegative integers such that at least, two of the δ_i’s are positive. Moreover, the maximum is taken over the indices δ_i (resp. μ) which belong to $(\Delta^- \cap N^*) \cup \{0\}$ (resp. Δ^-).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
Remark 5.2. – The sequence η_δ is well defined by induction since the maxima only involve terms η_d's with $d < \delta$.

Definition 5.3. – The quasihomogeneous vector field S will be called Diophantine with respect to the ideal \mathcal{I} if the formal power series $\sum_{\delta > 0, \delta \in \Delta} \eta_\delta z^\delta$ converges in a neighborhood of the origin in \mathbb{C}; that is to say that there exist $c, M > 0$ such that $\eta_\delta \leq M c^\delta$. We shall say that S is Diophantine if it is Diophantine with respect to the zero ideal $\mathcal{I} = \{0\}$.

Example 5.4. – Let us consider Example 4.6 where S is linear and diagonal. It is known [35, Lemma 2.3] that S is Diophantine in the above sense if and only if it satisfies Brjuno’s condition:

$$(\omega) = -\sum_{k \geq 0} \frac{\ln(\omega_{k+1})}{2^k} < +\infty$$

where

$$\omega_k = \inf \{|(Q, \lambda) - \lambda_i| \neq 0, \ i = 1, \ldots, n, \ Q \in \mathbb{N}^n, \ 2 \leq |Q| \leq 2^k \}.$$

Definition 5.5. – Let S be quasihomogeneous and let X be a good holomorphic perturbation of S at the origin. We shall say that X is formally (holomorphically) conjugate to S along $\hat{\mathcal{I}}$ (resp. \mathcal{I}) if there exists a formal (resp. germ of holomorphic) diffeomorphism $\hat{\Phi}$ (resp. Φ) such that $\hat{\Phi}_* X - S \in \hat{\mathcal{M}}$ (resp. $\Phi_* X - S \in \mathcal{M}$), i.e. in the new formal (resp. holomorphic) coordinates, X is equal to the sum of S and a formal vector field whose components belong to the ideal $\hat{\mathcal{I}}$ (resp. \mathcal{I}).

Theorem 5.6. – Let us assume that the quasihomogeneous vector field S is Diophantine with respect to \mathcal{I}. Let X be a good holomorphic perturbation of S at the origin of \mathbb{C}^n. We assume that X is formally conjugated to S along $\hat{\mathcal{I}}$ (by the mean of a formal diffeomorphism of the form $\text{Id} + U$, with $U \in \mathcal{W}$). Then, X is holomorphically conjugated to S along \mathcal{I}.

Corollary 5.7. – Under the assumptions of the theorem, there exists a good holomorphic change of coordinates in which the germ at the origin of the zero locus $\Sigma := \{x \in \mathbb{C}^n, \ h_1(x) = \cdots = h_r(x) = 0\}$ at 0 is an invariant analytic set for X. Moreover, in these new coordinates, the restriction X to Σ is equal to the restriction of S to Σ.

Theorem 5.8. – If the quasihomogeneous vector field S is Diophantine and if the holomorphic good perturbation X is formally conjugate to S, then X is holomorphically conjugate to S.

Proof. – We apply Theorem 5.6 to the ideal $\mathcal{I} = \{0\}$. Moreover, we can assume that the normalizing diffeomorphism reads $\Phi := I + U$ with $U \in (\text{Ker } d_0)^{\perp}$. In fact, if $\Phi_* X = S$, then for any V commuting with S, we have

$$(\exp V)_* S = S + [V, S] + \frac{1}{2} [V, [V, S]] + \cdots = S.$$
The remainder of the section is devoted to the proof of Theorem 5.6.

First of all, let us write the conjugacy equations between the vector fields $X = S + R$ and $X' := \Phi_* X = S + R'$ where the formal diffeomorphism is written as $\Phi^{-1} = \text{Id} + U$ where $U \in \mathcal{W}'$ stands for a formal vector field of positive quasiorder. Since we have $D(\Phi)(\Phi^{-1})X(\Phi^{-1}) = X'$, we have $X(I + U) = D(I + U)X'$. Therefore, we obtain
\begin{equation}
R' + [S, U] = R(\text{Id} + U) - DU.R' + S(\text{Id} + U) - S - DS.U.
\end{equation}
For any positive integer X such that $s + \delta \in \tilde{\Delta}$, let us project this equation onto the orthogonal space $\mathcal{V}_{s+\delta}$ to $\mathcal{M}_{s+\delta}$ in $\mathcal{K}_{s+\delta}$ and let us denote by π_{δ^+} this projection. Assume that Φ conjugates X to S along \mathcal{M}. This means that R' belongs to \mathcal{M}. Therefore, we have
\begin{equation}
[S, U] = \pi_{\delta^+}([S, U]) = \pi_{\delta^+}(R(\text{Id} + U) + S(\text{Id} + U) - S - DS.U).
\end{equation}
The first equality is due to the fact that $U \in \mathcal{W}'$ whereas the second is due to the fact that $DU.R' \in \mathcal{M}$. We recall that U_δ denotes the quasihomogeneous component of (the Taylor expansion at the origin of) U of quasidegree δ of U. We emphasize that both side of the equation are reduced to zero if $\delta \not\in \tilde{\Delta}$. So, we will consider the case where $s + \delta \in \tilde{\Delta}$ and $\delta \in \tilde{\Delta}$. We recall that
$$\tilde{\Delta}^- := \tilde{\Delta} \cap (\tilde{\Delta} - s), \quad \tilde{\Delta}^+ := \tilde{\Delta} \cap (\tilde{\Delta} + s).$$
By assumption, U_δ has also a zero projection on the kernel of the operator d_0. Since we have
$$\mathcal{H}_\delta = \text{Ker} d_0 \bigoplus \text{Im} d_0^*|_{\mathcal{H}_{s+\delta}},$$
then we can write $U_\delta = d_0^*v_{s+\delta}$ for some $v \in \mathcal{H}_{s+\delta}$. Moreover, we can assume that v has a zero projection onto $\text{Ker} d_0$. In fact, if $\square v_{s+\delta} = 0$ then $0 = \langle \square v, v \rangle_{p,s+\delta} = |d_0^*v_{s+\delta}|^2$, the converse being obvious. Let us decompose $v_{s+\delta}$ along the eigenspaces of $\square_{s+\delta}$. Let λ be an eigenvalue of $\square_{s+\delta}$ and let π_{λ} be the projection on the associated eigenspace. We shall say that λ is quasihomogeneous of quasidegree $s + \delta$ if \square has a λ-eigenvector in $\mathcal{H}_{s+\delta}$. We shall denote by π_{λ} the projection on the subspace of $\mathcal{H}_{s+\delta}$ generated by the eigenvectors of $\square_{s+\delta}$ which are orthogonal to $\mathcal{M}_{s+\delta}$. Since $[S, U_\delta] = d_0^*d_0v_{s+\delta}$, then, we have
$$\pi_{s+\delta \setminus \lambda} \circ \pi_{\lambda} (d_0^*d_0v_{s+\delta}) = \pi_{s+\delta \setminus \lambda} \circ \pi_{\lambda} \left(\sum_{\lambda \in \sigma_{s+\delta \setminus \lambda}} \lambda v_{\lambda} \right) = \sum_{\lambda \in \sigma_{s+\delta \setminus \lambda}} \lambda v_{\lambda},$$
where we have set $v_{\lambda} := \pi_{\lambda}(v)$. We recall that $\sigma_{s+\delta \setminus \lambda}$ denotes the set of nonzero eigenvalues of $\square_{s+\delta}$ for which there exists an associated (quasihomogeneous of degree $s + \delta$) eigenvector orthogonal $\mathcal{M}_{s+\delta}$. We can assume that $v_0 = 0$. Therefore
$$\sum_{\lambda \in \sigma_{s+\delta \setminus \lambda}} \lambda v_{\lambda} = \pi_{s+\delta \setminus \lambda} \circ \pi_{\lambda} (R(\text{Id} + U) + S(\text{Id} + U) - S - DS.U).$$
Let us set $U_\lambda := d_0^*v_{\lambda}$ and let us denote by U_λ the sum of the U_{λ}'s where λ ranges over $\sigma_{s+\delta \setminus \lambda}$. According to the first point of Lemma 4.8, we have $\|U_{\lambda}\|^2 = \lambda^2\|v_{\lambda}\|^2$. According to
the second point,
\[
\left\| \sum_{\lambda \in \sigma_{s+\delta} \setminus \varnothing} \lambda v_\lambda \right\|^2_{p,s+\delta} = \sum_{\lambda \in \sigma_{s+\delta} \setminus \varnothing} \lambda^2 \left\| v_\lambda \right\|^2_{p,s+\delta} = \sum_{\lambda \in \sigma_{s+\delta} \setminus \varnothing} \lambda \left\| U_\lambda \right\|^2_{p,\delta} \geq \left(\min_{\lambda \in \sigma_{s+\delta} \setminus \varnothing} \sqrt{\lambda} \right)^2 \left\| U_\delta \right\|^2_{p,\delta}.
\]

Therefore, we obtain
\[
\left(\min_{\lambda \in \sigma_{s+\delta} \setminus \varnothing} \sqrt{\lambda} \right) \left\| U_\delta \right\|_{p,\delta} \leq \left\| \pi_{s+\delta} \circ \pi_{J+1} (R(Id + U) + S(Id + U) - S - DS.U) \right\|_{p,s+\delta}.
\]

Let us estimate the right hand side of the last inequality. First of all, we have
\[
\left\| \pi_{s+\delta} \circ \pi_{J+1} (R(Id + U) + S(Id + U) - S - DS.U) \right\|_{p,s+\delta} \leq \left\| \{ R(Id + U) + S(Id + U) - S - DS.U \}_{p,s+\delta} \right\|_{p,s+\delta}.
\]

Then, let us decompose \(R \) into quasihomogeneous components \(R = \sum_{d \geq s} R_\mu \). First of all, for any \(d \in \mathbb{N} \), every quasihomogeneous polynomial of quasidegree \(d \) is either 0 or a polynomial of degree \(\leq d/p \) and of order \(\geq d/p \). In fact, if \(d \in \Delta \), then we have \(d = \alpha_1 p_1 + \cdots + \alpha_n p_n \) for some \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n \). Hence, \(p|\alpha| \geq d \geq p|\alpha| \). On the other hand, if \(\mu \in \Delta \), the \(i \)-th coordinate of the vector field \(R_\mu \) is quasihomogeneous of quasidegree \(\mu + p_i \). Hence, it is 0 if \(\mu + p_i \notin \Delta \). Otherwise, it is a polynomial of degree \(\leq (\mu + p_i)/p \) and of order \(\geq (\mu + p_i)/p \). Therefore, \(R_\mu \) can be written as a sum of homogeneous vector fields
\[
R_\mu = \sum_{\mu, \leq r \leq \mu} R_{\mu,r}
\]
where \(R_{\mu,r} \) is a homogeneous vector field of degree \(r \) (i.e. each component is a homogeneous polynomial of degree \(r \) or 0). We recall that we have set
\[
\mu_\ast := \min \{ \mu + p_i | \mu + p_i \in \Delta \} \quad \text{and} \quad \mu_\ast^* := \max \{ \mu + p_i | \mu + p_i \in \Delta \}.
\]

Let \(\tilde{R}_{\mu,r} \) be the associated \(r \)-linear map. Therefore, the \((s + \delta)\)-quasihomogeneous component of \(R(Id + U) \) in its Taylor expansion at 0 is
\[
\{ R(Id + U) \}_{s+\delta} = \left\{ \sum_{\mu, s} R_\mu (Id + U) \right\}_{s+\delta} = \left\{ \sum_{\mu, s} R_{\mu, r} (Id + U, \ldots, Id + U) \right\}_{s+\delta} = \sum_{\mu, s} \sum_{r = \mu}^{\mu^*} \tilde{R}_{\mu, r} (U_{\delta_1}, \ldots, U_{\delta_r}).
\]
where the δ_i’s are nonnegative elements of $\Delta^- = \Delta \cap (\Delta - s)$, $\mu \in \Delta$ is greater than s and where we have set $U_0 := \text{Id}$.

Moreover, according to Propositions 3.6 and 3.7, there exist positive constants M and ρ such that, for all $\mu > s$ belonging to Δ, for all $\mu_s \leq r \leq \mu^*$, we have

$$\left\| \tilde{R}_{\mu,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \right\|_{p,\delta_1+\ldots+\delta_r+\mu} \leq \frac{M}{\rho^r} \left\| U_{\delta_1} \right\|_{p,\delta_1} \cdots \left\| U_{\delta_r} \right\|_{p,\delta_r}.$$

As a consequence, we obtain the following estimate:

$$\left\| \{R(\text{Id} + U)\}_{s+\delta} \right\|_{p,\delta} \leq \sum_{\mu > s} \sum_{\mu_s \leq r = \mu} \sum_{\mu_s = \ldots = \mu} \frac{M}{\rho^r} \left\| U_{\delta_1} \right\|_{p,\delta_1} \cdots \left\| U_{\delta_r} \right\|_{p,\delta_r}.$$

On the other hand, we have

$$S(x) = \sum_{s \leq r \leq s^*} \frac{\hat{S}_{r}(x_1, \ldots, x_r)}{r \text{ times}}$$

where \hat{S}_{r} is an r-linear map. Therefore, we have

$$DS(x)U = \sum_{s \leq r \leq s^*} \frac{r \hat{S}_{r}(x_1, \ldots, x_r, U)}{r - 1 \text{ times}}.$$

Hence, the $s+\delta$-quasihomogeneous term in the Taylor expansion of $S(I + U) - S - DS(x)U$ is

$$(S(I + U) - S - DS(x)U)_{s+\delta} = \sum_{s \leq r \leq s^*} [\sum_{\delta_1+\ldots+\delta_r=\delta} \hat{S}_{r}(U_{\delta_1}, \ldots, U_{\delta_r})]$$

where

$$\Omega_r = \{ (\delta_1, \ldots, \delta_r) \in (\Delta^-)^r \text{ / at least, two of the indices are positive} \}.$$

Therefore, we obtain the following estimate

$$\left\| \left\{ S(I + U) - S - DS(x)U \right\}_{s+\delta} \right\|_{p,\delta} \leq M' \sum_{s \leq r \leq s^*} \sum_{\delta_1+\ldots+\delta_r=\delta} \left\| U_{\delta_1} \right\|_{p,\delta_1} \cdots \left\| U_{\delta_r} \right\|_{p,\delta_r}.$$

where M' denotes a constant depending only on S.

Let us define the sequence $\{\sigma_{\delta}\}_{\delta \in \Delta^- \cap \mathbb{N}^+ \cup \{0\}}$ of positive numbers defined by $\sigma_0 := \|\text{Id}\|_{p,0}$ and if $\delta \in \Delta^-$ is positive,

$$\sigma_{\delta} := \sum_{\mu > s} \sum_{\mu_s = \ldots = \mu} \frac{M}{\rho^r} \sigma_{\delta_1} \cdots \sigma_{\delta_r} + M' \sum_{s \leq r \leq s^*} \sum_{\delta_1+\ldots+\delta_r=\delta} \sigma_{\delta_1} \cdots \sigma_{\delta_r}$$

where, in the first sum, the δ_i’s are nonnegative elements of Δ^- and the μ’s are elements of Δ. This sequence is well defined. In fact, since $\mu > s$, then the δ_i’s are all less than δ in the sum.

Lemma 5.9. For all nonnegative $\delta \in \Delta^- \cap \mathbb{N}^+ \cup \{0\}$, we have $\left\| U_{\delta} \right\|_{p,\delta} \leq \eta_{\delta} \sigma_{\delta}$.

Annales Scientifiques de l’École Normale Supérieure
Proof. We prove it by induction on nonnegative elements of $\Delta^- \cup \{0\}$. For $\delta = 0$, this is obviously true since $\eta_0 = 1$ and $\sigma_0 = \|\text{Id}\|_{p,0}$. Let us assume that the lemma is true for all $0 \leq \delta' < \delta$ in Δ^-. According to estimates (17) and (18), we have

\[
\left(\min_{\lambda \in \sigma + \delta \setminus \sigma} \sqrt{\lambda} \right) \|U_\delta\|_{p,\delta} \leq \sum_{\mu > s} \sum_{r = \mu}^{\mu + s + \delta} \sum_{\delta_1 + \cdots + \delta_r = \delta} \frac{M}{\rho^s} \|U_{\delta_1}\|_{p,\delta_1} \cdots \|U_{\delta_r}\|_{p,\delta_r}
\]

\[
+ M' \sum_{s \leq r \leq s^*} \sum_{\delta_1 + \cdots + \delta_r = \delta} \|U_{\delta_1}\|_{p,\delta_1} \cdots \|U_{\delta_r}\|_{p,\delta_r}
\]

\[
\leq \sum_{\mu > s} \sum_{r = \mu}^{\mu + s + \delta} \sum_{\delta_1 + \cdots + \delta_r = \delta} \frac{M}{\rho^s} \|\eta_1\| \sigma_{\delta_1} \cdots \eta_r \sigma_{\delta_r}
\]

\[
+ M' \sum_{s \leq r \leq s^*} \sum_{\delta_1 + \cdots + \delta_r = \delta} \eta_1 \sigma_{\delta_1} \cdots \eta_r \sigma_{\delta_r}
\]

\[
\leq \left(\max_{s \leq \mu \leq \delta + \delta'} \max_{\mu \leq \sigma \leq \delta^*} \sum_{\delta_1 + \cdots + \delta_r = \delta} \eta_1 \cdots \eta_r \right) \sigma_{\delta}.
\]

The second inequality is a consequence of the induction assumption. The last one gives the desired result.

Lemma 5.10. The formal power series $\sigma(t) := \sum_{i \in \Delta^- \cup \{0\}, i \geq 0} \sigma_i t^i$ converges in a neighborhood of the origin of \mathbb{C}.

Proof. First of all, we notice that we have

\[
\sum_{\mu > s} \sum_{r = \mu}^{\mu + s + \delta} \frac{M}{\rho^s} \sigma_{\delta_1} \cdots \sigma_{\delta_r} = M \sum_{\mu > s} \left(\frac{\sigma(t)}{\rho} \right)^{\delta} + \cdots + \left(\frac{\sigma(t)}{\rho} \right)^{\delta'} \delta^{s-r}.
\]

Let us set

\[
P_\mu(z) := \sum_{r = \mu}^{\mu + s} \left(\frac{z}{\rho} \right)^r \quad \text{and} \quad F(z,t) = M \sum_{\mu \in \Delta, \mu > s} P_\mu(z) t^\mu.
\]

The power series F defines a germ of holomorphic function at the origin of \mathbb{C}^2 which satisfies $F(z,0) = 0$. Then, the coefficient of t^δ is the Taylor expansion of $F(\sigma(t), t)$ at the origin of \mathbb{C} given by

\[
\{F(\sigma(t), t)\}_\delta = M \left\{ \sum_{\mu > s} P_\mu(\sigma(t)) t^{\mu-s} \right\}_\delta = M \left\{ \sum_{\mu > s} \{P_\mu(\sigma(t))\}_\delta - \mu+s t^{\delta-\mu+s-\mu-s} \right\}_\delta
\]

\[
= M \sum_{\mu > s} \{P_\mu(\sigma(t))\}_\delta - \mu+s.
\]

On the other hand, let us set

\[
P(z) := \sum_{r = \mu}^{\mu + s} \left(\frac{z}{\rho} - \sigma_0^r - r \sigma_0^{r-1} (z - \sigma_0) \right).
\]
We have $P(\sigma_0) = 0$ and $DP(\sigma_0) = 0$. We then notice that
\[
\{P(\sigma(t))\}_\delta = M \sum_{s_1 \leq r \leq s} \sum_{\delta_1 + \cdots + \delta_r = \delta} \sigma_{\delta_1} \cdots \sigma_{\delta_r},
\]
where Ω_r is given by (20). Let us set $G(z, t) := F(z, t) + P(z)$. Therefore, we have $\sigma_{\delta} = \{F(\sigma(t), t) + P(\sigma(t))\}_\delta$.

