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NON-ORBIT EQUIVALENT ACTIONS OF Fn

 A IOANA

A. – For any 2 ≤ n ≤ ∞, we construct a concrete 1-parameter family of non-orbit
equivalent actions of the free group Fn. These actions arise as diagonal products between a generalized
Bernoulli action and the action Fn y (T2, λ2), where Fn is seen as a subgroup of SL2(Z).

R. – Pour tout 2 ≤ n ≤ ∞, nous construisons une famille concrète à un paramètre, des
actions non orbitalement équivalentes du groupe libre Fn. Ces actions apparaissent comme produits
diagonaux entre une action généralisée de Bernoulli et l’action Fn y (T2, λ2), où Fn est vu comme un
sous-groupe de SL2(Z).

Introduction

Recall that two free ergodic measure preserving actions Γ y (X,µ) and Λ y (Y, ν) of
two countable discrete groups Γ and Λ on two standard probability spacesX and Y are said
to be orbit equivalent if there exists a probability space isomorphism θ : X → Y such that
θ(Γx) = Λθ(x), for µ-almost every x ∈ X.

The orbit equivalence theory of measure preserving group actions has been an extremely
active area in the past decade. New, spectacular rigidity results have been generated using
tools ranging from ergodic theory and operator algebras to representation theory (see the
surveys [8, 29, 33]). Recently, the problem of finding many non-orbit equivalent actions of a
fixed non-amenable group Γ has attracted a lot of attention.

This question arose in the 1980’s when it was shown that any infinite amenable group Γ

has exactly one free ergodic measure preserving action, up to orbit equivalence—a result
proved by Dye in the case Γ is abelian ([5]) and by Ornstein-Weiss in general ([22], see [3]
for a generalization)—while some non-amenable groups (e.g. SLn(Z), n ≥ 3) have uncount-
ably many non-orbit equivalent actions ([1, 12, 34]). In recent years, several classes of non-
amenable groups have been shown to share this property: property (T) groups ([13]), weakly
rigid groups ([26]), non-amenable products of infinite groups ([30], see also [15, 20]) and map-
ping class groups ([19]).
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In the case of the free groups, progress was slow for a while, only 4 non-orbit equivalent
actions of Fn–all concrete–being known in 2002 ([4, 13, 25]), before Gaboriau-Popa even-
tually proved the existence of uncountably many such actions ([11]). The key idea of their
approach was to use the fact that the action of SL2(Z) (as well as its restriction to any free
subgroup Fn) on the 2-torus T2 is rigid, in the sense of Popa ([25]).

However, since Gaboriau-Popa’s proof also uses a separability argument, it only provides
an existence result, leaving open the problem of finding specific actions of Fn, which are not
orbit equivalent. This problem has been emphasized in [27, Section 6], where two further
examples were produced, raising the number of concrete non-orbit equivalent actions of Fn
to 6.

The main result of this paper is the following:

T. – Let 2 ≤ n ≤ ∞. Fix an embedding Fn ⊂ SL2(Z) and a surjective homo-
morphism π : Fn → Z. Denote by σ the restriction of the natural action SL2(Z) y (T2, λ2)

to Fn, where λ2 is the Haar measure on T2. For every t ∈ (0, 1), define the probability space
(Xt, µt) = ({0, 1}, rt)Z, where rt({0}) = t, rt({1}) = 1− t, and let βt be the Bernoulli action
of Z on (Xt, µt).

Let αt denote the diagonal product action of Fn on (Xt × T2, µt × λ2) given by

αt(γ) = βt(π(γ))× σ(γ),∀γ ∈ Fn.

Then {αt}t∈(0, 12 ] is a 1-parameter family of free ergodic non-orbit equivalent actions of Fn.

To put our main result in a better perspective, note that most non-amenable groups for
which concrete uncountable families of non-orbit equivalent actions have been constructed
admit in fact many actions which are orbit equivalent superrigid, i.e. such that their orbit
equivalence class remembers the group and the action. Indeed, this is the case for weakly
rigid groups ([26, 28]), non-amenable products of infinite groups ([30]) and mapping class
groups ([19]). For the free groups, such an extreme rigidity phenomenon never occurs. On
the contrary, any free ergodic action of Fn is orbit equivalent to actions of uncountably many
non-isomorphic groups (see 2.27 in [20]).