As a consequence, the power series $\sigma(t)$ is solution of the problem $G(\sigma(t), t) = (\sigma(t) - \sigma_0)$ together with $\sigma(0) = \sigma_0$. Since $D_2 G(\sigma_0, 0) = 0$, then, according to the implicit function theorem, this problem has a unique holomorphic solution satisfying the same initial condition.

Remark 5.11. – The order of $F(z, t)$ at $t = 0$ is $\delta_0 := \max(\min_{\delta \in \Delta^-} \delta, 1)$.

Therefore, according to the Diophantine property of S, there exist $M, c > 0$ such that $\eta_\delta \leq Me^{\delta}$ for all positive $\delta \in \Delta$. Moreover, according to the previous lemma and to Proposition 3.7, there exist $M', d > 0$ such that $\sigma_{\delta} \leq M'd^\delta$ for all positive $\delta \in \Delta^-$. Hence, according to Lemma 5.9, we have, for all positive $\delta \in \Delta^-$, $\|U_{\delta}\|_{p, \delta} \leq Me^{\delta}$ for some positive constants M and c. Therefore, according to Proposition 3.7, U is holomorphic in a neighborhood of the origin in \mathbb{C}^n. This concludes the proof of the main theorem.

6. Conjugacy to normal forms and approximation up to an exponentially small remainder

In this section we shall study the conjugacy problem to normal form. We shall show that if the “small divisors” are actually big, then there is a convergent normalizing transformation. On the other hand, we shall show that, if the “small divisors” are not too small then there exists a formal normalizing transformation which is not worse than Gevrey. From this, we will be able to obtain an optimal choice of the quasidegree α of normalization such that discrepancy between the partial conjugate and the partial normal form of quasidegree α is exponentially small in some twisted ball.

6.1. Normalization and cohomological equations

Let S be a p-quasihomogeneous vector field of \mathbb{C}^n. Let $X := S + R$ be a good holomorphic perturbation of S in a neighborhood of the origin of \mathbb{C}^n (i.e. the quasidegree of R at the origin is greater than s). Proposition 4.4 ensures that for every $\alpha \in \Delta$ with $\alpha > s$, there exists a polynomial diffeomorphism tangent to identity $\Phi_{\alpha}^{-1} = \text{Id} + U_\alpha$ where $\mathcal{U}_\alpha = \sum_{0 < \delta \leq \alpha - s} U_\delta$, with $U_\delta \in \mathcal{H}_\delta$ such that $(\Phi_{\alpha})_*(X) = S + \mathcal{N}_\alpha + \mathcal{R}_{\alpha}$, where $\mathcal{N}_\alpha = \sum_{s < \delta \leq \alpha} N_\delta$, $N_\delta \in \text{Ker} \, \Box_\delta$, and where \mathcal{R}_{α} is of quasidegree $> \alpha$. We recall that in the expansions of \mathcal{N}_α and \mathcal{U}_α, $U_\delta = 0$ and $N_\delta = 0$ for $\delta \notin \Delta$ since $\mathcal{H}_\delta = \{0\}$. A basic identification of the quasihomogeneous components for $\delta \in \Delta$ with $s < \delta \leq \alpha$ leads to
\[
\mathcal{N}_\alpha + [S, U_\alpha] = \{R(\text{Id} + U_\alpha) - D\mathcal{U}_\alpha \mathcal{N}_\alpha + S(\text{Id} + U_\alpha) - S - DS U_\alpha\}_\delta.
\]
Hence, using Proposition 3.4, Lemma 3.5 and (20), we get the following hierarchy of cohomological equations in \mathcal{H}_δ for $\delta \in \tilde{\Delta}$ with $s < \delta \leq \alpha$:

\begin{equation}
N_\delta + d_0(U_{\delta-s}) = K_\delta
\end{equation}

with

\begin{align}
K_\delta &= \sum_{\mu > s, \mu \in \Delta} \sum_{r=\mu, \delta_1 + \cdots + \delta_r + \mu = \delta} \tilde{R}_{\mu, r}(U_{\delta_1}, \ldots, U_{\delta_r}) - \sum_{\delta_1 > 0, \delta_2 > s, \delta_2 \in \Delta} DU_{\delta_1}N_{\delta_2} \\
&\quad + \sum_{r=s, \delta_1 + \cdots + \delta_r + s = \delta} \tilde{S}_{\mu, r}(U_{\delta_1}, \ldots, U_{\delta_r})
\end{align}

(25)

where by convention $U_0 = \text{Id}$ and where Ω_r is given by (20). Moreover, if not specified, the δ_i’s belong to $\Delta^- = \tilde{\Delta} \cap (\tilde{\Delta} - s)$ in the previous sums.

Then, we observe that (25) ensures that K_δ depends only on R and S which are given and on N_δ and $U_{\delta-s}$ for $s < \beta < \delta$. So the “hierarchy” of Equation (24) for $s < \delta \leq \alpha$ can be solved by induction starting with the smallest $\delta \in \tilde{\Delta}$ greater than s.

Let us denote by π_δ the orthogonal projection on $(\ker \square_\delta)^\perp = (\ker d_{0|\mathcal{H}_\delta})^\perp = \Im d_{0|\mathcal{H}_\delta-s}$.

Since $N_\delta \in \ker \square_\delta$, (24) is equivalent to

\begin{equation}
N_\delta = (\text{Id} - \pi_\delta)(K_\delta), \quad d_0(U_{\delta-s}) = \pi_\delta(K_\delta).
\end{equation}

Remark 6.1. – We shall point out that if $\delta - s \notin \tilde{\Delta}$, $U_{\delta-s} = 0$ and $N_\delta = K_\delta$ since $\mathcal{H}_{\delta-s} = \{0\}$.

To compute by induction upper bounds of N_δ and $U_{\delta-s}$, we use the norms

\begin{align}
\nu_\delta &= 0, \\
u_0 &= \|U_0\|_{p, 0} = \|\text{Id}\|_{p, 0} = \sqrt{\frac{1}{p_1^0}} + \cdots + \sqrt{\frac{1}{p_n^0}}, \\
u_\delta &= \|U_\delta\|_{p, \delta} \quad \text{for} \quad \delta \in \tilde{\Delta}, \quad \delta > 0.
\end{align}

We set $u_\delta = 0$ if $\delta + s \notin \tilde{\Delta}$ and $\nu_\delta = 0$. Then, since π_δ is orthogonal and using Lemma 4.8, we deduce from (26) that, for all $\delta \in \tilde{\Delta}$,

\begin{equation}
\nu_\delta = \|N_\delta\|_{p, \delta} \leq \|K_\delta\|_{p, \delta}, \quad u_{\delta-s} \leq \frac{1}{\min_{\lambda \in \text{spec } \square_\delta \setminus \{0\}} \sqrt{\lambda}} \|K_\delta\|_{p, \delta}.
\end{equation}

Finally, the submultiplicativity of the norms given by Proposition 3.6 implies that there exists $M > 0$ such that for every $\delta \in \tilde{\Delta}$ with $\delta > s$,

\begin{equation}
\|K_\delta\|_{p, \delta} \leq k_\delta
\end{equation}

with

\begin{equation}
k_\delta = M \left(\sum_{\mu > s, \mu \in \Delta} \sum_{\delta_1 + \cdots + \delta_r + \mu = \delta} \frac{u_{\delta_1} \cdots u_{\delta_r}}{\rho^r} + \sum_{\delta_1 \in \Delta^- \setminus \Delta, \delta - \delta_1 \in \Delta} \delta_1 \nu_{\delta - \delta_1} + \sum_{\delta_1 + \cdots + \delta_r + s = \delta} u_{\delta_1} \cdots u_{\delta_r} \right)
\end{equation}

(29)

where in the first and the last sums, the δ_i’s belong to Δ^- and where Ω_r is defined by (20).
6.2. Convergent conjugacy to a normal form

Let us set $\nu := \max \left(1, \frac{p}{2} \right)$.

Theorem 6.2. Assume that there exists a constant $c > 0$ such that for all $\delta \in \tilde{\Delta}^+$,

$$\min_{\lambda \in \text{spec} \mathcal{L} \setminus \{0\}} \sqrt[\nu]{\lambda} > c^{-1}(\delta - s)^\nu.$$

Then, any good holomorphic perturbation X of S is holomorphically conjugate to a normal form.

Proof. Let us set $\gamma_0 = 1$ and if $\delta \in \tilde{\Delta}^+$ with $\delta > s$

$$\gamma_{\delta-s} := \bar{M} \left(\sum_{\mu > s, \mu \in \tilde{\Delta}} \sum_{\mu_1 \leq \mu \leq \mu^*} \left(\frac{u_0}{\rho} \right)^r \gamma_{\delta_1} \cdots \gamma_{\delta_r} + \sum_{1 \leq \delta_1 \leq \delta - s - 1} \gamma_{\delta_1} \gamma_{\delta - \delta_1 - s} + \sum_{\delta_1, \cdots, \delta_r \in \tilde{\Delta}} \gamma_{\delta_1} \cdots \gamma_{\delta_r} \right).$$

Here, we have set $\bar{M} := \max \left(M cu_0, \frac{MCu_0^*}{\rho}, M cu_0^{*-1}, M cu_0^*-1 \right)$. We claim that

$$\nu \delta \leq u_0 \gamma_{\delta-s}, \quad (\delta - s)^\nu u_{\delta-s} \leq u_0 \gamma_{\delta-s}.$$

Let us prove these inequalities by induction on $\delta \geq s$. This is obviously true for $\delta = s$. According to Equations (29) and (28), we have for $\delta > s$

$$(\delta - s)^\nu u_{\delta-s} \leq M \left(\sum_{\mu > s, \mu \in \tilde{\Delta}} \sum_{\mu_1 \leq \mu \leq \mu^*} \left(\frac{u_0}{\rho} \right)^r \gamma_{\delta_1} \cdots \gamma_{\delta_r} + \sum_{1 \leq \delta_1 \leq \delta - s - 1} \gamma_{\delta_1} \gamma_{\delta - \delta_1 - s} + \sum_{\delta_1, \cdots, \delta_r \in \tilde{\Delta}} \gamma_{\delta_1} \cdots \gamma_{\delta_r} \right),$$

where, in the first and the last sum, we have used the fact that, if $\delta_1 > s$, then $u_{\delta_1} \gamma_{\delta-s} \leq (\delta_1 - s)^\nu u_{\delta_1} \gamma_{\delta-s}$ as well as $u_0 \gamma_{\delta-s}$. Therefore, we obtain

$$(\delta - s)^\nu u_{\delta-s} \leq \gamma_{\delta-s}.$$

In the same way, we have $\nu \delta \leq \gamma_{\delta-s}$. Let us define the formal power series

$$\gamma(t) := \sum_{i \in \Delta^\cap (\Delta-s), i \geq 0} \gamma_i t^i,$$

Let $G(z, t) := F(z, t) + P(z)$ be the function defined by Equations (21) and (22) where, in these formulas, ρ is replaced by ρ/u_0, M by M' and σ_0 by 1.

Let $\delta \in \tilde{\Delta}$ such that $\delta > s$. As we have seen above, we have

$$\sum_{\mu > s} \sum_{\mu_1 \leq \mu \leq \mu^*} \sum_{\delta_1, \cdots, \delta_r \in \tilde{\Delta}} M' \left(\frac{u_0}{\rho} \right)^r \gamma_{\delta_1} \cdots \gamma_{\delta_r} = \{G(\gamma(t), t)\}_{\delta-s}$$

where, in the first sum, the δ_i’s are nonnegative elements of $\tilde{\Delta}^-$ and the μ’s are elements of $\tilde{\Delta}$.

We recall that $\{G(\gamma(t), t)\}_{\delta-s}$ denotes the coefficient of $t^{\delta-s}$ in the Taylor expansion at the origin of the formal power series $G(\gamma(t), t)$. Furthermore, we have,

$$\sum_{1 \leq \delta_1 \leq \delta - s - 1} \gamma_{\delta_1} \gamma_{\delta - \delta_1 - s} = \{(\gamma(t) - 1)^2\}_{\delta-s}.$$
Hence, \(\gamma(t) \) is solution of the holomorphic implicit function problem:
\[
G(\gamma(t), t) + (\gamma(t) - 1)^2 = \gamma(t) - 1
\]
with initial condition \(\gamma(0) = 1 \). Since \(G(1, 0) = 0 \) and \(D_2G(1, 0) = 0 \), \(\gamma \) is the unique holomorphic solution of this problem. Therefore, for all positive \(\delta \in \tilde{\Delta}^+ \), we have \(u_{\delta} \leq \gamma_\delta \leq C^\delta \). Hence, the formal power series \(\sum U_\delta \) converges in a neighborhood of the origin, that is to say the normalizing transformation \(\Phi^{-1} \) is holomorphic in a neighborhood of the origin of \(\mathbb{C}^n \).

Remark 6.3. If \(S \) is a diagonal linear vector field, then the situation described by the previous theorem corresponds to the Poincaré domain \([1]\). In fact, by definition, the closed convex hull of the eigenvalues \(\lambda_i \) in the complex plane does not contain the origin. Hence, if \(Q \in \mathbb{N}^n \) is such that \(|Q| = q_1 + \cdots + q_n \) is large enough, then \(|q_1 \lambda_1 + \cdots + q_n \lambda_n - \lambda_i| \geq m|Q| \).

6.3. Formal Gevrey conjugacy to a normal form

Assume that \(S \) satisfies the following Siegel type condition: there exist \(c \geq 1 \) and \(\tau \geq 0 \) such that for every \(\delta \in \Delta \) with \(\delta \geq s \), we have
\[
\frac{1}{(\delta - s)^\tau} \leq c \min_{\lambda \in \text{spec } \Delta \setminus \{0\}} \sqrt{\lambda}.
\]
Our aim is to show that both \(\nu_\delta \) and \(u_{\delta-s} \) admit Gevrey estimates. Namely we prove in this section the following result:

Theorem 6.4. Assume that \(S \) satisfies (31). Any good holomorphic perturbation of \(S \) admits a formal transformation to a formal normal form both of which are \(\beta(\frac{s}{s} + \tau) \)-Gevrey power series where \(\delta_0 := \max(\min_{\delta \in \Delta} \delta, 1) \) and \(a := \max \{1, \left[\frac{[\mu+1]}{2}\right]\} \).

The following lemma gives such an estimate using a common majorant power series.

Lemma 6.5. Let \(\{\beta_{\delta-s}\}_{\delta \in \tilde{\Delta} \cap (\Delta+s)}, s \geq s \) be the sequence defined by induction with \(\beta_0 = 1 \) and for \(\delta \in \tilde{\Delta}^+, \delta > s \),
\[
\beta_{\delta-s} = M' \left(\sum_{\mu > s, \mu \in \Delta} \sum_{\mu_s \leq \mu \leq \mu_r} \left(\frac{u_0}{\rho} \right)^{\rho} \beta_{\delta_1} \cdots \beta_{\delta_r} \right.
+ \sum_{1 \leq \delta_1 \leq \delta-s-1} \delta_1 (\delta_1 - 1) \cdots (\delta_1 - a + 1) \beta_{\delta_1} \beta_{\delta-s-\delta_1} + \sum_{s+\delta \leq r \leq s^*} \beta_{\delta_1} \cdots \beta_{\delta_r} \delta_1 + \cdots + \delta_r + s \in \Delta \setminus \{0\} \).
\]
where \(a \) is the smallest integer larger than or equal to \(\nu = \max(1, \frac{s}{2}) \) and where in the first and last sums the \(\delta_i \)'s belong to \(\tilde{\Delta}^- \), \(\Omega_r \) is given by (20) and \(s^* \) is defined by (3). Here, we have set \(M' := \max \left(M_{uc_0} m, \frac{M_{uc_0}}{u_0}, M_{uc_0} s^{-1}, M_{uc_0} s^{-1} \right) \) with \(m = \sup_{\delta \in \Delta} \frac{s^a}{(\delta-a-1)!} \). Then for every \(\delta \in \tilde{\Delta}^+ \) with \(\delta \geq s \),
\[
\nu_\delta \leq u_0 ((\delta - s)!)^{\tau} \beta_{\delta-s}, \quad u_{\delta-s} \leq u_0 ((\delta - s)!)^{\tau} \beta_{\delta-s}.
\]

Remark 6.6. If \(\delta \in \tilde{\Delta}^+ \) and only if \(\delta - s \in \tilde{\Delta}^- \).
Proof. – The proof is made by induction. We first observe that (32) holds for \(\delta = s \) since \(\beta_0 = 1 \) and \(\nu_s = 0 \).

Then, let \(\delta > s \) and assume that (32) holds for every \(\alpha \in \Delta^+ \) satisfying \(s \leq \alpha < \delta \). Our aim is now to prove that (32) holds for \(\delta \). We proceed in several steps.

Step 1.

We start with \(u_{\delta-s} \). Using (28) and (29), we get

\[
\frac{u_{\delta-s}}{u_0((\delta-s))} \leq \frac{M_0(\delta-s)}{u_0((\delta-s))} \sum_{1 \leq \delta_1 \leq s} \sum_{\mu > s, \mu \in \Delta} \beta_{\delta_1} \beta_{\delta-s-\delta_1} (\delta_1! (\delta - \delta_1 - s)!)^r
\]

Step 1.1

We observe that setting \(M' = \max \left(M_{cu_0} m, \frac{M_0}{u_0}, M_{cu_0 s^{-1}} s^{-1}, M_{cu_0 s^{-1}} \right) \), we get \(M_{cu_0} m \leq M' \), \(\frac{M_0}{u_0} \leq M' \) and \(M \max((u_0)^{s-1}, u_0^{s-1}) \leq M' \).

Step 1.2

Then, in the first sum of (33), \(D_{\delta-s,\delta_1,\delta-s-\delta_1} = \frac{\delta_1!(\delta-s-\delta_1)!}{(\delta-s-1)!} \leq 1 \) holds since \(1 \leq \delta_1 \leq \delta - s - 1 \).

Step 1.3

Our aim is now to prove that for every index in the second sum of (33), \(D_{\delta-s,\delta_1,\delta-s-\delta_1} \leq 1 \). For that purpose we need to distinguish three cases.

Case 1: \(r \geq 2 \) and \(\delta_1 \geq 1, 1 \leq j \leq r \). It is proved in [21], p. 20, that for \(r \geq 2, \delta_j \geq 1, \) and \(\delta_1 + \cdots + \delta_r = d D_{d,\delta_1,\cdots,\delta_r} \leq 1 \). So, in the second sum of (33) for \(r \geq 2 \) and \(\delta_j \geq 1 \), we have

\[
D_{\delta-s,\delta_1,\cdots,\delta_r} = \frac{(\delta - \mu - 1)!}{(\delta - s - 1)!} \leq 1
\]

since \(\delta_1 + \cdots + \delta_r = \delta - \mu \) and \(s < \mu \leq \delta \).

Case 2. In the second sum of (33), if \(r = 1 \) (which implies \(\delta_1 = \delta - \mu \)) or if all the indices vanish except one, then

\[
D_{\delta-s,\delta_1,\cdots,\delta_r} = \frac{(\delta - \mu)!}{(\delta - s - 1)!} \leq 1
\]
since $\mu > s$.

Case 3. Finally, if some indices δ_j vanish in the second sum of (33), then the computation of the corresponding $D_{\delta - s, \delta_1, \ldots, \delta_r}$ can be made by removing these indices, i.e. by decreasing r.

So, for every index in the second sum of (33), $D_{\delta - s, \delta_1, \ldots, \delta_r} \leq 1$.

Step 1.4

Finally, in the third sum of (33), $D_{\delta - s, \delta_1, \ldots, \delta_r} \leq 1$ still holds for the same reasons as above, observing that in this case there are at least two positive indices δ_j, i.e. Case 2 is not possible in the third sum.

Gathering the results of substeps 1.1, · · · , 1.4, we can conclude that

$$\frac{u_{\delta - s}}{u_0((\delta - s)!)^{\tau}} \leq M'\beta_{\delta - s}$$

where $M' = \max \left(Mcu_0, \frac{Mcu_0^{s+1}}{\bar{p}}, Maxcu_0^{s+1}, Mcu_0^{s+1} \right)$ does not depend on δ.

Step 2

The computation of the upper bound for ν_δ is performed exactly in the same way.

Remark 6.7. – If the good perturbation is a formal α-Gevrey power series, then the estimate $\frac{1}{p^r}$ of $|\tilde{K}_{\mu, r}|$ has to be changed to $\frac{1}{p^r}(r!)^{\alpha}$. Then, the inequality (28) is changed to $\|K_{\delta}\|_{p, \delta} \leq (\delta^{*}!)^{\alpha}k_\delta$. Since $\delta^{*} \leq \frac{\delta + \bar{p}}{p}$, then according to the proof in Section A.4, we have $(\delta^{*}!)^{\alpha} \leq (\bar{\delta} + \bar{p})!^{\alpha}$. Hence, using Lemma 6.8, we obtain estimates of the form

$$\nu_{\delta, u_{\delta - s}} \leq MC\delta\delta^{*}((\delta - s)!)^{\frac{\delta^{*} + \tau + \bar{p}}{\alpha}}$$

for some positive constants M, C. According to Lemma 3.8, the formal normalizing transformation and the normal form are both $p(\frac{\delta}{\alpha} + \tau + \frac{\bar{p}}{\alpha})$-Gevrey.

In the homogeneous case, $p = (1, \ldots, 1)$, the formal normalizing transformation and the normal form are both $(\alpha + \tau + 1)$-Gevrey.

6.3.1. Gevrey estimates for the β_i’s. – Let us define the formal power series

$$\beta(t) := \sum_{i \in \Delta^{\gamma}(\Delta - s), i \geq 0} \beta_it^i.$$

We recall that $\beta_0 = 1$. Let δ_0 be the order of $\beta - \beta_0$ at the origin. We recall that $\delta_0 := \max(\min_{\delta \in \Delta} \delta, 1)$ from Remark 5.11 and $a := \max \left(1, \left[\frac{(\bar{p} + 1)}{2} \right] \right)$.

Lemma 6.8. – The formal power series β is a $\left(\frac{\alpha}{\bar{p}_0} \right)$-Gevrey power series. More precisely, there exist positive constants M_β and C such that $\beta_i \leq M_\beta C^i((i - \delta_0)!)^{\alpha/\delta_0}$, for all integers $i \geq \delta_0$ that belong to Δ^γ.

Remark 6.9. – With no loss of generality we can assume that M_β is large enough so that $M_\beta \geq 1$ and $\frac{2M_\beta u_0}{\rho} \geq 1$ hold.
Let $G(z, t) := F(z, t) + P(z)$ as defined by Equations (21) and (22) where, in these formulas, ρ is replaced by ρ/u_0, M by M' and σ_0 by 1.

Let $\delta \in \tilde{\Delta}$ such that $\delta > s$. As we have seen above, we can write

$$\sum_{\rho>s=r=\mu_1+\ldots+\mu_n+\delta} M' \left(\frac{u_0}{\rho} \right)^r \beta_{\delta_1} \cdots \beta_{\delta_r} + M' \sum_{\delta_1 + \ldots + \delta_r + s = \delta} \beta_{\delta_1} \cdots \beta_{\delta_r} = \{G(\beta(t), t)\}_{s-s}$$

where, in the first sum, the δ_i’s (resp. μ) are nonnegative elements of $\tilde{\Delta}^-$ (resp. $\tilde{\Delta}$). We recall that $\{G(\beta(t), t)\}_{s-s}$ denotes the coefficient of $t^{\delta-s}$ in the Taylor expansion at the origin of the formal power series $G(\beta(t), t)$. On the other hand, we have

$$\sum_{\delta_1(\delta_1-1) \cdots (\delta_1-a+1) \beta_{\delta_1} \beta_{\delta-s-\delta_1} = \left\{ \beta t^a \frac{d^a}{dt^a} \right\}_{\delta-s}.$$

Hence, according to the definition of the sequence $\{\beta_{\delta-s}\}_{\delta \in \tilde{\Delta}, \delta \geq s}$ in Lemma 6.5, the formal power series $\beta(t)$ satisfies the following differential equation

$$\beta(t) - \beta_0 = M(\beta(t) - \beta_0) t^a \frac{d^a}{dt^a} + G(\beta(t), t).$$

Let us set $\beta(t) = \beta_0 + t^{\delta_0} B(t)$.

We have $B(0) = \beta_0 \neq 0$ and $\beta_0 = 1$. We have

$$\frac{d^a}{dt^a} (t^{\delta_0} B(t)) = \sum_{l=0}^{\min(a, \delta_0)} C_l^a \delta_0(\delta_0-1) \cdots (\delta_0-l+1) t^{\delta_0-l} \frac{d^{a-l}(B(t))}{dt^{a-l}}.$$

Then, B satisfies the following differential equation

$$t^{\delta_0} B = MBt^{\delta_0+a} \left[\sum_{l=0}^{\min(a, \delta_0)} C_l^a \delta_0(\delta_0-1) \cdots (\delta_0-l+1) t^{\delta_0-l} \frac{d^{a-l}(B(t))}{dt^{a-l}} \right] + G(\beta(t), t).$$

Dividing by MB leads to the equation

$$t^{\delta_0+a} \left[\sum_{l=0}^{\min(a, \delta_0)} C_l^a \delta_0(\delta_0-1) \cdots (\delta_0-l+1) t^{\delta_0-l} \frac{d^{a-l}(B(t))}{dt^{a-l}} \right] = \frac{G(B(t), t) := t^{\delta_0} B - G(1 + t^{\delta_0} B(t), t)}{MB}$$

and $\tilde{G}(z, t)$ is holomorphic in a neighborhood of $(\beta_0, 0)$. We have

$$\tilde{G}(1 + t^{\delta_0} B(t), t) = F(1, t) + t^{\delta_0} BDz F(1, t) + O(t^{2\delta_0})$$

since $G(z, t) = F(z, t) + P(z)$ and $Dz P(1) = 0$. We recall that the order of $F(1, t)$ at $t = 0$ is δ_0 according to Remark 5.11. Let us set

$$\tilde{G}'(z, t) := \frac{t^{\delta_0} G(1 + t^{\delta_0} z, t)}{t^{\delta_0} Mz}.$$
This function is holomorphic in a neighborhood of \((\beta_{\delta_0}, 0)\). Moreover, by construction, we have \(\lim_{t \to 0} \frac{F(1, t)}{t^{\delta_0}} = \beta_{\delta_0}\). Hence, we have \(\tilde{G}'(\beta_{\delta_0}, 0) = 0\). Furthermore, we have
\[
-t^{\delta_0} M \frac{\partial \tilde{G}'}{\partial z}(z, t) = \frac{1}{z^2} \left(t^{\delta_0} \frac{\partial \tilde{G}'}{\partial z} (1 + t^{\delta_0} z, t) - G(1 + t^{\delta_0} z, t) \right)
= \frac{1}{z^2} \left(t^{\delta_0} z (D_z F(1 + t^{\delta_0} z, t) + D_z P(1 + t^{\delta_0} z)) \right) - G(1 + t^{\delta_0} z, t)
\]
\[
\frac{\partial \tilde{G}'}{\partial z}(\beta_{\delta_0}, 0) = (M \beta_{\delta_0})^{-1} \lim_{t \to 0} \frac{F(1, t)}{t^{\delta_0}} = (M \beta_{\delta_0})^{-1} \neq 0.
\]
Hence, \(B(t)\) is a solution of the following differential equation
\[
(35) \quad t^a \left[\sum_{l=0}^{\min(a, \delta_0)} C_l \delta_0 (\delta_0 - 1) \cdots (\delta_0 - l + 1) t^{\delta_0 - l} \frac{d^{a-l}(B(t))}{dt^{a-l}} \right] = \tilde{G}'(B(t), t).
\]
Let us consider the Newton polygon of the linearized differential operator \((35)\) at \(B\):
\[
L\psi := t^a \left[\sum_{l=0}^{\min(a, \delta_0)} C_l \delta_0 (\delta_0 - 1) \cdots (\delta_0 - l + 1) t^{\delta_0 - l} \frac{d^{a-l}(\psi)}{dt^{a-l}} \right] - \frac{\partial \tilde{G}'}{\partial z}(B(t), t) \psi.
\]
It is the convex hull of \(\{0\} \cup \{(u, v) \in \mathbb{R}^2 | u \leq a, v = a + \delta_0 - l - (a - l) = \delta_0\}\). It contains only one positive (not infinite) slope: \(\frac{\delta_0}{a}\).

According to the main theorem of [26] (or Theorem A.2.4.2 of [33, p. 209]), which are both nonlinear versions of Theorem 1.5.17 of [31]), then either \(B\) is holomorphic in a neighborhood of the origin or \(B\) is a \((\frac{a}{\delta_0})\)-Gevrey power series. Therefore, \(B_k \leq M e^{\chi_k (k)^a/\delta_0}\) for some constants. The shift in the factorial in the bound of \(\beta_1\) is only due to the formula \(\beta_1(t) = 1 + t^{\delta_0} B(t)\).

Therefore, we obtain an estimate of the form \(\|U_\delta\|_{p, \delta} \leq C^\delta (\delta!)^{\tau + \frac{a}{\delta_0}}\) and \(\|N_\delta\|_{p, \delta} \leq C^\delta (\delta!)^{\tau + \frac{a}{\delta_0}}\) for some constant \(C > 0\). We just conclude using Lemma 3.8.

6.4. Optimal partial normal form with exponentially small remainder

This section is devoted to the proof of Theorem 6.11 below which ensures that an optimal choice of the quasiorder \(\alpha\) of the partial normal form given by Proposition 4.4 enables to conjugate the perturbation to the partial normal form up to an exponentially small remainder.

To state a precise theorem, we need to introduce the following “quasinorms”: for \(x \in \mathbb{C}^n\), let us define
\[
d_{p}(x) := \left(\sum_{i=1}^{n} p_i |x_i|^{2/p_i} \right)^{1/2}.
\]
For a complex-valued function \(f\) defined in a neighborhood of the “twisted ball” \(d_{p}(x) < \varepsilon\) we shall set
\[
|f|_{qh, \delta} := \sup_{d_{p}(x) < \varepsilon} |f(x)|.
\]
If \(X\) is a vector field defined in a neighborhood of the “twisted ball” \(d_{p}(x) < \varepsilon\), we shall set
\[
\|X\|_{qh, \delta}^2 := \sum_{i=1}^{n} \frac{1}{\varepsilon^{2p_i}} |x_i|_{qh, \delta}^2.
\]
The subscript \(qh \) stands for \textit{quasihomogeneous} as these norms are adapted to quasihomogeneous objects.

Remark 6.10. – We recall that Lemma 3.3-(a),(b) ensures that \(\widetilde{\Delta} \) contains all sufficiently large integers. In other words, there exists \(\delta_* \) such that for every \(\alpha \in \mathbb{N} \), if \(\alpha \geq \delta_* \), then \(\alpha \) belongs to \(\widetilde{\Delta} \).

Theorem 6.11. – Let \(S \) be a \(p \)-quasihomogeneous vector field of \(\mathbb{C}^n \). Let \(X := S + R \) be a good holomorphic perturbation of \(S \) in a neighborhood of the origin of \(\mathbb{C}^n \) (i.e. the quasiorder of \(R \) at the origin is greater than \(s \)). Proposition 4.4 ensures that for every \(\alpha \in \widetilde{\Delta} \), there exists a polynomial diffeomorphism tangent to identity \(\Phi^{-1}_\alpha = \text{Id} + U_\alpha \) where \(U_\alpha = \sum_{0 < \delta \leq \alpha - s} U_\delta \), with \(U_\delta \in \mathcal{H}_\delta \) such that

\[
(\Phi_\alpha)_*(X) = S + N_\alpha + R_{\alpha > s},
\]

where \(N_\alpha = \sum_{s < \delta \leq \alpha} N_\delta, N_\delta \in \text{Ker} \square \), and where \(R_{\alpha > s} \) is of quasiorder \(> s \).

Assume that there exist \(c \geq 1 \) and \(\tau \geq 0 \) such that for every \(\delta \in \widetilde{\Delta} \) with \(\delta \geq s \), we have

\[
\frac{1}{\min_{\lambda \in \text{spec} \square \setminus \{0\}} \sqrt{\lambda}} \leq c(\delta - s)^\tau.
\]

Then, there exist \(\theta \geq 4, M_{\text{opt}} > 0, w_{\text{opt}} > 0 \) and \(\varepsilon_0 > 0 \) such that for every \(\varepsilon \in [0, \varepsilon_0[\), the number \(\alpha_{\text{opt}} := \left(\frac{1}{\theta C \varepsilon} \right)^{\frac{1}{b}} + s - 2 \) satisfies

\[
\alpha_{\text{opt}} > s \quad \text{and} \quad \alpha_{\text{opt}} \geq \delta_*,
\]

and

\[
\| R_{\alpha > s} \|_{qh, \varepsilon} \leq M_{\text{opt}} e^{-\frac{w_{\text{opt}}}{\varepsilon}}
\]

where \(\frac{1}{b} = \tau + \frac{a}{\delta_0} \) and \(\delta_* \) is defined in Remark 6.10.

Proof. – The proof of this theorem is based on the following proposition which is proved in Appendix B.

Proposition 6.12. – Let \(K \geq 2 \) and \(\gamma \geq 2 \) be fixed such that

\[
\rho_1(K) < 1 \quad \text{where} \quad \rho_1(K) := \frac{u_0 M_{\beta}}{K^{\delta_0}} \sum_{k=0}^{\infty} (k + \delta_0)^{\frac{1}{2}} \frac{1}{(2M_{\beta}u_0)^{\frac{1}{2}}} \left(\frac{2M_{\beta}u_0}{\rho} \right)^{\frac{1}{2}}.
\]

The numbers \(a, \delta_0, C \) and \(M_{\beta} \) are defined in Lemma 6.8.

Then there exists \(M_R > 0 \), such that for every \(\varepsilon \in]0, 1[\) and every \(\alpha \in \widetilde{\Delta} \) with \(\alpha > s \) satisfying

\[
C\varepsilon \leq \frac{1}{\gamma K(\alpha - s)^\tau},
\]

we have

\[
\| R_{\alpha} \|_{qh, \varepsilon} \leq M_R \left((C\varepsilon)^{\alpha + 1}((\alpha - s + 2)!)^{\frac{1}{2}} \Delta_\alpha + (\frac{1}{K})^{\alpha + 1} \right).
\]
where $\Delta_a = 1$ if $\frac{1}{2} \geq a$ and $\Delta_a = (\alpha - s)^{1-a-\frac{2}{z}}$ otherwise.

Let us prove Theorem 6.11 in the case $\frac{1}{2} \geq a$. The other case can be deduced from this one by an appropriate change of the value of M_R and C. The key idea is to choose an appropriate value α_{opt} for α using Stirling’s formula, which makes the right hand side of (40) exponentially small.

Let us choose α_{opt} such that

$$\alpha_{\text{opt}} - s + 2 = \left[\frac{1}{(\gamma K C \varepsilon)^b}\right].$$

We have $\alpha_{\text{opt}} - s \leq \frac{1}{(\gamma K C \varepsilon)^b}$, so (39) is satisfied. Moreover, let us observe that for ε sufficiently small, (37) is satisfied. Then we compute the upper bound given by the right hand side of (40) with this choice of α. For that purpose, let us set

$$D_1 := (C \varepsilon)^{\alpha_{\text{opt}} + 1} ((\alpha_{\text{opt}} - s + 2))^{\frac{1}{2}}, \quad D_2 := \left(\frac{1}{K}\right)^{\alpha_{\text{opt}} + 1}.$$

Let us set $x := (C \varepsilon)^{b}$ and $M_S := \sup_{k \in \mathbb{N}} \frac{e^{k}}{k^{\frac{1}{2}} e^{-x}}$. According to Stirling’s formula, we have that $M_S < \infty$ holds. Using (41), we have the following inequalities:

$$\frac{(D_1)^{b}}{M_S} \leq e^{-1} x \left[\frac{1}{\gamma K C \varepsilon}\right]^{s-1} \exp \left(\left\{\left[\frac{1}{\gamma K C \varepsilon}\right] \ln \left[\frac{1}{\gamma K C \varepsilon}\right] - \left[\frac{1}{\gamma K C \varepsilon}\right] \ln \frac{1}{\gamma K C \varepsilon}\right\}\right)$$

$$= \frac{x^{s-1}}{e} \exp \left(\left\{\left[\frac{1}{\gamma K C \varepsilon}\right] \ln \left[\frac{1}{\gamma K C \varepsilon}\right] + \left[\frac{1}{\gamma K C \varepsilon}\right] \ln \frac{1}{\gamma K C \varepsilon}\right\}\right)$$

$$\leq \frac{x^{s-1}}{e} \exp \left(\left\{\left[\frac{1}{\gamma K C \varepsilon}\right] \ln \left(\frac{1}{\gamma K C \varepsilon}\right) + \left[\frac{1}{\gamma K C \varepsilon}\right] \ln \frac{1}{\gamma K C \varepsilon}\right\}\right)$$

$$= \frac{x^{s-1}}{e} \exp \left(\left[\frac{1}{\gamma K C \varepsilon}\right] \ln \left(\frac{1}{\gamma K C \varepsilon}\right) \ln \frac{1}{\gamma K C \varepsilon}\right)$$

$$= \frac{x^{s-1}}{e} \exp \left(\left[\frac{1}{\gamma K C \varepsilon}\right] \ln \left(\frac{1}{\gamma K C \varepsilon}\right) \ln \frac{1}{\gamma K C \varepsilon}\right)$$

$$= \frac{x^{s-1}}{e} \exp \left(\left[\frac{1}{\gamma K C \varepsilon}\right] \ln \left(\frac{1}{\gamma K C \varepsilon}\right) \ln \frac{1}{\gamma K C \varepsilon}\right)$$

Hence

$$D_1 \leq M_S^{1/b} (C \varepsilon)^{s-\frac{1}{2}} \sqrt{\gamma K} e^{-\frac{w_1}{b^2}} \quad \text{with} \quad w_1 = \frac{1 + \ln(\gamma K)^b}{b(\gamma K)^b}.$$
Observing that \(w_1 > w_2 \), we can conclude that (38) holds with \(w_{\text{opt}} = w_2 \) and

\[
M_{\text{opt}} = M_{\delta} \max \left(\frac{1}{K^{s-2}}, M_{\delta}^{1/b} \sqrt{\gamma K} \sup_{\varepsilon \in [0,1]} \{ (C\varepsilon)^{s-\frac{3}{2}} e^{-\frac{w_2+w_1}{2}} \} \right).
\]

\[\square \]

In some problems, it might be useful to consider parameters as variables to which one prescribes a weight. This has been done implicitly in [20] for instance.