The proof of the theorem has two main parts which we now briefly outline. Assume there-
fore that θ = (θ1, θ2) : Xs × T2 → Xt × T2 is an orbit equivalence between αs and αt, for
some s < t ∈ (0, 1

2 ]. First we prove that θi “locally” (i.e. on a set Ai ⊂ Xs × T2 of posi-
tive measure) depends only on the i-th coordinate, for i ∈ {1, 2}. This is achieved by playing
against each other contrasting properties of the actions βs and σ. Thus, for i = 1 we use
that βt is an action of an amenable group, while σ is strongly ergodic (see Lemma 2.2 and
Proposition 2.3) and for i = 2, we use that βs is a Bernoulli action, whereas σ is rigid (see
Proposition 3.1).

For the second part, assume for simplicity that θi depends only on the i-th coordinate
(i.e. Ai has full measure), for i ∈ {1, 2}. Letting w : Fn × (Xs × T2) → Fn be the cocycle
associated with θ, it follows that χ = π ◦ w depends only on the Fn-coordinate. Thus, χ is a
homomorphism Fn → Z which satisfies θ1(γx) = χ(γ)θ1(x), for all γ ∈ Fn and almost every
x ∈ Xs. This is further used to prove that βs is isomorphic to the restriction βt|mZ, for some
m ≥ 1. In the general case, we first show that after multiplying θ with a Fn-valued function
one can assume that θi depends only on the i-th coordinate and then proceed as above. This
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argument, applied to a more general situation, is the subject of Section 4. Finally, a simple
application of entropy gives that s ≥ t, a contradiction.

Note that our main result holds for any non-amenable group Γ which admits both an in-
finite amenable quotient ∆ that has no non-trivial finite normal subgroup and a free, weakly
mixing, strongly ergodic, rigid action Γ y (Y, ν) (Theorem 5.1).

Recently, a combination of results and ideas from [14], [10] and [6] has led to a complete
quantitative answer to the problem motivating this paper: any non-amenable group Γ admits
uncountably many free ergodic non-orbit equivalent actions ([6]). Note, however, that the
question of finding explicit such actions for an arbitrary Γ is still open.
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1. Preliminaries

In this section we review some of the notions and results that we will later use. All groups Γ

that we consider hereafter are countable discrete, all probability spaces (X,µ) are standard
(unless specified otherwise) and all actions Γ y (X,µ) are measure preserving.

1.1. Orbit equivalence and cocycles

Assume that Γ y (X,µ) and Λ y (Y, ν) are two free orbit equivalent actions. Let
θ : X → Y be an orbit equivalence, i.e. a probability space isomorphism such that
θ(Γx) = Λθ(x), for µ-almost every (a.e.) x ∈ X. For every γ ∈ Γ and x ∈ X, denote
by w(γ, x) the unique (by freeness) element of Λ such that θ(γx) = w(γ, x)θ(x). The map
w : Γ×X → Λ is measurable, satisfies

w(γ1γ2, x) = w(γ1, γ2x)w(γ2, x),

for all γ1, γ2 ∈ Γ and a.e. x ∈ X, and is called the Zimmer cocycle associated with θ. In
general, a measurable map w : Γ × X → Λ verifying the above relation is called a cocycle.
Two cocycles w1, w2 : Γ × X → Λ are said to be cohomologous (in symbols, w1 ∼ w2) if
there exists a measurable map φ : X → Λ such that w1(γ, x) = φ(γx)w2(γ, x)φ(x)−1, for all
γ ∈ Γ and a.e. x ∈ X.

The simplest instance when two actions Γ y (X,µ) and Λ y (Y, ν) are orbit equivalent
is when they are conjugate, i.e. there exist a probability space isomorphism θ : X → Y and
a group isomorphism δ : Γ → Λ such that θ(γx) = δ(γ)θ(x), for all γ ∈ Γ and a.e. x ∈ X.
Moreover, if Γ = Λ and δ is the trivial isomorphism, then we say that the Γ-actions onX and
Y are isomorphic. Much of orbit equivalence rigidity theory aims at proving that, for certain
classes of actions, orbit equivalence implies conjugacy. In doing so, the analysis of the as-
sociated Zimmer cocycle plays an important role. For example, a general principle proved in
[28, Proposition 5.11] asserts that if the Zimmer cocycle associated with an orbit equivalence
between two weakly mixing actions Γ y (X,µ) and Λ y (Y, ν) is cohomologous to a group
homomorphism δ : Γ→ Λ, then the actions must be (virtually) conjugate.
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It is thus very useful to have a criterion for a cocycle to be cohomologous to a group ho-
momorphism. The following theorem, due to S. Popa (see [28, Theorem 3.1]), provides such
a criterion. Before stating it, recall that an action Γ y (X,µ) is called weakly mixing if for
every finite collection of measurable sets A1, A2, . . . , An ⊂ X and every ε > 0, we can find
γ ∈ Γ such that |µ(Ai ∩ γAj) − µ(Ai)µ(Aj)| ≤ ε, for all i, j ∈ {1, . . . , n}. Also, the ac-
tion Γ y (X,µ) is called mixing if for every measurable sets A1, A2 ⊂ X we have that
limγ→∞ |µ(A1 ∩ γA2)− µ(A1)µ(A2)| = 0.

T 1.1 ([28]). – Let Γ y (X,µ) be a weakly mixing action and let Γ y (Y, ν) be
another action. Let Λ be a countable group and let w : Γ× (X × Y )→ Λ be a cocycle for the
diagonal product action of Γ onX×Y . Denote bywl, wr : Γ× (X×X×Y )→ Λ the cocycles
for the diagonal product action Γ y X ×X × Y given by wl(γ, x1, x2, y) = w(γ, x1, y) and
wr(γ, x1, x2, y) = w(γ, x2, y), for all γ ∈ Γ, x1, x2 ∈ X and y ∈ Y .

If wl ∼ wr, then w is cohomologous to a cocycle which is independent on the X-variable.

1.2. The group measure space construction

Let Γ y (X,µ) be a measure preserving action of a countable group Γ on a standard
probability space (X,µ). Let H = L2(X,µ)⊗`2Γ. For every γ ∈ Γ and f ∈ L∞(X,µ),
define the operators uγ , Lf ∈ B(H) by

uγ(g ⊗ δγ′) = γ(g)⊗ δγγ′ ,

Lf (g ⊗ δγ′) = fg ⊗ δγ′ ,∀γ′ ∈ Γ,∀g ∈ L2(X,µ),

where, as usual, γ(g) = g ◦ γ−1. Since uγuγ′ = uγγ′ , uγLfu
∗
γ = Lγ(f), for all γ, γ′ ∈ Γ

and f ∈ L∞(X,µ), the linear span of {Lfuγ |f ∈ L∞(X,µ), γ ∈ Γ} is a ∗-subalgebra of
B(H). The strong operator closure of this algebra, denoted L∞(X,µ)oΓ, is called the group
measure space von Neumann algebra associated with the action Γ y (X,µ) ([21]). The vector
state τ(y) = 〈y(1 ⊗ δe), 1 ⊗ δe〉 gives a normal faithful trace on L∞(X,µ) o Γ, which is
therefore a finite von Neumann algebra. Furthermore, if the action Γ y (X,µ) is free and
ergodic, thenL∞(X,µ)oΓ is a II1 factor andL∞(X,µ) is a Cartan subalgebra, i.e. maximal
abelian and regular.

Following [7], two free ergodic measure preserving actions Γ y (X,µ) and Λ y (Y, ν)

are orbit equivalent if and only if the corresponding Cartan subalgebra inclusions are iso-
morphic, i.e.

(L∞(X,µ) ⊂ L∞(X,µ) o Γ) ' (L∞(Y, ν) ⊂ L∞(Y, ν) o Λ).

Moreover, if θ : X → Y is an orbit equivalence between the actions, then the induced iso-
morphism of abelian von Neumann algebras θ∗ : L∞(Y, ν) 3 f → f ◦θ ∈ L∞(X,µ) extends
to an isomorphism θ∗ : L∞(Y, ν) o Λ → L∞(X,µ) o Γ. We next note that a more general
statement of this type is true. Recall first that a measurable map q : X → Y between two
probability spaces (X,µ) and (Y, ν) is called a quotient map if it is measure preserving and
onto. In this case, the map q∗ : L∞(Y, ν) 3 f → f ◦ q ∈ L∞(X,µ) is an embedding of
abelian von Neumann algebras.
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L 1.2 ([28]). – Let Γ y (X,µ),Λ y (Y, ν) be two free actions. Assume that
q : X → Y is a quotient map such that q(Γx) = Λq(x), a.e. x ∈ X. Also, suppose that q is 1-1
on the Γ-orbits, i.e. q|Γx is 1-1, a.e. x ∈ X.