7. Computations and examples

Let \(p = (p_1, \ldots, p_n) \in (\mathbb{N}^*)^n \). Let \(S \) be a quasihomogeneous vector field of quasidegree \(s \) and let \(\mathcal{H}_\delta \) be the space of quasihomogeneous vector fields of quasidegree \(\delta > s \). We recall that for each positive quasidegree \(k \), the map \(d_0 : \mathcal{H}_\delta \to \mathcal{H}_{\delta + s} \) is defined to be \(d_0(U) = \{ S, U \} \) where \([.,.]\) denotes the Lie bracket of vector fields.

7.1. Computation of \(d_0^p \) and \(\square \)

Let \(U \in \mathcal{H}_\delta \) and \(V \in \mathcal{H}_{\delta + s} \). We write \(U = \sum_{i=1}^n U_i \frac{\partial}{\partial x_i} \). We have

\[
d_0(U) = \sum_{i=1}^n (S(U_i) - U(S_i)) \frac{\partial}{\partial x_i}
\]

where \(S(U_i) := \sum_{j=1}^n S_j \frac{\partial U_i}{\partial x_j} \) denotes the Lie derivative of \(U_i \) along \(S \). We have

\[
\langle d_0(U), V \rangle_{p,\delta+s} = \sum_{i=1}^n \langle S(U_i) - U(S_i), V_i \rangle_{p,\delta+s+p_i}
\]

\[
= \sum_{i=1}^n \langle U_i, S^*(V_i) \rangle_{p,\delta+p_i} - \langle U(S_i), V_i \rangle_{p,\delta+s+p_i}
\]

\[
= \sum_{i=1}^n \langle U_i, S^*(V_i) \rangle_{p,\delta+p_i} - \sum_{j=1}^n \langle U_j, \left(\frac{\partial S_j}{\partial x_j} \right)^* V_i \rangle_{p,\delta+p_j}
\]

\[
= \sum_{i=1}^n \left(U_i, S^*(V_i) - \sum_{j=1}^n \left(\frac{\partial S_j}{\partial x_j} \right)^* V_i \right)_{p,\delta+p_i}
\]

Hence, we can write \(d_0^p \) in a matrix form as

\[
d_0^p(V) = \begin{pmatrix}
S^* - \left(\frac{\partial S_1}{\partial x_1} \right)^* & \cdots & - \left(\frac{\partial S_1}{\partial x_1} \right)^* & \cdots & - \left(\frac{\partial S_n}{\partial x_1} \right)^* \\
- \left(\frac{\partial S_1}{\partial x_2} \right)^* & S^* - \left(\frac{\partial S_2}{\partial x_2} \right)^* & \cdots & - \left(\frac{\partial S_2}{\partial x_2} \right)^* & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
- \left(\frac{\partial S_1}{\partial x_n} \right)^* & \cdots & - \left(\frac{\partial S_n-1}{\partial x_n} \right)^* & S^* - \left(\frac{\partial S_n}{\partial x_n} \right)^* & \cdots \\
\end{pmatrix}
\begin{pmatrix}
V_1 \\
\vdots \\
V_n
\end{pmatrix}
\]

Let us set \(A_i := S - \frac{\partial S_i}{\partial x_i} \). The operator \(d_0^p \) can be viewed as a matrix \((P_{i,j})_{1 \leq i,j \leq n}\) of differential operators defined as follows:

\[
P_{i,j} = \delta_{i,j} S S^* - S \left(\frac{\partial S_j}{\partial x_j} \right)^* - \frac{\partial S_j}{\partial x_j} S^* + \sum_{k=1}^n \frac{\partial S_i}{\partial x_k} \left(\frac{\partial S_j}{\partial x_k} \right)^*,
\]

where \(\delta_{i,j} = 1 \) if \(i = j \) and 0 otherwise.
In the homogeneous case, that is \(p = (1, \ldots, 1) \), the adjoint operator, with respect to the Hermitian product \(\langle \cdot, \cdot \rangle_H \) (see Section A.2), of the multiplication by \(x_i \) is \(\frac{\partial}{\partial x_i} \). Hence, the adjoint operator with respect to \(\langle \cdot, \cdot \rangle_{p,\delta} \) is equal to \(x_i^*|_H \delta = \frac{1}{\delta} \frac{\partial}{\partial x_i} \). Hence, the adjoint operator \(S^* \) of the Lie derivative along \(S \) is defined as

\[
S^*(f) := \frac{k!}{(k+s)!} \sum_{i=1}^{n} x_i S_i \left(\frac{\partial}{\partial x} \right) (f).
\]

Here, if \(S_i(x) = \sum_{|Q|=s+1} s_i Q x^Q \), then \(\bar{S}_i \left(\frac{\partial}{\partial x} \right) := \sum_{|Q|=s+1} \bar{s}_i Q \frac{\partial(Q)}{\partial x} \).

7.2. A first example

In this section we shall completely treat the case where \(S = x^2 \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y} \), \(p = (1, 1) \) and \(s = 1 \). Since \(p = (1, 1) \) we work with standard homogeneous vector fields. Observe that \(H_d(\mathbb{C}^N) \) the space of standard homogeneous vector fields of degree \(d \) in \(\mathbb{C}^N \) is equal to \(H_{d-1} \), which is the space of quasihomogeneous vector fields of quasidegree \(d - 1 \). More precisely, in this section we prove the following proposition:

Proposition 7.1. Let \(S \) be given by \(S = x^2 \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y} \), and let us set \(p = (1, 1) \) and \(s = 1 \). Then,

(a) any good perturbation of \(S \) admits a formal normal form of the type \((46)\).

(b) There exists a positive constant \(M \) such that the spectrum of \(\Box|_{H_n} \) satisfies

\[
\min_{\lambda \in \text{Spec}(\Box|_{H_n}) \setminus \{0\}} \sqrt{\lambda} \geq M \sqrt{n}
\]

for any large enough \(n \).

(c) If a third order holomorphic perturbation of \(S \) is formally conjugate to \(S \), then it is holomorphically conjugate to it.

Proof. (c): We first show that statement (c) directly follows from statement (b). Indeed, (c) ensures that the small divisors are in fact not small. More precisely, there exists \(n_0 \) such that, for every \(n \geq n_0 \),

\[
a_n := \min_{\lambda \in \text{Spec}(\Box|_{H_{n+1}}) \setminus \{0\}} \sqrt{\lambda} \geq 1.
\]

Let us now consider the sequence of numbers \(\eta_n \) given by \((14)\) et let us set \(K = \max_{1 \leq n \leq n_0} \eta_n \). Then \((14)\) ensures that for every \(n \geq n_0 \), \(\eta_n \leq K^{n+2} \) and thus \(S \) is Diophantine (see Definition 5.3) and so Theorem 5.8 ensures that (b) holds.

(a) The resonances.

We have \(S^*|_{H_n} = \frac{1}{n} \left(x \frac{\partial^2}{\partial x^2} + y \frac{\partial^2}{\partial x \partial y} \right) =: \frac{1}{n} A \). If \(v \in H_{n-1} \) then,

\[
n A^* (v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y}) = \begin{pmatrix} A - 2 \frac{\partial}{\partial x} & - \frac{\partial}{\partial y} \\ 0 & A - \frac{\partial}{\partial x} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.
\]
Let us compute the kernel of \(d_0^* \). Let \((v_1, v_2)\) be a couple of formal power series of order \(\geq 3 \) such that \(d_0^*(v_1, v_2) = 0 \). Then,

\[
\begin{cases}
(A - \frac{\partial}{\partial y}) v_2 = 0 \\
(A - 2 \frac{\partial}{\partial x}) v_1 = \frac{\partial y}{\partial y}.
\end{cases}
\]

First of all, for any \((p, q) \in \mathbb{N}^2\) with \(p + q \geq 3 \), we have \(A(x^p y^q) = p(p + q - 1)x^{p-1}y^q \). Hence, a formal power series \(f \) of order \(\geq 3 \) such that \(A(f) = 0 \) is of the form \(f(y) \). Since \((A - \frac{\partial}{\partial y})(x^p y^q) = p(p + q - 2)x^{p-1}y^q \), any formal power series \(f \) of order \(\geq 3 \) such that \((A - \frac{\partial}{\partial y})(f) = 0 \) is of the form \(f(y) \).

As a consequence, we have \(v_2 = f(y) \) for some power series \(f = \sum_{k \geq 3} f_k y^k \) and \((A - 2 \frac{\partial}{\partial x}) v_1 = \frac{\partial f}{\partial y} \). Let us write \(v_1 = \sum_{p+q \geq 3} v_{1,p,q} x^p y^q \). Then, we have

\[
\sum_{p+q \geq 2} v_{1,p,q} (p + q - 3)x^{p-1}y^q = \sum_{q \geq 2} f_{q+1}(q + 1)y^q.
\]

This means that \(v_{1,1,q} = \frac{q+1}{q-2} f_{q+1} \) if \(q > 2 \), \(v_{1,p,q} \) with \(p + q = 3 \) or \(p = 0 \) is unspecified and \(f_3 = 0 \).

Finally, any holomorphic perturbation \(X = S + R \) of \(S \) of quasorder \(> 1 \) (i.e the components of \(R \) are of order \(> 2 \)) admits a formal normal form of the type:

\[
\begin{align*}
\frac{dx}{dt} &= x^2 + P_3(x, y) + x \sum_{k \geq 3} \frac{k+1}{k-2} f_{k+1} y^k + \hat{h}_4(y) \\
\frac{dy}{dt} &= xy + \sum_{k \geq 3} f_{k+1} y^{k+1}
\end{align*}
\tag{46}
\]

for some power series \(\hat{h}_4 \) of order \(\geq 4 \), for some numbers \(f_k \) and some homogeneous polynomial \(P_3 \) of degree \(3 \).

(b) "The small divisors."

Let us consider the differential operators \(A_1(f) := S(f) - 2xf \) and \(A_2(f) := S(f) - xf \). If \(f_n \in H_n \), we have \(nA_1(f_n) := A(f_n) - 2\frac{\partial f_n}{\partial x} \) and \(nA_2(f_n) := A(f_n) - \frac{\partial f_n}{\partial y} \). Then, if \(V \in \mathcal{H}_{n+1} \) then

\[
n d_0 d_0^*(V) = \left(\begin{array}{cc}
A_1 A_1^* - A_1 \circ \frac{\partial}{\partial y} \\
- y A_1^* A_2 + y \frac{\partial}{\partial y}
\end{array} \right) \left(\begin{array}{c}
V_1 \\
V_2
\end{array} \right).
\]

For each \(n \geq 3 \), the 1-dimensional vector space generated by \(x^n \frac{\partial}{\partial y} \) is left invariant by \(d_0 d_0^* \) and we have

\[
n d_0 d_0^*(x^n \frac{\partial}{\partial y}) = n(n - 2)(n - 3)x^n \frac{\partial}{\partial y}.
\]

For each \(Q = (p, q) \in \mathbb{N}^2 \) with \(p \geq 1 \), the vector subspace \(E_Q \) generated by \(e_{1,Q} = x^p y^q \frac{\partial}{\partial x} \) and \(e_{2,Q} = x^{p-1} y^{q+1} \frac{\partial}{\partial y} \) is invariant by \(d_0 d_0^* \). Its restriction to it is given, in the basis \(\{ e_{1,Q}, e_{2,Q} \} \), by

\[
n d_0 d_0^*|_{E_Q} (v, w) = \left(\begin{array}{cc}
p(p - 3 + q)^2 \\
-p(p - 3 + q)(p - 3 + q)
\end{array} \right) \left(\begin{array}{c}
p + q + 1 \\
(p + q - 2) + (q + 1)
\end{array} \right) \left(\begin{array}{c}
v \\
w
\end{array} \right).
\]
Its smallest eigenvalue for $Q = (p, n - p)$ is
\[n\lambda_-(n, p) := (p - \frac{1}{2})n^2 + \frac{3}{2}n(1 - 2p) + (6p - \frac{3}{2}) \]
\[-\frac{1}{2}(9 + 72p + (31 + 12p)n^2 - 10n^3 + n^4). \]

Since $1 \leq p \leq n$, then for n large enough, we have
\[9 + 72p + (31 + 12p)n^2 - 10n^3 + n^4 \leq 9 + 72n + (31 + 12n)n^2 - 30n + 60n^2 - 10n^3 + n^4 \leq \frac{9}{4}n^4. \]

Hence, we have
\[n\lambda_-(n, p) \geq n^2 \left(p - \frac{1}{2} \right) + \frac{3}{2}n(1 - 2p) + (6p - \frac{3}{2}) =: g(p). \]

Let us find the smallest value of this lower bound $g(p)$ when p ranges from 2 to n, n being a large enough fixed integer. We have
\[g'(p) = n^2 - 5n + 6 = (n - 2)(n - 3) \]
which is positive if $n > 3$. Hence, g is an increasing function of p. Finally, we have for n large enough and $n \geq p \geq 2$,
\[n\lambda_-(n, p) \geq n^2 \left(2 - \frac{5}{4} \right) - \frac{15}{2}n + (12 - \frac{3}{2}) \]
and
\[n\lambda_-(n, 1) = -5n + 9 + n^2. \]

Moreover, we have $H_n = \bigoplus_{p=1}^n E_{p,n-p} \oplus \mathbb{C}x^n \frac{\partial}{\partial y} \oplus \mathbb{C}y^n \frac{\partial}{\partial z}$ and $d_0d_0(y^n \frac{\partial}{\partial z}) = 0$.

As a consequence, there exists a positive constant M such that, if n is large enough, then
\[\min_{\lambda \in \text{Spec}(\square|H_n) \setminus \{0\}} \sqrt{\lambda} \geq M\sqrt{n}. \]

7.3. A second example: the 0^3 resonance

In this section we shall completely treat the case where S is the linear vector field of \mathbb{C}^3 given by
\[S(x, y, z) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \]

Setting $p = (1, 1, 1)$, S is quasihomogeneous of degree $s = 0$. We prove the following result

Proposition 7.2. Let S be the linear vector field of \mathbb{C}^3 given by (49). Then, we have

(a) For every n, the spectrum of $\square|H_n$ contains only non negative integers. So for every $n \in \mathbb{N}$,
\[\min_{\lambda \in \text{Spec}(\square|H_n) \setminus \{0\}} \sqrt{\lambda} \geq 1. \]

(b) Any nonlinear holomorphic perturbation of the linear vector field S has a formal normal form of the type
\[\begin{pmatrix} y + xP_1(x, u) \\ z + yP_1(x, u) + xP_2(x, u) \\ zP_1(x, u) + yP_2(x, u) + P_3(x, u) \end{pmatrix} \]
where $u = y^2 - 2xz$. The P_i's are formal power series.
(c) If a nonlinear holomorphic perturbation of \(S \) is formally conjugate to \(S \), then it is holomorphically conjugated to it. If it is not the case, then there is a 1-Gevrey formal transformation to a formal 1-Gevrey normal form.

(d) If \(P_i = uP_i(x,u) \) for all \(i \), then in good holomorphic coordinates, the analytic set \(\{ y^2 - 2xz = 0, z = 0 \} = \{ y = z = 0 \} \) is invariant under the flow of the nonlinear perturbation.

Proof. – Statements (a) and (b) are respectively proved in [21, Lemma 2.24] and [16, Section 2.4.2].

Moreover as in the previous example, statement (a) and Theorem 5.8 ensure that if a nonlinear holomorphic perturbation of \(S \) is formally conjugate to \(S \), then it is holomorphically conjugated to it. The second half of statement (c) directly follows from Theorem 6.4.

Finally, statement (d) is a direct consequence of Theorem 5.6 and Corollary 5.7 with \(\mathcal{J} \) the ideal generated by \(z \) and \(u \).

\[\square \]

Appendix A

Inner products and analyticity

A.1. Decomposition as sum of quasihomogeneous components

This subsection is devoted to the computations of homogeneous and quasihomogeneous components of products, derivatives and composition of functions and vector fields.

Lemma A.1 (Components of the product). – Let \(f, g \in \mathbb{C}[[x_1, \ldots, x_n]] \) and \(U, S \) in \((\mathbb{C}[[x_1, \ldots, x_n]])^n\). Then,

(a) \(\{fg\}_{r} = \sum_{r_1+r_2=r} f_{r_1} g_{r_2}, \quad \{fV\}_{r} = \sum_{r_1+r_2=r} f_{r_1} V_{r_2} \); \\
(b) \(\{fg\}_\delta = \sum_{\delta_1+\delta_2=\delta} f_{\delta_1} g_{\delta_2}, \quad \{fV\}_\delta = \sum_{\delta_1+\delta_2=\delta} f_{\delta_1} V_{\delta_2} \).

Lemma A.2 (Components of the derivatives). – Let \(f \in \mathbb{C}[[x_1, \ldots, x_n]] \) and \(U, S \) in \((\mathbb{C}[[x_1, \ldots, x_n]])^n\). Let us denote by \(S(f) \) the Lie derivative of \(f \) along \(S \) and by \([S,U]\) the Lie brackets of \(S \) and \(U \). Then,

(a) \(\{S(f)\}_{r} = \sum_{r_1+r_2=r+1} S_{r_1} f_{r_2}, \quad \{DS.U\}_{r} = \sum_{r_1+r_2=r+1} DS_{r_1} U_{r_2}; \)

\(\{[U,S]\}_{r} = \sum_{r_1+r_2=r+1} [S_{r_1}, U_{r_2}] \);

(b) \(\{S(f)\}_\delta = \sum_{\delta_1+\delta_2=\delta} S_{\delta_1} f_{\delta_2}, \quad \{DS.U\}_\delta = \sum_{\delta_1+\delta_2=\delta} DS_{\delta_1} U_{\delta_2}, \quad \{[U,S]\}_\delta = \sum_{\delta_1+\delta_2=\delta} [S_{\delta_1}, U_{\delta_2}] \).

Proof. – The proofs of the above three lemmas follow directly from the definition and from Proposition 3.4.

\[\square \]

The following lemma gives a characterization of quasihomogeneous polynomial and vector fields of given quasidegree. This characterization happens to be very convenient to compute the quasihomogeneous components of compositions.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
Lemma A.3. — Let us define \(P^p.x := (t^p.x_1, \ldots, t^p.x_n) \). Then, a polynomial \(P \) is \(p \)-quasihomogeneous of degree \(\delta \) if and only if \(P(t^p.x) = t^\delta P(x) \). Furthermore, a vector field is \(p \)-quasihomogeneous of degree \(\delta \) if and only if \(X(t^p.x) = t^\delta (t^p.X(x)) \).

Proof. — The proof is immediate. \(\square \)

Lemma A.4 (Components of the composition). — Let \(f \in \mathbb{C}[[x_1, \ldots, x_n]] \) and \(U, V \) in \((\mathbb{C}[[x_1, \ldots, x_n]])^\text{r} \). Then,

(a) \(\{ f \circ U \}_S = \sum_{\delta \leq \delta', \frac{p}{r} \leq \frac{p}{k}} \tilde{f}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}). \)

(b) \(\{ V \circ U \}_S = \sum_{\delta \leq \delta', \delta \leq r \leq \delta^*} \tilde{V}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}), \) where \(\delta \) and \(\delta^* \) are defined in (3).