Then the embedding q∗ : L∞(Y, ν) ↪→ L∞(X,µ) extends to an embedding q∗ : L∞(Y, ν) o
Λ ↪→ L∞(X,µ) o Γ of von Neumann algebras.

This lemma is a particular case of Proposition 1.4.3 in [28]. Indeed, if we denote byR and
S the equivalence relations induced by the actions of Γ on X and Λ on Y , respectively, then
q is a local OE of R, S, in the sense of Definition 1.4.2 in [28]. By 1.4.3 in [28], q∗ extends
to an embedding L(S) ↪→ L(R), where L(R) denotes the von Neumann algebra associated
with R ([7]). Finally, just note that since the actions are assumed free, L(R) and L(S) are
naturally isomorphic to L∞(X,µ) o Γ and L∞(Y, ν) o Λ, respectively ([7]).

1.3. The intertwining bimodule technique

This technique has been introduced by S. Popa (see [27, Theorem 2.1 and Corollary 2.3])
and is a powerful tool for deducing unitary conjugacy of subalgebras of a finite von Neu-
mann algebra. Here we note a particular form of it, when the ambient algebra is abelian.
For completeness, we give a self-contained ergodic-theoretic proof. First, we introduce some
new terminology.

Let (X,µ), (Y, ν), (Z, ρ) be standard probability spaces together with two quotient maps
q : (X,µ) → (Y, ν) and p : (X,µ) → (Z, ρ). Since q is measure preserving, we can disinte-
grate µ =

∫
Y
µydν(y), where µy is a Borel probability measure onX with µy(q−1({y})) = 1,

ν-a.e. y ∈ Y . Let X ×Y X = {(x1, x2) ∈ X ×X|q(x1) = q(x2)} be the fibered product space
endowed with the probability measure µ×ν µ =

∫
Y

(µy × µy)dν(y).

D 1.3. – We say that p locally factors through q if the set

S = {(x1, x2) ∈ X ×Y X|p(x1) = p(x2)}

satisfies (µ ×ν µ)(S) > 0. Equivalently, this means that the set A of y ∈ Y such that
(µy × µy)({(x1, x2) ∈ X ×X|p(x1) = p(x2)}) > 0 has ν(A) > 0.

R 1.4. – (1). To justify our terminology, note that p factors through q, i.e. there
exists a quotient map r : (Y, ν)→ (Z, ρ) such that p = r ◦ q, if and only if S = X ×Y X, a.e.

(2). Assume that (X,µ) = (Y, ν) × (W, η), for some probability space (W, η), and that
q is the projection of the Y -coordinate. Then p locally factors through q if and only if the set
{(y, w1, w2) ∈ Y ×W ×W |p(y, w1) = p(y, w2)} has positive measure.

L 1.5 ([27]). – Let (X,µ), (Y, ν), (Z, ρ) be standard probability spaces together
with two quotient maps q : (X,µ) → (Y, ν) and p : (X,µ) → (Z, ρ). View L∞(Y, ν) and
L∞(Z, ρ) as von Neumann subalgebras of L∞(X,µ), via q∗ and p∗, respectively, and let
E : L∞(X,µ) → L∞(Y, ν) denote the conditional expectation onto L∞(Y, ν). Assume that
there exist a1, a2, . . . , an ∈ L∞(X,µ) and C > 0 such that

n∑
i=1

‖E(fai)‖22 ≥ C

for all f ∈ L∞(Z, ρ) with |f | = 1 a.e. Then p locally factors through q.
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Proof. – We start by denoting X̃ = X ×Y X and µ̃ = µ×ν µ. Also, for every
f ∈ L∞(X,µ), we define f̃ ∈ L∞(X̃, µ̃) by f̃(x1, x2) = f(x1)f(x2). Then∫

X̃

f̃(x1, x2)dµ̃(x1, x2)(1)

=

∫
Y

Ç∫
q−1({y})×q−1({y})

f(x1)f(x2)dµy(x1)dµy(x2)

å
dν(y)

=

∫
Y

∣∣∣∣∣
∫
q−1({y})

f(x)dµy(x)

∣∣∣∣∣
2

dν(y) =

∫
Y

|E(f)(y)|2dν(y) = ‖E(f)‖22.