Proof. — The proof is based on the characterization of the \(\delta \)-quasihomogeneous components given by Lemma A.3. Indeed, using that \(f_\delta \) is quasihomogeneous of quasidegree \(\delta \) and that \(f_{\delta,r} \) is \(r \)-linear, we have

\[
\begin{align*}
 f(U)(t^p.x) &= \sum_{\delta \in \Delta} f_\delta \left(\sum_{d \in \Delta} U_d(t^p.x) \right) \\
 &= \sum_{\delta \in \Delta} f_\delta \left(t^p, \sum_{d \in \Delta} t^d U_d(x) \right) \\
 &= \sum_{\delta \in \Delta} t^\delta f_\delta \left(\sum_{d \in \Delta} t^d U_d(x) \right) \\
 &= \sum_{\delta \in \Delta} t^\delta \sum_{\frac{p}{r} \leq \frac{p}{k}} \tilde{f}_{\delta,r} \left(\sum_{\delta_1 \in \Delta} t^{\delta_1} U_{\delta_1}(x), \ldots, \sum_{\delta_r \in \Delta} t^{\delta_r} U_{\delta_r}(x) \right) \\
 &= \sum_{\delta \in \Delta} \sum_{\frac{p}{r} \leq \frac{p}{k}} \tilde{f}_{\delta,r} \left(U_{\delta_1}(x), \ldots, U_{\delta_r}(x) \right).
\end{align*}
\]

Hence,

\[
\{ f \circ U \}_S = \sum_{\delta \leq \delta', \frac{p}{r} \leq \frac{p}{k}} \tilde{f}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}).
\]

For vector fields the proof is the same. \(\square \)

A.2. Inner products for quasihomogeneous polynomials and vector fields

Let us denote by \(\mathcal{P}_\delta(\mathbb{C}^n) \) the space of \(p \)-quasihomogeneous polynomials from \(\mathbb{C}^n \) to \(\mathbb{C} \) of quasidegree \(\delta \) and by \(\mathcal{H}_\delta(\mathbb{C}^n) \) the space of \(p \)-quasihomogeneous vector fields of quasidegree \(\delta \) in \(\mathbb{C}^n \).

In a similar way, let us denote by \(\mathcal{P}_d(\mathbb{C}^N) \) the space of standard homogeneous polynomials from \(\mathbb{C}^N \) to \(\mathbb{C} \) of degree \(d \) and by \(\mathcal{H}_d(\mathbb{C}^N) \) the space of standard homogeneous vector fields of degree \(d \) in \(\mathbb{C}^N \).

The aim of this subsection is to build on \(\mathcal{P}_\delta(\mathbb{C}^n) \) and \(\mathcal{H}_\delta(\mathbb{C}^n) \) inner products which lead to norms such that the norm of the product is less than or equal to the product of the norms.
In the homogeneous case for $P_δ(\mathbb{C}^N)$ and $H_δ(\mathbb{C}^N)$, the Fisher inner product $\langle \cdot , \cdot \rangle_H$ is given by

\begin{equation}
\langle x^R, x^Q \rangle_H := \begin{cases} R! & \text{if } R = Q, \text{ where } R! = r_1! \cdots r_n! \text{ if } R = (r_1, \ldots, r_n) \\ 0 & \text{otherwise} \end{cases}
\end{equation}

for monomials and by

\begin{equation}
\langle U, V \rangle_H := \sum_{j=1}^n \langle U_j, V_j \rangle_H
\end{equation}

for polynomial vector fields $U = \sum_{j=1}^n U_j \frac{\partial}{\partial x_j}$ and $V = \sum_{j=1}^n V_j \frac{\partial}{\partial x_j}$. This inner product leads to multiplicative norms given by

$$|\phi|_{H, \delta} = \sqrt{\langle \phi, \phi \rangle_H / \delta!}.$$

One can check that

$$\langle \frac{\partial}{\partial x_j} f(x), g(x) \rangle_H = \langle f(x), x_j g(x) \rangle_H.$$

In the homogeneous case, $p = (1, \ldots, 1)$. Let $f \in H_{\delta-1}$, $g \in H_\delta$, then we have

$$\langle x_i f, g \rangle_{p, \delta} = \frac{1}{\delta!} \langle x_i f, g \rangle_H = \frac{1}{\delta!} \left\langle f, \frac{\partial g}{\partial x_i} \right\rangle_H = \frac{(\delta - 1)!}{\delta!} \left\langle f, \frac{\partial g}{\partial x_i} \right\rangle_{p, \delta-1}.$$

In the quasihomogeneous case, a natural idea to build inner products which lead to multiplicative norms is based on the following proposition:

Proposition A.5. – Let N be an integer and let s be a morphism of algebra from $\mathbb{C}[x_1, \ldots, x_n]$ to $\mathbb{C}[x_1, \ldots, x_N]$ which is injective (i.e. $\ker(s) = 0$) and which maps $\mathcal{P}_\delta(\mathbb{C}^n)$ into $P_\delta(\mathbb{C}^n)$ for every $\delta \in \Delta$. Then,

1. **(a)** the bilinear form $(f, g)_p = \langle s(f), s(g) \rangle_H$ is an inner product on $\mathcal{P}_\delta(\mathbb{C}^n)$;
2. **(b)** for every $f \in \mathcal{P}_\delta$ and $g \in \mathcal{P}_\delta$, the renormalized norm $|f|_{p, \delta}$ satisfies

\begin{equation}
|fg|_{p, \delta + \delta'} \leq |f|_{p, \delta} |g|_{p, \delta'}.
\end{equation}

3. **(c)** Let $f_{\delta, r} : \mathbb{C}^n \to \mathbb{C}$ be simultaneously quasihomogeneous of degree δ and homogeneous of degree r. Denote by $\tilde{f}_{\delta, r}$ the unique r-linear, symmetric form such that $\tilde{f}_{\delta, r}(x, \ldots, x) = f_{\delta, r}(x)$ where $x = (x_1, \ldots, x_n)$. For $1 \leq \ell \leq r$, let $U_{\delta, \ell}$ be ℓ-times a p-quasihomogeneous vector field of quasdegree δ_ℓ. Then, $\tilde{f}_{\delta, r}(U_{\delta, 1}, \ldots, U_{\delta, r})$ is p-quasihomogeneous of degree $\delta + \delta_1 + \cdots + \delta_r$ and we have

\begin{equation}
||\tilde{f}_{\delta, r}(U_{\delta, 1}, \ldots, U_{\delta, r})||_{p, \delta + \delta_1 + \cdots + \delta_r} \leq N_1(\tilde{f}_{\delta, r}) \|U_{\delta, 1}\|_{p, \delta_1} \cdots \|U_{\delta, r}\|_{p, \delta_r}
\end{equation}

with

$$||U||_{p, \delta}^2 = \sum_{i=1}^n |U_i|_{p, \delta + \delta_i}^2 := \sum_{i=1}^n |U_i|_{p, \delta_i}^2.$$
and

\[N_1(\tilde{f}_{\delta,r}) := \sum_{1 \leq i_{1} \leq n_{1} \leq i_{2} \leq \ldots \leq i_{r}} \left| \tilde{f}_{\delta,r}(e_{i_{1}}, \ldots, e_{i_{r}}) \right| \]

where \((e_{1}, \ldots, e_{n})\) is the canonical basis of \(\mathbb{C}^{n}\).

(d) Let \(R_{\delta,r}\) be a vector field of \(\mathbb{C}^{n}\). We assume that \(R_{\delta,r}\) is simultaneously quasihomogeneous of degree \(\delta\) and homogeneous of degree \(r\). Denote by \(\tilde{R}_{\delta,r}\) the unique \(r\)-linear, symmetric operator of \(\mathbb{C}^{n}\) such that \(\tilde{R}_{\delta,r}(x, \ldots, x) = R_{\delta,r}(x)\) where \(x = (x_{1}, \ldots, x_{n})\).

For \(1 \leq \ell \leq r\), let \(U_{\delta_{\ell}}\) be a \(p\)-quasihomogeneous vector field of degree \(\delta_{\ell}\). Then, \(\tilde{R}_{\delta,r}(U_{\delta_{1}}, \ldots, U_{\delta_{r}})\) is \(p\)-quasihomogeneous of degree \(\delta + \delta_{1} + \cdots + \delta_{r}\) and we have

\[\left\| \tilde{R}_{\delta,r}(U_{\delta_{1}}, \ldots, U_{\delta_{r}}) \right\|_{p,\delta+\delta_{1}+\cdots+\delta_{r}} \leq N_{2,1}(\tilde{R}_{\delta,r}) \left\| U_{\delta_{1}} \right\|_{p,\delta_{1}} \cdots \left\| U_{\delta_{r}} \right\|_{p,\delta_{r}} \]

with

\[N_{2,1}(\tilde{R}_{\delta,r}) := \sqrt{\sum_{j=1}^{n} N_{1}^{2}(\tilde{R}_{\delta,r,j})} \]

where \(\tilde{R}_{\delta,r,j}\) is the \(j\)-th components of \(\tilde{R}_{\delta,r}\) in the canonical basis of \(\mathbb{C}^{n}\).

Proof. – (a) Property (a) directly follows from the fact that \(s\) is linear and injective.

(b) Using that \(s\) is a morphism of algebra and that the renormalized norm for homogeneous polynomials \(\|\phi\|_{H,\delta} = \sqrt{\sum_{i=1}^{r} \phi_{H,\delta}^{2}}\) is multiplicative we get

\[\|fg\|_{p,\delta+\delta'} = \|s(fg)\|_{H,\delta+\delta'} = \|s(f)s(g)\|_{H,\delta} \leq \|s(f)\|_{H,\delta} \|s(g)\|_{H,\delta} = \|f\|_{p,\delta} \|g\|_{p,\delta'}. \]

Hence the renormalized norm for a quasihomogeneous polynomial is multiplicative.

(c) The proof is made in three steps.

Step c-1: Explicit formula for \(\tilde{f}_{\delta,r}\). For \(1 \leq \ell \leq n\), let \(x^{(\ell)} = (x_{1}^{(\ell)}, \ldots, x_{n}^{(\ell)})\). Then denoting by \((e_{i})\) the canonical basis of \(\mathbb{C}^{n}\), we get

\[\tilde{f}_{\delta,r}(x^{(1)}, \ldots, x^{(r)}) = \sum_{1 \leq i_{1} \leq n_{1} \leq i_{2} \leq \ldots \leq i_{r}} x_{i_{1}}^{(1)} \cdots x_{i_{r}}^{(r)} \tilde{f}_{\delta,r}(e_{i_{1}}, \ldots, e_{i_{r}}). \]

since \(\tilde{f}_{\delta,r}\) is \(r\)-linear. Hence, for \(x = (x_{1}, \ldots, x_{n})\),

\[\tilde{f}_{\delta,r}(x) = \tilde{f}_{\delta,r}(x_{1}, \ldots, x_{n}) = \sum_{1 \leq i_{1} \leq \cdots \leq i_{r}} x_{i_{1}} \cdots x_{i_{r}} \tilde{f}_{\delta,r}(e_{i_{1}}, \ldots, e_{i_{r}}). \]

Then since the quasidegree of \(x_{i_{1}} \cdots x_{i_{r}}\) is \(p_{i_{1}} + \cdots + p_{i_{r}}\) and since \(f_{\delta,r}\) is of quasidegree \(\delta\) we get that for every \(x^{(\ell)} \in \mathbb{C}^{n}\), we have

\[\tilde{f}_{\delta,r}(x^{(1)}, \ldots, x^{(r)}) = \sum_{1 \leq i_{1} \leq n_{1} \leq i_{2} \leq \ldots \leq i_{r}} x_{i_{1}}^{(1)} \cdots x_{i_{r}}^{(r)} \tilde{f}_{\delta,r}(e_{i_{1}}, \ldots, e_{i_{r}}). \]
Step c-2: Quasidegree of $f_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r})$. For $1 \leq \ell \leq r$, let U_{δ_ℓ} be in $\mathcal{H}_{\delta_\ell}$. Denote by $U_{\delta_\ell,i}$ the i-th coordinate of U_{δ_ℓ} in the canonical basis of \mathbb{C}^n. Then, $U_{\delta_\ell,i}$ belongs to $\mathcal{P}_{\delta_\ell+p_i}$ and $U_{\delta_1,i_1} \cdots U_{\delta_r,i_r}$ belongs to $\mathcal{P}_{\delta_1+\cdots+\delta_r+p_1+\cdots+p_r}$. Hence

\begin{equation}
(55) \hspace{1cm} \tilde{f}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}) = \sum_{1 \leq i_1 \leq n, 1 \leq \ell \leq r \atop p_1 + \cdots + p_r = \delta} U_{\delta_1,i_1} \cdots U_{\delta_r,i_r} \tilde{f}_{\delta,r}(e_{i_1}, \ldots, e_{i_r}),
\end{equation}

$\tilde{f}_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r})$ belongs to $\mathcal{P}_{\delta'}$ with $\delta' = \delta_1 + \cdots + \delta_r + \delta$.

Step c-3: Upper bound for $\left| f_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \right|_{p,\delta'}$. Using (55), (52) and observing that for a polynomial vector field $U = \sum_{j=1}^{n} U_j \frac{\partial}{\partial x_j} \in \mathcal{H}_\delta$ we have $|U_j|_{p,\delta+p_j} \leq \|U\|_{p,\delta}$, we get

\begin{equation}
\left| f_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \right|_{p,\delta'} \leq \sum_{1 \leq i_1 \leq n, 1 \leq \ell \leq r \atop p_1 + \cdots + p_r = \delta} \left| \tilde{f}_{\delta,r}(e_{i_1}, \ldots, e_{i_r}) \right| \left| U_{\delta_1,i_1} \cdots U_{\delta_r,i_r} \right|_{p,\delta'} \|U|_{p,\delta_1+\cdots+\delta_r+p_r}.
\end{equation}

\[\leq \sum_{1 \leq i_1 \leq n, 1 \leq \ell \leq r \atop p_1 + \cdots + p_r = \delta} \left| \tilde{f}_{\delta,r}(e_{i_1}, \ldots, e_{i_r}) \right| \|U_1\|_{p,\delta_1} \cdots \|U_{\delta_r}\|_{p,\delta_r}.
\]

\[= N_1(\tilde{f}_{\delta,r}) \|U_{\delta_1}\|_{p,\delta_1} \cdots \|U_{\delta_r}\|_{p,\delta_r}.
\]

(d): For a polynomial vector field $R_{\delta,r} := \sum_{j=1}^{n} R_{\delta,r,j} \frac{\partial}{\partial x_j}$, (d) ensures that for every $1 \leq j \leq n$, $R_{\delta,r,j}(U_{\delta_1}, \ldots, U_{\delta_r})$ belongs to $\mathcal{P}_{\delta_1+\cdots+\delta_r+p_j}$ and that

\[\left| R_{\delta,r,j}(U_{\delta_1}, \ldots, U_{\delta_r}) \right|_{p,\delta'+p_j} \leq N_1(R_{\delta,r,j}) \|U_{\delta_1}\|_{p,\delta_1} \cdots \|U_{\delta_r}\|_{p,\delta_r},
\]

where $\delta' = \delta_1 + \cdots + \delta_r + \delta$. Hence, $R_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r})$ belongs to $\mathcal{H}_{\delta'}$ and we have

\[\left\| R_{\delta,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \right\|_{p,\delta'}^2 \leq \sum_{j=1}^{n} \left\| R_{\delta,r,j}(U_{\delta_1}, \ldots, U_{\delta_r}) \right\|_{p,\delta'+p_j}^2 \leq \sum_{j=1}^{n} N_2^2(R_{\delta,r,j}) \|U_{\delta_1}\|_{p,\delta_1} \cdots \|U_{\delta_r}\|_{p,\delta_r} = N_{2,1}(R_{\delta,r}) \|U_{\delta_1}\|_{p,\delta_1} \cdots \|U_{\delta_r}\|_{p,\delta_r}. \]

The following lemma and corollary give four examples of morphism of algebra from $P_\delta(\mathbb{C}^n)$ into $P_\delta(\mathbb{C}^N)$ which lead to four different inner products on $P_\delta(\mathbb{C}^n)$. The first example is the one used throughout this paper (see (4), Lemma A.5 and (56)).

Annales Scientifiques de l’École Normale Supérieure
Lemma A.6. — Let us define
\[s_1 : \mathcal{P}_\delta(C^n) \to P_3(C^{p_1}) \]
\[f \mapsto s_1(f)(x_{1,1}, \ldots, x_{1,p_1}, \ldots, x_{n,1}, \ldots, x_{n,p_n}) := f(x_{1,1}, \ldots, x_{1,p_1}, \ldots, x_{n,1}, \ldots, x_{n,p_n}); \]
\[s_2 : \mathcal{P}_\delta(C^n) \to P_3(C^n) \]
\[f \mapsto s_2(f)(x_1, \ldots, x_n) := f(x_{p_1}, \ldots, x_{p_n}); \]
\[s_3 : \mathcal{P}_\delta(C^n) \to P_3(C^{2n}) \]
\[f \mapsto s_3(f)(x_1, \ldots, x_n, \eta_1, \ldots, \eta_n) := f(x_{\eta_1}, \ldots, x_{\eta_n}, x_{\eta_1}^{-1}, \ldots, x_{\eta_n}^{-1}); \]
\[s_4 : \mathcal{P}_\delta(C^n) \to P_3(C^{n+1}) \]
\[f \mapsto s_4(f)(x_1, \ldots, x_n, \varepsilon) := f(x_{\varepsilon}, x_{\varepsilon}, \ldots, x_{\varepsilon}). \]

Then,
(a) for \(1 \leq k \leq 4\), \(s_k\) is an injective morphism of algebra. So it induces on \(P_3\) an inner product given by \(\langle f, g \rangle_{k,p} := \langle s(f), s(g) \rangle_H\).
(b) for every \(Q = (q_1, \ldots, q_n)\) and \(R = (r_1, \ldots, r_n)\),
\[
\begin{align*}
\langle x^Q, x^R \rangle_{1,p} & := \delta_{Q,R} (p_1!)p_1 \cdots (q_1!)q_1 \\
\langle x^Q, x^R \rangle_{2,p} & := \delta_{Q,R} (p_1!q_1! \cdots p_n!q_n!) \\
\langle x^Q, x^R \rangle_{3,p} & := \delta_{Q,R} (p_1! \cdots q_n!) \cdot (p_1 - 1)q_1!(p_2 - 1)q_2! \cdots (p_n - 1)q_n! \\
\langle x^Q, x^R \rangle_{4,p} & := \delta_{Q,R} (p_1!) \cdots (q_n! \cdot ((Q, p) - |Q|) \\
\end{align*}
\]
where \(\delta_{Q,R} := 1\) if \(Q = R\) and \(\delta_{Q,R} := 0\) otherwise.

The proof of this lemma follows directly from Proposition A.5. The details are left to the reader.

Lemma A.7. — Assume that \(\mathcal{P}_\delta\) is endowed with the scalar product \(\langle \cdot, \cdot \rangle := \langle \cdot, \cdot \rangle_{1,p}\) defined in Lemma A.6 and that \(\mathcal{P}_\delta\) and \(\mathcal{H}_\alpha\) are normed with the two corresponding norms.

(a) Let \(f\) be in \(\mathcal{P}_\delta\) and \(N\) in \(\mathcal{H}_\alpha\). Then \(Df.N\) belongs to \(\mathcal{P}_{\delta+\alpha}\) and
\[
|Df.N|_{p,\delta+d} \leq m_p \delta^{\max(1, 2)} \|f\|_{p,\delta} \|U\|_{p,d} \quad \text{where} \quad m_p = n.
\]
(b) Let \(U\) be in \(\mathcal{H}_\delta\) and \(N\) in \(\mathcal{H}_\alpha\). Then \(DU.N\) lie in \(\mathcal{H}_{\delta+\alpha}\) and
\[
\|DU.N\|_{p,\delta+\alpha} \leq m_p (\delta + p)^{\max(1, 2)} \|U\|_{p,\delta} \|N\|_{p,\alpha}.
\]
Proof. — (a) Proposition 3.4 ensures that \(Df.N\) lie in \(\mathcal{H}_{\delta+d}\). Moreover denoting by \(N_j := \pi_j(N)\) the \(j\)-th component of \(U\) in \(\mathbb{C}^n\), we have
\[
|Df.N|_{p,\delta+\alpha} = \left| \sum_{j=1}^n \frac{\partial f}{\partial x_j} N_j \right|_{p,\delta+\alpha} \leq \sum_{j=1}^n \left| \frac{\partial f}{\partial x_j} \right|_{p,\delta-\alpha} |N_j|_{p,\delta+\alpha} \leq \sqrt{\sum_{j=1}^n \left| \frac{\partial f}{\partial x_j} \right|_{p,\delta-\alpha}^2} \|N\|_{p,\alpha}.
\]
Then setting $f = \sum_{(\alpha, p) = \delta} f_Q x^Q$, we have

$$\sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_j} \right|^2 = \sum_{j=1}^{n} \sum_{(Q, p) = \delta} |f_Q|^2 |q_j|^2 (Q)^p \frac{(Q)^p}{(q_j)^p (\delta - p_j)!} = \sum_{(\alpha, p) = \delta} \frac{|f_Q|^2 (Q)^p}{\delta!} \sum_{j=1}^{n} \frac{|q_j|^2 \delta!}{(q_j)^p (\delta - p_j)!}.$$

Moreover, we check that

$$\sum_{j=1}^{n} \frac{|q_j|^2 \delta!}{(q_j)^p (\delta - p_j)!} \leq \sum_{j=1}^{n} \left(\frac{\delta}{q_j} \right)^{p_j} |q_j|^2.$$

Then, using that for $(Q, p) = \delta$, we have $p q_j \leq |Q| \leq |p|$, we get that

- for $p_j = 1$, $\left(\frac{\delta}{q_j} \right)^{p_j} |q_j|^2 = \delta |q_j| \leq \frac{\delta^2}{p} \leq \delta^2$,
- for $p_j = 2$, $\left(\frac{\delta}{q_j} \right)^{p_j} |q_j|^2 = \delta^2$,
- for $p_j \geq 3$, $\left(\frac{\delta}{|q_j|} \right)^{p_j} |q_j|^2 \leq \delta^p \frac{1}{q_j^j} \leq \delta^p$.

Hence, we get

$$|Df.N|_{p, \delta+\alpha} \leq n \delta^{\max(1, \frac{p}{q})} \|f\|_{p, \delta} \|U\|_{p, \alpha}.$$

(b) Proposition 3.4 ensures that $Df.N \in \mathcal{H}_{\delta+\alpha}$. Moreover denoting by $S_j := \pi_j(S)$ the j-th component of S in \mathbb{C}^n and using (b), we get

$$\|DU.N\|_{p, \delta+\alpha}^2 = \sum_{j=1}^{n} \|DU_j.N\|_{p, \delta+\alpha+p_j}^2 \leq n^2 \left(\delta + p_j \right)^{\max(1, \frac{p}{q})} \|Dj^2\|_{p, \delta+\alpha+p_j}^2 \leq n^2 \left(\delta + p \right)^{\max(1, \frac{p}{q})} \|U\|_{p, \delta}^2 \|N\|_{p, \alpha}^2.$$

Hence

$$|D.N|_{p, \delta+\alpha} \leq n \left(\delta + p \right)^{\max(1, \frac{p}{q})} \|U\|_{p, \delta} \|N\|_{p, \alpha}.$$

\[A.3. \] Quasihomogeneous decomposition and analyticity

In Subsection 3.2 we introduced several decompositions of a formal power series $f \in \mathbb{C}[[x_1, \ldots, x_n]]$ as the sum of homogeneous and quasihomogeneous components. We now prove that f converges uniformly in a neighborhood of the origin if and only if its homogeneous or quasihomogeneous components grow at most geometrically. In this subsection, we use the normalized norm $|f|_{p, \delta} := \sqrt{\frac{\|f(1, \ldots, 1)\|_U}{\delta!}}$ (see Proposition A.5 and Lemma A.6). More precisely we have

Proposition A.8. – For a formal power series $f = \sum_{Q \in \mathbb{N}_0^n} f_Q x^Q \in \mathbb{C}[[x_1, \ldots, x_n]]$, the following properties are equivalent:

(a) f is uniformly convergent in a neighborhood of the origin;

(b) there exist $M, R > 0$ such that for every $Q \in \mathbb{N}_0^n$, $|f_Q| \leq \frac{M}{R^{|Q|}}$;

(c) there exist $M, R > 0$ such that for every $Q \in \mathbb{N}_0^n$, $\|f\|_{\cdot, r} := \sup_{x \in \mathbb{C}^n} |f(x)/|x|^r| \leq \frac{M}{R^r}$.
(d) there exist $M, R > 0$ such that for every $Q \in \mathbb{N}^n$, $\| \tilde{f}_{*,r} \| := \sup_{x^{(r)} \in \mathbb{C}^n} \frac{|\tilde{f}_{*,r}(x^{(1)}, \ldots, x^{(r)})|}{\|x^{(r)}\|} \leq \frac{M}{R^r}$.

(e) there exist $M, R > 0$ such that for every $\delta \in \Delta$, $|f_{\delta}|_{p,\delta} \leq \frac{M}{R^r}$;

(f) there exist $M, R > 0$ such that for every $\delta \in \Delta$ and $r \geq 0$, $N_1(\tilde{f}_{\delta,r}) \leq \frac{M}{R^r}$.

We have a similar proposition for vector fields. Statements (a), (b), (c), (d) are still equivalent for vector fields. Statements (e) and (f) should be modified with appropriate norms for vector fields. More precisely we have

Proposition A.9. – For a formal vector field $V \in (\mathbb{C}[[x_1, \ldots, x_n]])^n$, the following properties are equivalent:

(a) V is uniformly convergent in a neighborhood of the origin;

(b) there exist $M, R > 0$ such that for every $\delta \in \Delta$, $\|V_{\delta}\|_{p,\delta} \leq \frac{M}{R^r}$;

(c) there exist $M, R > 0$ such that for every $\delta \in \Delta$ and $r \geq 0$, $N_2(\tilde{V}_{\delta,r}) \leq \frac{M}{R^r}$.

A.3.1. Proof of Proposition A.8. – The proof of the equivalence of statements (a),(b),(c),(d) of Proposition A.8 which correspond to the homogeneous decompositions is due to H. Shapiro [32, Lemma 1]. The equivalence of (c) and (d) relies on the equivalence of the norms $|\cdot|_{b,r}$ and $\|\cdot\|$ which can be found in the book of Cartan [10]. More precisely we have

Lemma A.10. – For a homogeneous polynomial ψ of degree r, let us denote by $\tilde{\psi}$ the unique r-linear symmetric form such that for every $x \in \mathbb{C}^n$, $\tilde{\psi}(x, \ldots, x) = \psi(x)$. Then there exists $M > 0$ such that for every $r \geq 0$ and every homogeneous polynomial ψ of degree r

$$|\psi|_{b,r} \leq \|\tilde{\psi}\| \leq M(2e)^r |\psi|_{b,r}.$$

The proof of the equivalence of statements (a) and (e) of Proposition A.8 is based on the following lemma:

Lemma A.11. – Let f be in $\mathbb{C}[[x_1, \ldots, x_n]]$. The following properties are equivalent

(a) f is uniformly convergent in a neighborhood of the origin;

(b) $F := s_1(f) \in \mathbb{C}[[x_{1,1}, \ldots, x_{1,p_1}, \ldots, x_{n,1}, \ldots, x_{n,p_n}]]$ is uniformly convergent in a neighborhood of the origin;

(c) There exist $M, R > 0$ such that for every $\delta \in \Delta$, $|f_{\delta}|_{p,\delta} \leq \frac{M}{R^r}$.

Proof. – The proof is performed in three steps.

Step 1. We prove that (a) \Leftrightarrow (b).

Let us decompose f and $F = s_1(f)$ as a sum of monomials. We have

$$f = \sum_{Q \in \mathbb{N}^n} f_Q x^Q, \quad F = \sum_{Q \in \mathbb{N}^n} f_Q(x_{1,1})^{q_1} \cdots (x_{1,p_1})^{q_{p_1}} \cdots (x_{n,1})^{q_n} \cdots (x_{n,p_n})^{q_n} = \sum F_A X^A$$
with
\[X = (x_1, \ldots, x_{p_1}, \ldots, x_{n,1}, \ldots, x_{1,p_n}), \]
\[A = (q_1, \ldots, q_1, \ldots, q_n, \ldots, q_n), \]
\[F_A = f_Q. \]

Hence, we have \(|A| = p_1 q_1 + \cdots + p_n q_n = (Q, p)| \leq |A| \leq P|Q|.

Thus, on one hand if \(f\) is uniformly convergent in a neighborhood of the origin, then there exist \(M, R > 0\) such that for every \(Q \in \mathbb{N}^n\)
\[|F_A| = |f_Q| \leq M \frac{1}{R|Q|} \leq M \left(\frac{1}{R^n} \right)^{|A|}. \]

Hence, \(F\) is uniformly convergent in a neighborhood of the origin.

On the other hand, if \(F\) is uniformly convergent in a neighborhood of the origin, then there exist \(M', R' > 0\) such that for every \(A \in \mathbb{N}^n\)
\[|F_Q| = |F_A| \leq M' \left(\frac{1}{R'} \right)^{|A|} \leq M' \left(\frac{1}{(R')^p} \right)^{|Q|}. \]

Hence, \(f\) is uniformly convergent in a neighborhood of the origin.

Step 2. We prove that \((b) \Rightarrow (c)\). Proposition A.8-(b) applied to \(F = s_1(f)\) ensures that if \(F\) is uniformly convergent in a neighborhood of the origin, then there exist \(M_0, R_0 > 0\) such that for every \(\delta\)
\[|F_\delta|_{b,\delta} \leq \frac{M_0}{R_0^\delta}, \]
where \(F_\delta\) is the homogeneous component of \(F\) of degree \(\delta\).
Moreover it is proved in [21, Lemma A.5] that
\[|F_\delta|_{H,\delta} = \sqrt{\frac{\langle F_\delta, F_\delta \rangle_H}{\delta!}} \leq \sqrt{C_{\delta+n-1}^{-1}} |F_\delta|_{b,\delta} \]
where
\[C_{\delta+n-1}^{-1} = \frac{(\delta + n - 1)!}{(n - 1)! \delta!} = \frac{(\delta + n - 1) \cdots (\delta + 1)}{(n - 1)!}. \]
Hence, there exists \(M' > 0\) such that for every \(\delta\),
\[|F_\delta|_{H,\delta} \leq M' \delta^{\frac{n}{2}} \frac{M_0}{R_0^\delta} \leq M \frac{1}{R^\delta}, \]
where \(R\) is any number in \([0, R_0]\) and where \(M = M'M_0 \sup_{\delta \geq 0} \left[\delta^{\frac{n}{2}} \left(\frac{R}{R_0} \right)^\delta \right] \). So we can conclude that if \(F\) is uniformly convergent in a neighborhood of the origin, then there exist \(M, R > 0\) such that for every \(\delta\),
\[|f_\delta|_{p,\delta} = \sqrt{\langle s_1(f_\delta), s_1(f_\delta) \rangle_H} = |F_\delta|_{H,\delta} \leq M \frac{1}{R^\delta}. \]

Step 3. We prove that \((c) \Rightarrow (b)\). Assume that there exist \(M, R > 0\) such that for every \(\delta\),
\[|f_\delta|_{p,\delta} \leq M \frac{1}{R^\delta}. \]
Then, \(F = s_1(f) \) satisfies
\[
|F_{\bullet \delta}|_{H, \delta} = |f_{\bullet \delta}| \leq \frac{1}{R^6}.
\]
Moreover it is proved in [21, Lemma A.3] that \(|F_{\bullet \delta}|_{H, \delta} \leq |F_{\bullet \delta}|_{H, \delta} \). Hence, Proposition A.8-(b) applied to \(F \) ensures that \(F \) is uniformly convergent in a neighborhood of the origin. \(\square \)

To prove statement (f) of Proposition A.8, we first need a technical lemma giving the equivalence of the norms \(\| \cdot \| \) and \(N_1(\cdot) \).

Lemma A.12.

(a) For every \(r \)-linear form \(\tilde{\varphi} : \mathbb{C}^n \to \mathbb{C} \), we have \(\| \tilde{\varphi} \| \leq N_1(\tilde{\varphi}) \leq n^r \| \tilde{\varphi} \| \).

(b) For every \(r \)-linear operator \(\tilde{R} : \mathbb{C}^n \to \mathbb{C}^n \), we have \(\| \tilde{R} \| \leq N_1(\tilde{R}) \leq n^r \| \tilde{R} \| \).

Proof. (a) For \(x^{(e)} = \sum_{i=1}^n x_i^{(e)} e_i \) where \((e_i)_{1 \leq i \leq n} \) is the canonical basis of \(\mathbb{R}^n \) we have
\[
\tilde{\varphi}(x^{(1)}, \ldots, x^{(r)}) = \sum_{1 \leq i_1 \leq \ldots \leq i_r \leq n} \tilde{\varphi}(e_{i_1}, \ldots, e_{i_r}) x_{i_1} \cdots x_{i_r}.
\]
Using that \(|x_i^{(e)}| \leq |x_i^{(e)}| \) we get that \(|\tilde{\varphi}(x^{(1)}, \ldots, x^{(r)})| \leq |x^{(1)}| \cdots |x^{(r)}| N_1(\tilde{\varphi}) \). Hence \(\| \tilde{\varphi} \| \leq N_1(\tilde{\varphi}) \).

Reciprocally,
\[
N_1(\tilde{\varphi}) := \sum_{1 \leq i_1 \leq \ldots \leq i_r \leq n} \| \tilde{\varphi}(e_{i_1}, \ldots, e_{i_r}) \| \leq \sum_{1 \leq i_1 \leq \ldots \leq i_r \leq n} \| \tilde{\varphi} \| 1 \cdots 1 = n^r \| \tilde{\varphi} \|.
\]

(b) Let us set \(\tilde{R}(x^{(1)}, \ldots, x^{(r)}) := \sum_{i=1}^n \tilde{R}_i(x^{(1)}, \ldots, x^{(r)}) e_i \). Then using (a) we have
\[
|\tilde{R}(x^{(1)}, \ldots, x^{(r)})|^2 = \sum_{i=1}^n |\tilde{R}_i(x^{(1)}, \ldots, x^{(r)})|^2 \leq \sum_{i=1}^n \| \tilde{R}_i \|^2 |x^{(1)}|^2 \cdots |x^{(r)}|^2
\]
\[
\leq |x^{(1)}|^2 \cdots |x^{(r)}|^2 \sum_{i=1}^n N_1^2(\tilde{R}_i).
\]
Hence \(\| \tilde{R} \| \leq N_{21}(\tilde{R}) \). Conversely, using the Cauchy-Schwartz inequality we get
\[
N_{21}^2(\tilde{R}) = \sum_{j=1}^n N_1^2(\tilde{R}_j) = \sum_{j=1}^n \left(\sum_{1 \leq i_1 \leq \ldots \leq i_r \leq n} |\tilde{R}_j(e_{i_1}, \ldots, e_{i_r})| \right)^2
\]
\[
\leq \sum_{j=1}^n \left(\sum_{1 \leq i_1 \leq \ldots \leq i_r \leq n} 1 \right) \left(\sum_{1 \leq i_1 \leq \ldots \leq i_r \leq n} |\tilde{R}_j(e_{i_1}, \ldots, e_{i_r})|^2 \right)
\]
Hence, $N_{21}(\tilde{R}) \leq n^r \| \tilde{R} \|$.

Finally, the equivalence of statements (a) and (f) of Proposition A.8 directly follows from

Lemma A.13. Let $f = \sum_{Q \in \mathbb{N}^n} f_Q x^Q \in \mathbb{C}[[x_1, \ldots, x_n]]$. Then,

(a) for every $Q \in \mathbb{N}^n$, $|f_Q| \leq n^{\frac{r}{2}} N_1(\tilde{f}_{\delta,r})$ where $r = |Q|$ and $\delta = (Q, p)$;

(b) there exist $M, R > 0$ such that for every $r \geq 0$ and $\delta \in \Delta$,

$$N_1(\tilde{f}_{\delta,r}) \leq M r^n (2n^{\frac{r}{2}})^r |f_{\bullet,r}|_{b,r}.$$

Proof. (a) Using Cauchy’s formula, for $Q = (q_1, \ldots, q_n)$, we get

$$f_Q = \frac{1}{2\pi i} \int_0^{2\pi} \cdot \cdot \cdot \int_0^{2\pi} f_{\delta,r}(e^{i\theta_1}, \ldots, e^{i\theta_n}) e^{-i(q_1\theta_1 + \ldots + q_n\theta_n)} d\theta_1 \ldots d\theta_n.$$

Hence, using that $|f_{\delta,r}(x_1, \ldots, x_n)| \leq |f_{\delta,r}|_{b,r} (x_1^2 + \ldots + x_n^2)^{\frac{r}{2}}$ and using Lemmas A.10 and A.12, we get

$$|f_Q| \leq \frac{1}{2\pi n} \int_0^{2\pi} \cdot \cdot \cdot \int_0^{2\pi} |f_{\delta,r}|_{b,r} \left(\sqrt{|e^{i\theta_1}|^2 + \ldots + |e^{i\theta_n}|^2}\right)^r d\theta_1 \ldots d\theta_n$$

$$\leq n^{\frac{r}{2}} |f_{\delta,r}|_{b,r} \leq n^{\frac{r}{2}} \| \tilde{f}_{\delta,r} \| \leq n^{\frac{r}{2}} N_1(\tilde{f}_{\delta,r}).$$

(b) Using Lemmas A.10 and A.12, we get that for every $\delta, r \geq 0$

$$N_1(\tilde{f}_{\delta,r}) \leq n^r \| \tilde{f}_{\delta,r} \| \leq M n^r (2n^{\frac{r}{2}})^r |f_{\bullet,r}|_{b,r}.$$

Moreover we have,

$$|f_{\delta,r}|_{b,r} = \sup_{x \in \mathbb{C}^n} \frac{|f_{\delta,r}(x)|}{|x|^r} \leq \sup_{x \in \mathbb{C}^n} \sum_{Q=1}^{n^r} |f_Q| \frac{|x_1|^{q_1} \ldots |x_n|^{q_n}}{|x|^r} \leq \sum_{|Q|=r} |f_Q| \leq \sum_{|Q|=r} |f_Q|.$$

Since using Cauchy’s formula we get for any Q such that $|Q| = r$, $|f_Q| \leq n^r |f_{\bullet,r}|_{b,r}$, and since $\# \{Q/|Q| = r\} = C_{r+n-1}^{n-1}$ (see [21, Lemma A.2], we obtain that there exists $M' > 0$ such that for every $r \geq 0$

$$|f_{\delta,r}|_{b,r} \leq C_{r+n-1}^{n-1} n^{\frac{r}{2}} |f_{\bullet,r}|_{b,r} \leq M' r^n n^{\frac{r}{2}} |f_{\bullet,r}|_{b,r}.$$

So, we finally obtain that for every $\delta, r \geq 0$, $N_1(\tilde{f}_{\delta,r}) \leq M r^n (2n^{\frac{r}{2}})^r |f_{\bullet,r}|_{b,r}$.

\[\square\]
A.3.2. **Proof of Proposition A.9.** – The proof of the equivalence of statements (a), (c) is exactly the same as for functions. The equivalence of statements (a) and (b) directly follows from the case of functions. Indeed,

\[V = \sum_{j=1}^{n} \pi_j(V) \frac{\partial}{\partial x_j} \] is uniformly convergent in a neighborhood of the origin,

⇔ for all \(1 \leq j \leq n\), \(\pi_j(V)\) is uniformly convergent in a neighborhood of the origin,

⇔ for all \(1 \leq j \leq n\), there exist \(M_j, R_j > 0\), such that \(\forall \delta, |\{\pi_j(V)\}_{\delta}^{\delta+p_j} |_{p,\delta+p_j} \leq \frac{M_j}{R_j^{\delta+p_j}}\),

⇔ there exist \(M, R > 0\), such that for every \(\delta\) and all \(1 \leq j \leq n\), \(\{\pi_j(V)\}_{\delta}^{\delta+p_j} |_{p,\delta+p_j} \leq \frac{M}{R^{\delta}}\),

⇔ there exist \(M, R > 0\), such that for every \(\delta\) and all \(1 \leq j \leq n\), \(\|V \|_{p,\delta} \leq \frac{M}{R^{\delta}}\),

since \(\{\pi_j(V)\}_{\delta}^{\delta+p_j} = \pi_j(V)\) and \(\|V \|_{p,\delta} = \sum_{j=1}^{n} |\pi_j(V)\|^{2} |_{p,\delta+p_j}\).