Now, let a ∈ L∞(X̃, µ̃) be given by a(x1, x2) =
∑n
i=1 ãi(x1, x2). Using (1), the inequality in

the hypothesis rewrites as

(2)
∫
X̃

f̃(x1, x2)a(x1, x2)dµ̃(x1, x2) ≥ C

for all f ∈ L∞(Z, ρ) with |f | = 1 a.e.

Next, we denote by K the closed convex hull of the set {f̃ |f ∈ L∞(Z, ρ), |f | = 1 a.e.}
inside the Hilbert space L2(X̃, µ̃). Let g ∈ K be the unique element of minimal ‖.‖2. Since
K is invariant under the ‖.‖2-preserving transformations K 3 h→ f̃h ∈ K, we deduce that
g = f̃g, for every f ∈ L∞(Z, ρ) with |f | = 1 a.e. Thus, if T = {(x1, x2) ∈ X̃|g(x1, x2) 6= 0},
then for all f ∈ L∞(Z, ρ) with |f | = 1 a.e., we have that f(p(x1)) = f(p(x2)), a.e. (x1, x2) ∈ T .

Since Z is a standard probability space we can measurably identify it with the torus
T endowed with its Haar measure. Thus, by applying the above to the identity function
f(z) = z, we get that p(x1) = p(x2), a.e. (x1, x2) ∈ T . Finally, notice that (2) im-
plies that

∫
X̃
gadµ̃ ≥ C > 0, hence g 6= 0 and µ̃(T ) > 0. Altogether, we derive that

µ̃({(x1, x2) ∈ X̃|p(x1) = p(x2)}) > 0, or, in other words, p locally factors through q.

2. Relative strong ergodicity

We begin by recalling that a measure preserving action Γ y (X,µ) of a countable
group Γ on a standard probability space (X,µ) is called strongly ergodic if for every se-
quence {An}n ⊂ X of measurable sets satisfying limn→∞ µ(An∆γAn) = 0, for all γ ∈ Γ,
we can find sets Bn ∈ {∅, X} such that limn→∞ µ(An∆Bn) = 0 ([4]). Examples of strongly
ergodic actions include the actions Γ y (T2, λ2), where Γ is a non-amenable subgroup of
SL2(Z) and λ2 is the Haar measure on the 2-torus T2 (see [26, Corollary 1.6.5]) and the
Bernoulli actions Γ y (X,µ)Γ of non-amenable groups Γ ([32]).

The notion of strong ergodicity has a useful formulation in terms of von Neumann al-
gebras. Let ω be a free ultrafilter on N. The ultraproduct algebra L∞(X,µ)ω is defined as
`∞(N, L∞(X,µ))/Iω, where Iω is the ideal of f = (fn) ∈ `∞(N, L∞(X,µ)) for which
τω(|f |2) = 0, with the trace τω being given by τω(f) = limn→ω

∫
X
fndµ. Notice that a mea-

sure preserving action Γ y (X,µ) induces an integral preserving action of Γ on L∞(X,µ)

which in turn lifts to a τω-preserving action of Γ on L∞(X,µ)ω. In this context, the action
Γ y (X,µ) is strong ergodic if and only if

[L∞(X,µ)ω]Γ := {f ∈ L∞(X,µ)ω|γf = f, ∀γ ∈ Γ} = C1.
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Moreover, if the action we start with is assumed ergodic, then [L∞(X,µ)ω]Γ is either equal
to C1 or infinite dimensional. Here we are making use of the following well-known fact: if
Γ y (X,µ) is an ergodic, but not strongly ergodic action, then for every c ∈ (0, 1) there
exists an asymptotically invariant sequence {An}n ⊂ X such that µ(An) = c, for all n (for
an idea, see the proof of [18, Lemma 2.3]).

Next, we introduce a relative notion of strong ergodicity.

D 2.1. – Let Γ y (X,µ) be a measure preserving action together with a quo-
tient action Γ y (Y, ν). Let q : X → Y be the associated Γ-equivariant quotient map and,
as usual, view L∞(Y, ν) as a von Neumann subalgebra of L∞(X,µ). We say that the action
Γ y (X,µ) is strongly ergodic relative to Γ y (Y, ν) if one of the following equivalent con-
ditions holds true:

(i) For every sequence {An}n ⊂ X of measurable sets with limn→∞ µ(An∆γAn) = 0, for
all γ ∈ Γ, we can find a sequence of measurable sets {Bn}n ⊂ Y such that
limn→∞ µ(An∆q−1(Bn)) = 0.