A.4. **Proof of Lemma 3.8**

First of all, using Stirling’s formula, it is easy to show that there exists a positive constant \(C\) (depending on \(p\)) such that, for all multiindices \(Q \in \mathbb{N}^{n}\),

\[
|p| Q! \leq C^{\| Q \|} (| Q |)!^p.
\]

Hence, we have

\[
\frac{(Q, p)!}{Q!^p} \leq C^{\| Q \|} \left(\frac{(Q, p)!}{(p_1 q_1)! \cdots (p_n q_n)!} \right).
\]

Furthermore, since \(2^k = (1 + 1)^k = \sum_{m=0}^{k} C_k^m\), we have \(\frac{a^k}{a^{k+b}} \leq 2^{a+b}\). We have

\[
\frac{(Q, p)!}{(p_1 q_1)! \cdots (p_n q_n)!} = \frac{q_1 p_1 + \cdots + q_n p_n}{(p_1 q_1)! \cdots (p_n q_n)!} \leq 2^{(Q, p)} \left(\frac{q_2 p_2 + \cdots + q_n p_n}{(p_2 q_2)! \cdots (p_n q_n)!} \right).
\]

Hence, by applying the same argument by induction, we obtain that there exists a constant \(C\) such that for all multiindices \(Q \in \mathbb{N}^{n}\), \(\frac{(Q, p)!}{Q!^p} \leq C^{\| Q \|}\). Let \(f = \sum_{\delta \in \Delta} f_\delta\) be a formal power series. Let \(\delta \in \Delta\) and let \(Q \in \mathbb{N}^{n}\) such that \((Q, p) = \delta\). By definition of the norm and using the previous argument, we have

\[
|f_Q| \leq |f_\delta|_{p,\delta} \sqrt{\frac{\delta!}{Q!^p}} \leq C^{\| Q \|} |f_\delta|_{p,\delta}.
\]

Hence, if \(|f_\delta|_{p,\delta} \leq D^k (\delta)!^b\) then

\[
|f_Q| \leq C^{\| Q \|} (\delta)!^b \leq D^k (Q)!^p \leq E|Q|!^{gb}
\]

for some constants \(\tilde{C}, \tilde{D}, E\).
Appendix B

Proof of Proposition 6.12

Let S be a p-quasihomogeneous vector field of \mathbb{C}^n. Let $X := S + R$ be a good holomorphic perturbation of S in a neighborhood of the origin of \mathbb{C}^n (i.e. the quasiorder of R at the origin is greater than s). Proposition 4.4 ensures that for every $\alpha \in \mathring{\Delta}$, there exists a polynomial diffeomorphism tangent to identity $\Phi^{-1}_\alpha = \text{Id} + U_\alpha$ where $U_\alpha = \sum_{0 < \delta \leq \alpha - s} U_\delta$, with $U_\delta \in \mathcal{H}_\delta$ such that

$$(\Phi_\alpha)_*(X) = S + \mathcal{N}_\alpha + \mathcal{R}_{> \alpha},$$

where $\mathcal{N}_\alpha = \sum_{s < \delta \leq \alpha} N_\delta$, $N_\delta \in \text{Ker} \Box_\delta$, and where $\mathcal{R}_{> \alpha}$ is of quasiorder $> \alpha$. The aim of this appendix is to prove Proposition 6.12 which gives a kind of “Gevrey estimates” of the remainder $\mathcal{R}_{> \alpha}$. We first check that the remainder is explicitly given by

\begin{equation}
L_\alpha \mathcal{R}_{> \alpha} = Q^1_{> \alpha} + Q^2_{> \alpha} + Q^3_{> \alpha},
\end{equation}

with

$\mathcal{L}_\alpha = \text{Id} + D U_\alpha = \text{Id} + \sum_{0 < \delta \leq \alpha - s} D U_\delta,$

and

\begin{align}
Q^1_{> \alpha} &= \sum_{\begin{subarray}{c}
0 < \delta_1, \delta_2 \leq \alpha - s, \\
\delta_1 \in \mathring{\Delta}^{-}, \\
s < \delta_2 \leq \alpha, \\
\delta_2 \in \Delta
\end{subarray}} D U_{\delta_1} \cdot N_{\delta_2}, \\
Q^2_{> \alpha} &= \sum_{\begin{subarray}{c}
\mu > s, \\
\mu \in \mathring{\Delta}^{-}
\end{subarray}} \sum_{r = \mu} \sum_{\begin{subarray}{c}
\delta_1 + \cdots + \delta_r + \mu > \alpha \\
0 < \delta_i \leq \alpha - s, \\
\delta_i \in \Delta^{-}
\end{subarray}} \tilde{R}(U_{\delta_1}, \ldots, U_{\delta_r}), \\
Q^3_{> \alpha} &= \sum_{r = s} \sum_{\begin{subarray}{c}
s \in \mathring{\Delta}^{-}, \\
\delta_1 + \cdots + \delta_r + s > \alpha \\
0 < \delta_i \leq \alpha - s, \\
(\delta_1, \ldots, \delta_r) \in \Omega_r
\end{subarray}} \tilde{S}_r(U_{\delta_1}, \ldots, U_{\delta_r}).
\end{align}

Then to compute upper bounds of $\mathcal{L}_\alpha^{-1} Q^j_{> \alpha}$ we introduce the following family of norms and Banach spaces:

Definition B.2. For $\varepsilon > 0$, let us denote by \mathcal{B}_ε the Banach space of all formal vector fields $V = \sum_{\delta \in \Delta} V_\delta$ of \mathbb{C}^n such that

$\mathcal{N}_\varepsilon(V) := \sum_{\delta \in \Delta} \varepsilon^\delta \| V_\delta \|_{p, \delta} < +\infty.$

Remark B.3. Statement (c) of Proposition A.9 ensures that any analytic vector field of \mathbb{C}^n belongs to \mathcal{B}_ε for ε sufficiently small.

We first prove the following lemma which compares the different norms

\[\text{ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE}\]
\textbf{Lemma B.4.} – Let ε be fixed in $]0, 1[.$

(a) Let $f(x_1, \ldots, x_n) \in \mathcal{P}_\delta$ be a quasihomogeneous polynomial of degree δ. Let $F \in \mathcal{P}_\delta(\mathbb{C}^{|p|})$ be given by $F(X_{1,1}, \ldots, X_{1,p_1}, \ldots, X_{n,1}, \ldots, X_{n,p_n}) := s_1(f)$ as defined in Lemma A.6. Then, we have

$$|f|_{q,h,\varepsilon} := \sup_{d_p(x) < \varepsilon} |f(x)| \leq \sup_{\|X\| < \varepsilon} |F(X)|.$$ (60)

(b) For every $f \in \mathcal{P}_\delta$, $|f|_{q,h,\varepsilon} \leq \varepsilon^{|f|_{p,\delta}}$ holds.

(c) For every $V \in \mathcal{H}_\delta$,

$$\|V\|^2_{q,h,\varepsilon} := \frac{1}{2^{p_1}} \sum_{i=1}^{n} |V_i|_{q,h,\varepsilon}^2 \leq \varepsilon^{|f|_{p,\delta}} \|V\|_{p,\delta}.$$ (61)

(d) For every $V \in \mathcal{B}_\varepsilon$,

$$\|V\|^2_{q,h,\varepsilon} \leq N_\varepsilon(V)$$ (62)

\textbf{Remark B.5.} – In fact it is possible to prove more accurate results for statements (a), (b), (c). Indeed, for $f \in \mathcal{P}_\delta$ and $V \in \mathcal{H}_\delta$, we have

$$|f|_{q,h,\varepsilon} = \sup_{\|X\| < \varepsilon} |F(X)|,$$

$$|f|_{q,h,\varepsilon} \leq \varepsilon^{|f|_{p,\delta}} \leq \sqrt{C_{q,h}^{p_{\delta}}} \|f|_{q,h,\varepsilon},$$

$$\|V\|_{q,h,\varepsilon} \leq \varepsilon^{|f|_{p,\delta}} \|V\|_{p,\delta} \leq \sqrt{C_{q,h}^{p_{\delta}}} \|V\|_{q,h,\varepsilon}.$$

\textbf{Proof of Lemma B.4.} – Let $f(x_1, \ldots, x_n) \in \mathcal{P}_\delta$ be a quasihomogeneous polynomial of degree δ. Let $F \in \mathcal{P}_\delta(\mathbb{C}^{|p|})$ be given by $F(X_{1,1}, \ldots, X_{1,p_1}, \ldots, X_{n,1}, \ldots, X_{n,p_n}) := s_1(f)$ as defined in Lemma A.6.

\textbf{Proof of (a).} – Let $x = (x_1, \ldots, x_n)$ be in \mathbb{C}^n and let us set $x_k = r_ke^{i\theta_k}$ where $r_k, \theta_k \in \mathbb{R}$. Then, setting $X_{k,j} = (r_k)^{\frac{1}{p_k}} e^{\frac{i\theta_k}{p_k}}$, we get

$$f(x_1, \ldots, x_n) = F(X_{1,1}, \ldots, X_{1,p_1}, \ldots, X_{n,1}, \ldots, X_{n,p_n}).$$

Moreover,

$$(d_p(x))^2 := \sum_{k=1}^{n} p_k |x_k|^2 = \sum_{k=1}^{n} \sum_{j=1}^{p_n} |X_{k,j}|^2 = \|X\|^2.$$ (4)

Thus, if $d_p(x) < \varepsilon$, then $\|X\| < \varepsilon$ and

$$|f(x_1, \ldots, x_n)| = |F(X_{1,1}, \ldots, X_{1,p_1}, \ldots, X_{n,1}, \ldots, X_{n,p_n})| \leq \sup_{\|X\| < \varepsilon} |F(X)|.$$ (5)

Hence,

$$|f|_{q,h,\varepsilon} = \sup_{d_p(x) < \varepsilon} |f(x)| \leq \sup_{\|X\| < \varepsilon} |F(X)|.$$ (6)
Proof of (b). — Let \(f \) be in \(\mathcal{D}_\delta \) and let us set \(F := s_1(f) \). The homogeneous polynomial \(F \in P_5(\mathbb{C}^{|p|}) \) is a homogeneous polynomial of degree \(\delta \). It is proved in [21]-Lemma A.3 that

\[
\|F\|_{0,\delta} := \sup_{X \neq 0} \frac{|F(X)|}{\|X\|^{\delta}} \leq \|F\|_{H,\delta}.
\]

Then since \(\|F\|_{H,\delta} := \|s_1(f)\|_{H,\delta} := \sqrt{\frac{(s_1(f), s_1(f))_H}{\delta!}} = |f|_{p,\delta} \), using (a) we finally get

\[
|f|_{p,\delta} \leq \sup_{|X| < \varepsilon} |F(X)| \leq \|F\|_{0,\delta} \varepsilon^{\delta} \leq \|F\|_{H,\delta} \varepsilon^{\delta} = |f|_{p,\delta} \varepsilon^{\delta}.
\]

Proof of (c). — Let \(V \) be in \(\mathcal{H}_\delta \). Using the previous result, we directly get

\[
\|V\|_{q,\delta}^2 := \sum_{i=1}^n \frac{1}{\varepsilon^{2p_i}} |V_i|_{q,\delta}^2 \leq \sum_{i=1}^n \frac{2^2(\delta + p_i)}{\varepsilon^{2p_i}} |V_i|_{p,\delta + p_i}^2 = \varepsilon^{2\delta} \|V\|_{p,\delta}^2.
\]

Proof of (d). — Let \(V \) be in \(\mathcal{B}_\varepsilon \). Writing \(V \) as the sum of its quasihomogeneous components, \(V = \sum_{\delta \in \Delta} V_{\delta} \), we get

\[
\|V\|_{q,\delta} \leq \sum_{\delta \in \Delta} \|V_{\delta}\|_{q,\delta} \leq \sum_{\delta \in \Delta} \varepsilon^{\delta} \|V\|_{p,\delta} = N_\varepsilon(V).
\]

Then we prove that \(\mathcal{L}_\alpha \) is invertible and we compute the operator norm of its inverse.

Proposition B.6. — Let \(K \geq 2 \) be fixed such that

\[
\rho_1(K) < 1 \quad \text{with} \quad \rho_1(K) := \frac{M_\delta |p|}{K^\alpha} \sum_{k=0}^{+\infty} \frac{1}{k!} (\frac{1}{2})^k
\]

where \(a, \delta_0 \) and \(M_\delta \) are defined in Lemma 6.8.

Then for every \(\varepsilon \in]0,1[\) and every \(\alpha \in \tilde{\Delta} \) with \(\alpha > s \) satisfying

\[
C\varepsilon \leq \frac{1}{K(\alpha - s)\varepsilon},
\]

we have:

(a) The operator \(\mathcal{J}_\alpha \) given by \(\mathcal{J}_\alpha V = D\mathcal{U}_\alpha V \) maps \(\mathcal{B}_\varepsilon \) into \(\mathcal{B}_\varepsilon \) and for every \(V \in \mathcal{B}_\varepsilon \) we have

\[
N_\varepsilon(\mathcal{J}_\alpha V) \leq \rho_1(K) N_\varepsilon(V);
\]

(b) the operator \(\mathcal{L}_\alpha = \text{Id} + \mathcal{J}_\alpha \) is invertible and for every \(V \in \mathcal{B}_\varepsilon \),

\[
\|\mathcal{L}_\alpha^{-1} V\|_{q,\delta} \leq N_\varepsilon(\mathcal{L}_\alpha^{-1} V) \leq \frac{1}{1-\rho_1(K)} N_\varepsilon(V).
\]

Proof. — Statement (b) directly follows from (a) since it ensures that \(\|\mathcal{J}_\alpha\|_{\mathcal{L}(\mathcal{B}_\varepsilon)} < \rho_1(K) < 1 \) and so \(\mathcal{L}_\alpha^{-1} = (\text{Id} + \mathcal{J}_\alpha)^{-1} = \sum_{n=0}^{+\infty} (-\mathcal{J}_\alpha)^n \) holds. We now prove statement (a). Observing that

\[
\mathcal{J}_\alpha V = \sum_{0 < \delta_1 \leq \alpha - s, \delta_1 \in \tilde{\Delta}^-} DU_{\delta_1} V_{\delta_1},
\]

recalling that \(a := \max \left(1, \left[\frac{p+1}{2} \right] \right) \) and using Proposition 3.6-(d) we get
\[N_{e}(\mathcal{J}_{\alpha}, V) = \sum_{0 < \delta_1 \leq \alpha - \varepsilon, \delta_1 \in \Delta} \left\| \sum_{\delta_1 + \delta_2 = \delta} D U_{\delta_1} V_{\delta_2} \right\|_{p, \delta} \epsilon^\delta, \]

\[\leq \mathcal{M}_p \sum_{0 < \delta_1 \leq \alpha - \varepsilon, \delta_1 \in \Delta} \delta_1^q \left\| U_{\delta_1} \right\|_{p, \delta_1} \epsilon^\delta_1 \left\| V_{\delta_2} \right\|_{p, \delta_2} \epsilon^\delta_2 \]

\[\leq \eta \, N_{e}(V) \] \hspace{1cm} (65)

where

\[\eta = \mathcal{M}_p \sum_{0 < \delta_1 \leq \alpha - \varepsilon, \delta_1 \in \Delta} \delta_1^q \left\| U_{\delta_1} \right\|_{p, \delta_1} \epsilon^\delta_1. \]

Using (32) and Lemma 6.8 and recalling that \(\frac{1}{t} = \tau + \frac{\alpha}{\delta_0} \) we get

\[\eta \leq \mathcal{M}_p M_\beta u_0 \sum_{\delta_0 \leq \delta_1 \leq \alpha - \varepsilon, \delta_1 \in \Delta} \delta_1^q (C \varepsilon)^\delta_1 (\delta_1!)^\tau \leq \mathcal{M}_p M_\beta u_0 \sum_{\delta_0 \leq \delta_1 \leq \alpha - \varepsilon, \delta_1 \in \Delta} \delta_1^q (C \varepsilon)^\delta_1 (\delta_1!)^\tau. \]

Then for every \(K \geq 2 \) and every \(\varepsilon, \alpha \) satisfying (64), we obtain

\[\eta \leq \mathcal{M}_p M_\beta u_0 \sum_{\delta_0 \leq \delta_1 \leq \alpha - \varepsilon, \delta_1 \in \Delta} \delta_1^q \left(\frac{1}{K} \right)^{\delta_1} \left(\frac{\delta_1!}{(\alpha - \varepsilon)^\delta_1} \right)^\tau \leq \mathcal{M}_p M_\beta u_0 \sum_{\delta_0 \leq \delta_1 \leq \alpha - \varepsilon, \delta_1 \in \Delta} \delta_1^q \left(\frac{1}{K} \right)^{\delta_1} \]

\[\leq \mathcal{M}_p M_\beta u_0 \sum_{\delta_0 = \delta_0}^{+\infty} \delta_1^q \left(\frac{1}{K} \right)^{\delta_1 - \delta_0} \]

\[\leq \mathcal{M}_p M_\beta u_0 \sum_{k = 0}^{+\infty} (k + \delta_0)^q \left(\frac{1}{2} \right)^k \]

\[= \rho_1(K). \] \hspace{1cm} (66)

In conclusion, gathering (65) and (66) we get that for every \(V \in \mathcal{B}_\varepsilon \), every \(K \geq 2 \) and every \(\varepsilon, \alpha \) satisfying (64),

\[N_{e}(\mathcal{J}_{\alpha}, V) \leq \rho_1(K) \, N_{e}(V). \]

Before computing upper bounds of \(X_{\alpha}^{-1} Q_{\alpha} \), we prove a last lemma giving an estimate of the norm of \(\text{Id} + \mathcal{U}_\alpha \):

Lemma B.7. Let \(K \geq 2 \) be fixed such that (63) is satisfied. Then for every \(\varepsilon \in]0, 1[\) and every \(\alpha \in \Delta \) such that \(\alpha > s \) satisfying (64), we have

\[N_{e}(\text{Id} + \mathcal{U}_\alpha) = \sum_{0 \leq \delta \leq \alpha - s, \delta \in \Delta^-} \epsilon^\delta u_\delta \leq 2 M_\beta u_0. \]

Remark B.8. The key point in the above estimate is that the upper bound does not depend on \(\alpha \) nor on \(\varepsilon \).
Proof. – Using (32) and Lemma 6.8 and recalling that \(\frac{1}{\varepsilon} = \tau + \frac{a}{s_0} \) and that \(M_\beta \geq 1 \), we get that for every \(K \geq 2 \), every \(\varepsilon \in]0, 1[\) and every \(\alpha \in \widetilde{\Delta} \) with \(\alpha > s \) satisfying (64), we have

\[
N_\varepsilon(\text{Id} + \mathcal{U}_\alpha) = \sum_{0 \leq \delta \leq \alpha - s, \delta \in \widetilde{\Delta}^-} \varepsilon^\delta u_\delta \\
\leq u_0 + M_\beta u_0 \sum_{\delta_0 \leq \delta \leq \alpha - s, \delta \in \widetilde{\Delta}^-} (C\varepsilon)^\delta \left((\delta - \delta_0)! \right)^{\frac{1}{\varepsilon}} \\
\leq M_\beta u_0 \sum_{0 \leq \delta \leq \alpha - s, \delta \in \widetilde{\Delta}^-} (C\varepsilon)^\delta \left(\left(\frac{\delta!}{(\alpha - s)!} \right)^{\frac{1}{\varepsilon}} \right) \\
\leq M_\beta u_0 \sum_{0 \leq \delta \leq \alpha - s, \delta \in \widetilde{\Delta}^-} (\frac{1}{K})^\delta \left(\frac{\delta!}{(\alpha - s)!} \right)^{\frac{1}{\varepsilon}} \\
\leq M_\beta u_0 \sum_{\delta = 0}^{\infty} (\frac{1}{K})^\delta = 2M_\beta u_0 \quad \square
\]

We have now enough material to be able to compute an upper bound for \(\mathcal{L}_\alpha^{-1} Q^1_{>\alpha} \). We estimate each of them separately in the three following lemmas.

Lemma B.9. – Let \(K \geq 2 \) be fixed such that (63) is satisfied. Then, there exists \(M_1 > 0 \) such that for every \(\varepsilon \in]0, 1[\) and every \(\alpha \in \widetilde{\Delta} \) with \(\alpha > s \), satisfying (64), we have

(a) when \(\frac{1}{\varepsilon} = \tau + \frac{a}{s_0} \geq a \),

\[
\| \mathcal{L}_\alpha^{-1} Q^1_{>\alpha} \|_{qh, \varepsilon} \leq M_1 (C\varepsilon)^{a+1} ((\alpha + 2 - s)!)^{\frac{1}{\varepsilon}};
\]

(b) when \(\frac{1}{\varepsilon} = \tau + \frac{a}{s_0} \leq a \),

\[
\| \mathcal{L}_\alpha^{-1} Q^1_{>\alpha} \|_{qh, \varepsilon} \leq M_1 (C\varepsilon)^{a+1} ((\alpha + 2 - s)!)^{\frac{1}{\varepsilon}} (\alpha - s)^{1+a-\frac{1}{\varepsilon}}.
\]

Proof. – Proposition B.6-(b) ensures that

\[
\| \mathcal{L}_\alpha^{-1} Q^1_{>\alpha} \|_{qh, \varepsilon} \leq \frac{1}{1 - \rho_1(K)} N_\varepsilon(Q^1_{>\alpha}).
\]

So to get the desired result we only need to compute an upper bound of \(N_\varepsilon(Q^1_{>\alpha}) \).
Recalling that \(a := \max \left(1, \left\lceil \frac{K+1}{2} \right\rceil \right) \) and using Proposition 3.6-(d), (32) and Lemma 6.8 we get

\[
N_\varepsilon(Q_{\geq \alpha}^0) \leq \mathfrak{m}_p M_{\beta_0}^2 u_0 \sum_{\delta_1 + \delta_2 > \alpha} \frac{\delta_i^a (C\varepsilon)^{\delta_1 + \delta_2} (\delta_1 - \delta_0)!^\cdots (\delta_2 - s - \delta_0)!^\cdots}{\delta_1 \in \Delta^-} \leq \mathfrak{m}_p M_{\beta_0}^2 u_0 \sum_{\delta_1 + \delta_2 > \alpha} \frac{\delta_i^a (C\varepsilon)^{\delta_1 + \delta_2} (\delta_1 - \delta_0)!^\cdots (\delta_2 - s - \delta_0)!^\cdots}{\delta_1 \in \Delta^-}
\]

In the above estimate, one can obtain a sharper result using a smaller set of indices in the last sum, i.e. \(\{(\delta_1, \delta_2) \in \mathbb{N}^2 / \delta_1 + \delta_2 \geq \alpha^+, \, 0^+ < \delta_1 < \alpha - s, \, s^+ < \delta_2 < \alpha\} (\alpha^+\) is the small integer of \(\Delta^- \) greater than \(\alpha \). However, it leads to far more intricate computations, for a not so better estimate. This is why we have chosen this more rough estimate corresponding to a larger set of indices.

So now, performing the change of indices \((\delta_1, \delta_2) \mapsto (\delta_1, \delta = \delta_1 + \delta_2) \) we get that for every \(K \geq 2, \, \varepsilon \in]0, 1[\) and every \(\alpha \in \Delta^- \) with \(\alpha > s \) satisfying (64), we have

\[
N_\varepsilon(Q_{\geq \alpha}^0) \leq \mathfrak{m}_p M_{\beta_0}^2 u_0 \sum_{\delta_1 = 1}^{\alpha - s} \frac{\delta_1^a (C\varepsilon)^{\delta_1} (\delta_1 - \delta_1)!^\cdots (\delta_1 - s)!^\cdots}{\delta_1 \in \Delta^-} \leq \mathfrak{m}_p M_{\beta_0}^2 u_0 \sum_{\delta_1 = 1}^{\alpha - s} \frac{\delta_1^a (C\varepsilon)^{\delta_1} (\delta_1 - \delta_1)!^\cdots (\delta_1 - s)!^\cdots}{\delta_1 \in \Delta^-}
\]

Then observing that for \(0 \leq \delta_1 \leq \alpha - s, \, \alpha + 1 \leq \delta_1 \leq \alpha + \alpha \), we have \(\delta - \delta_1 - s \leq \alpha - s \) and

\[
\frac{\left(\delta - \delta_1 - s\right)!}{\left(\alpha - s\right)^{\delta - (\alpha + 1)}} \leq (\alpha + 1 - \delta_1 - s)! \leq (\alpha + 1 - \delta_1 - s)!
\]

we get

\[
N_\varepsilon(Q_{\geq \alpha}^0) \leq \mathfrak{m}_p M_{\beta_0}^2 u_0 \sum_{\delta_1 = 1}^{\alpha - s} \frac{\delta_1^a (\delta_1)!^\cdots (\alpha + 1 - \delta_1 - s)!^\cdots}{\delta_1 \in \Delta^-} \leq 2(C\varepsilon)^{\alpha + 1} \sum_{\delta_1 = 1}^{\alpha - s} \frac{\delta_1^a (\delta_1)!^\cdots (\alpha + 1 - \delta_1 - s)!^\cdots}{\delta_1 \in \Delta^-}
\]
When \(\frac{1}{b} \geq a \), we obtain
\[
\frac{N_c(Q^1_{>\alpha})}{\mathfrak{m}_p M_{\beta}^2 u_0^2} \leq 2(C\varepsilon)^{\alpha+1} \sum_{\delta_1=1}^{\alpha-s} \left(\frac{1}{C^{\delta_1+1}} \right) \delta_1^{\alpha-s} \leq 2(C\varepsilon)^{\alpha+1} \alpha \left(\frac{1}{\alpha+2-s} \right)^{\frac{1}{b}} \leq 2(C\varepsilon)^{\alpha+1} (\alpha+2-s)^{\frac{1}{b}} \leq 2(C\varepsilon)^{\alpha+1} (\alpha+2-s)^{\frac{1}{b}},
\]
since \(\frac{1}{b} \geq a \geq 1 \). Hence, when \(\frac{1}{b} \geq a \),
\[
N_c(Q^1_{>\alpha}) \leq 2 \mathfrak{m}_p M_{\beta}^2 u_0^2 \left(C\varepsilon \right)^{\alpha+1} (\alpha+2-s)^{\frac{1}{b}}.
\]
On the other hand, when \(\frac{1}{b} \leq a \) we get
\[
\frac{N_c(Q^1_{>\alpha})}{\mathfrak{m}_p M_{\beta}^2 u_0^2} = 2(C\varepsilon)^{\alpha+1} (\alpha+2-s)^{\frac{1}{b}} \geq \frac{\alpha-s}{(\alpha+2-s)^{\frac{1}{b}}} \leq 2(C\varepsilon)^{\alpha+1} (\alpha+2-s)^{\frac{1}{b}}.
\]
This achieves the proof of Lemma B.9 with
\[
M_1 = \frac{2\mathfrak{m}_p M_{\beta}^2 u_0^2}{1-\rho_1(K)}.
\]

Lemma B.10. Let \(K \geq 2 \) be fixed such that (63) holds. Let \(\gamma \geq 2 \) be fixed such that
\[
q = \frac{\chi}{\gamma C} < 1 \quad \text{with} \quad \chi = \left(\frac{2M_{\beta} u_0}{\rho} \right)^{\frac{1}{2}}
\]
where \(C \) and \(M_{\beta} \) are defined in Lemma 6.8.

Then there exists \(M_2 > 0 \), such that for every \(\varepsilon \in [0,1] \) and every \(\alpha \in \overline{\Delta} \) with \(\alpha > s \) satisfying
\[
C\varepsilon \leq \frac{1}{\gamma K (\alpha-s)^{\frac{1}{b}}},
\]
we have
\[
\| L^{-1}_\alpha Q^2_{>\alpha} \|_{q_h,\varepsilon} \leq M_2 \left(\frac{1}{\varepsilon} \right)^{\alpha+1}.
\]

Proof. Like for \(L^{-1}_\alpha Q^1_{>\alpha} \), Proposition B.6-(b) ensures that
\[
\| L^{-1}_\alpha Q^2_{>\alpha} \|_{q_h,\varepsilon} \leq \frac{1}{1-\rho_1(K)} N_c(Q^2_{>\alpha}).
\]
So, to get the desired result we only need to compute an upper bound of \(N_c(Q^2_{>\alpha}) \).
According to Proposition 3.6 and Proposition 3.7, there exist positive constants M_R and ρ such that, for all $\mu > s$ belonging to $\tilde{\Delta}$, for all $\mu_s \leq r \leq \mu^*$, we have

$$\left\| \tilde{R}_{\mu,r}(U_{\delta_1}, \ldots, U_{\delta_r}) \right\|_{\rho, \delta_1 + \cdots + \delta_r + \mu} \leq \frac{M_R}{\rho^r} \left\| U_{\delta_1} \right\|_{\rho, \delta_1} \cdots \left\| U_{\delta_r} \right\|_{\rho, \delta_r} = \frac{M_R}{\rho^r} u_{\delta_1} \cdots u_{\delta_r}.$$ \hspace{1cm} (71)

Hence, using (32), we get

$$N_\varepsilon(Q_{>\alpha}^2) \leq \sum_{s < \mu, \mu \in \tilde{\Delta}} \sum_{r = \mu_s}^{\mu^*} \sum_{\delta_1 + \cdots + \delta_r + \mu > \alpha}^{0 \leq \delta_j \leq \alpha - s, \delta_j \in \tilde{\Delta}^{-}} \frac{M_R}{\rho^r} u_{\delta_1} \cdots u_{\delta_r} e^{\delta_1 + \cdots + \delta_r + \mu},$$

$$\leq \sum_{s < \mu, \mu \in \tilde{\Delta}} \sum_{r = \mu_s}^{\mu^*} \sum_{\delta_1 + \cdots + \delta_r + \mu > \alpha}^{0 \leq \delta_j \leq \alpha - s, \delta_j \in \tilde{\Delta}^{-}} \frac{M_R u_0}{\rho^r} e^{\delta_1 + \cdots + \delta_r + \mu} \prod_{j=1}^{r} (\delta_j) \beta_{\delta_j}. \hspace{1cm}$$

Then Lemma 6.8 and Remark 6.9 ensure that for every $\delta \geq 0$ lying in $\delta \in \tilde{\Delta}^{-}$, we have $
\beta_{\delta} \leq M_\beta C^8(\delta)^{-\frac{\alpha}{\gamma}}$.

Thus, for every $\varepsilon \in [0,1]$ and every $\alpha \in \tilde{\Delta}$ with $\alpha > s$ satisfying (69), we have

$$N_\varepsilon(Q_{>\alpha}^2) \leq \sum_{s < \mu, \mu \in \tilde{\Delta}} \sum_{r = \mu_s}^{\mu^*} \sum_{\delta_1 + \cdots + \delta_r + \mu > \alpha}^{0 \leq \delta_j \leq \alpha - s, \delta_j \in \tilde{\Delta}^{-}} \frac{M_R}{\rho^r} \frac{(C_\varepsilon)^{\delta_1 + \cdots + \delta_r + \mu}}{C^\mu} \prod_{j=1}^{r} (\delta_j)^{\frac{1}{\gamma}} \beta_{\delta_j}.$$

Then, we observe that, $\gamma \geq 2$,

$$\sum_{\delta = 0}^{\alpha - s} (\delta!) \left(\frac{1}{\gamma(\alpha-s)^2} \right)^{\frac{\alpha - s}{\gamma}} \leq 1 + \sum_{\delta = 1}^{\alpha - s} \frac{1}{\gamma} \left(\frac{1}{\gamma(\alpha-s)^2} \right)^{\frac{\alpha - s}{\gamma}} \leq 2.$$

So, we can conclude

$$N_\varepsilon(Q_{>\alpha}^2) \leq \sum_{s < \mu, \mu \in \tilde{\Delta}} \frac{M_R}{\rho^r} \frac{1}{\gamma C(\alpha-s)^2} \sum_{r = \mu_s}^{\mu^*} \sum_{(\delta_1, \ldots, \delta_r) \in \mathbb{N}^r} (\delta!) \left(\frac{1}{\gamma(\alpha-s)^2} \right)^{\frac{\alpha - s}{\gamma}}.$$

$$\leq \sum_{s < \mu, \mu \in \tilde{\Delta}} \frac{M_R}{\rho^r} \frac{1}{\gamma C(\alpha-s)^2} \sum_{r = \mu_s}^{\mu^*} \frac{1}{\rho^r} \left(\sum_{\delta = 0}^{\alpha - s} (\delta!) \right) \left(\frac{1}{\gamma(\alpha-s)^2} \right)^{\frac{\alpha - s}{\gamma}}.$$

$$\leq \sum_{s < \mu, \mu \in \tilde{\Delta}} \frac{M_R}{\rho^r} \frac{1}{\gamma C(\alpha-s)^2} \sum_{r = \mu_s}^{\mu^*} \frac{1}{\rho^r} \left(\sum_{\delta = 0}^{\alpha - s} (\delta!) \right) \left(\frac{1}{\gamma(\alpha-s)^2} \right)^{\frac{\alpha - s}{\gamma}}.$$

(72)
Now, observe that (3) ensures that
\[\frac{\mu}{p} + \frac{p}{\rho} \leq \mu^* \quad \text{and} \quad \mu^* \leq \frac{\mu}{p} + \frac{p}{\rho}. \]

Then, since according to Remark 6.9, we can assume that \(\frac{2M_{\beta u_0}}{p} \geq 1 \), we get
\[\sum_{r=\mu^*} (2M_{\beta u_0})^{\mu^*} \leq (\mu^* - \mu^* + 1) \left(\frac{2M_{\beta u_0}}{p} \right)^{\mu^*} \leq (A\mu + B)\chi^\mu \]

where \(\chi \) is given by (68) and where
\[A = \left(\frac{1}{p} - 1 \right) \chi^\rho \quad \text{and} \quad B = \left(\frac{p}{p} - 1 \right) \chi^\rho. \]

Finally, (68), (72) and (73) ensure that for every \(\varepsilon \in]0, 1[\) and every \(\alpha \in \Delta \) with \(\alpha > s \) satisfying (69), we have
\[
N_\varepsilon(Q^2_{\alpha, \varepsilon}) \leq M^2 \sum_{s<\mu, \mu \in \bar{\Delta}} \left(\frac{\chi}{\rho} \right)^\mu (A\mu + B) \\
\leq M^2 \sum_{\mu=s+1} \left(\frac{\chi}{\rho} \right)^\mu (A\mu + B) \\
= M_R q^{s+1} \left(\frac{B}{1-q} + \frac{qA}{1-q} \right) \frac{1}{K^{\alpha+1}}.
\]

This achieves the proof of Lemma B.10 with
\[M_2 = \frac{1}{1 - \rho_1(K)} M_R q^{s+1} \left(\frac{B}{1-q} + \frac{qA}{1-q} \right). \]

Lemma B.11. Let \(K \geq 2 \) and \(\gamma \geq 2 \) be fixed such that (63) and (68) hold.

Then there exists \(M_3 > 0 \), such that for every \(\varepsilon \in]0, 1[\) and every \(\alpha \in \bar{\Delta} \) with \(\alpha > s \) satisfying (69), we have
\[\| L_{\alpha}^{-1} Q^3_{\alpha, \varepsilon} \|_{q, \varepsilon} \leq M_3 (\frac{1}{K})^{\alpha+1}. \]

Proof. The proof is very similar to the one of Lemma B.10 and we get an estimate analogous to (72) which reads
\[
N_\varepsilon(Q^3_{\alpha, \varepsilon}) \leq M_3 \sum_{r=s}^{s+1} \left(\frac{2M_{\beta u_0}}{\rho_\beta} \right)^r \leq M_3 \left(\frac{1}{K} \right)^s \sum_{r=s}^{s+1} \left(\frac{2M_{\beta u_0}}{\rho_\beta} \right)^r \frac{1}{K^{\alpha+1}}.
\]

The details are left to the reader. This achieves the proof of Lemma B.11 with
\[M_3 = M_3 \left(\frac{1}{K} \right)^s \sum_{r=s}^{s+1} \left(\frac{2M_{\beta u_0}}{\rho_\beta} \right)^r. \]
REFERENCES

(Manuscrit reçu le 4 juillet 2009 ; accepté le 14 décembre 2009.)

Eric Lombardi
Institut de Mathématiques de Toulouse
Université Paul Sabatier
118 route de Narbonne
31062 Toulouse cedex 9, France
E-mail: lombardi@math.univ-tlse.fr

Laurent Stolovitch
CNRS, Laboratoire J.-A. Dieudonné
U.M.R. 6621
Université de Nice - Sophia Antipolis
Parc Valrose
06108 Nice Cedex 02, France
E-mail: stolo@unice.fr