(ii) [L∞(X,µ)ω]Γ = [L∞(Y, ν)ω]Γ.

(iii) If fn ∈ L∞(X,µ), ‖fn‖∞ ≤ 1 satisfy limn→∞ ‖fn − γ(fn)‖2 = 0, for all γ ∈ Γ,
then limn→∞ ‖fn−E(fn)‖2 = 0, whereE : L∞(X,µ)→ L∞(Y, ν) denotes the conditional
expectation onto L∞(Y, ν).

The proof of the equivalence of conditions (i)–(iii) is standard and we leave it to the reader.

2.1. Remarks

(1) An action Γ y (X,µ) is strongly ergodic if and only if it is strongly ergodic relative to
the trivial action of Γ on a one-point set.

(2) A non-trivial example of relative strong ergodicity arises in the following way. Assume
that Γ y (Y, ν) is an action with stable spectral gap, i.e. such that the unitary representation
Γ y (L2(Y, ν)	C1)⊗(L2(Y, ν)	C1) does not weakly contain the trivial representation (see
[30, Definition 3.1]). Then, for any other measure preserving action Γ y (X,µ), the diagonal
product action Γ y (X × Y, µ× ν) is strongly ergodic relative to Γ y (X,µ) (by Section 3
in [30]).

(3) Note in this respect that if Γ is a non-amenable subgroup of SL2(Z), then the action
Γ y (T2, λ2) has stable spectral gap. Indeed, following the discussion before Lemma 1.6.4
in [26], the representation π of Γ on L2(T2, λ2)	C1 is of the form⊕i`2(Γ/Γi), where {Γi}i
is a family of amenable subgroups of Γ. It is easy to see that the product representation π⊗π
must be of the same form. Thus, by [26, Lemma 1.6.4] we get that π ⊗ π does not weakly
contain the trivial representation of Γ.

L 2.2. – Let Γ be a countable group and suppose that Γ0 ⊂ Γ is a normal subgroup
such that the quotient group ∆ = Γ/Γ0 is infinite amenable. Assume that Γ y (X,µ) is a
free strongly ergodic measure preserving action such that its restriction to Γ0 is ergodic. Let
∆ y (Y, ν) be a free ergodic measure preserving action and let Γ act on Y via the homomor-
phism Γ→ ∆.

Then the diagonal product action Γ y (X × Y, µ × ν) is strongly ergodic relative to the
quotient Γ y (Y, ν).
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Proof. – We first show that since the action Γ y (X,µ) is strongly ergodic, its restriction
to Γ0 must also be strongly ergodic. If we assume the contrary, thenA := [L∞(X,µ)ω]Γ0 6= C1.

Moreover, as the action Γ0 y (X,µ) is ergodic,Amust be infinite dimensional. Since Γ0 is a
normal subgroup of Γ, we get that Γ acts onA and that this action passes to an action of ∆.

Towards a contradiction, we claim that (Aω)∆ 6= C1. Remark that we can assume that
A∆ = C1, since otherwise the claim follows trivially. Next, let B be an infinite dimensional,
∆-invariant, separable von Neumann subalgebra of A. Since B is abelian we can identify it
with the L∞-algebra of a probability space (Z, ρ) in such a way that the action of ∆ on B is
induced by a measure preserving action ∆ y (Z, ρ). The fact that B is infinite dimensional
implies that (Z, ρ) is not completely atomic. Moreover, since the action ∆ y (Z, ρ) is ergodic
(as B∆ = C1), it follows that (Z, ρ) is completely non-atomic.

Since ∆ is amenable, we can apply Ornstein-Weiss’ theorem ([22]) to derive that the action
∆ y (Z, ρ) is orbit equivalent to a free ergodic action of Z, and thus is not strongly ergodic.
Therefore, we get that (Bω)∆ 6= C1 and furthermore that (Aω)∆ 6= C1. This however implies
that [L∞(X,µ)ω]Γ 6= C1, or, equivalently, that the action Γ y (X,µ) is not strongly ergodic,
a contradiction.

Now, to prove the conclusion of the lemma, let {An}n ⊂ X × Y be a sequence of mea-
surable sets such that limn→∞(µ× ν)(An∆γAn) = 0, for all γ ∈ Γ. For every n and y ∈ Y ,
denote Ayn = {x ∈ X|(x, y) ∈ An}. Since Γ0 acts trivially on Y we have that

(µ× ν)(An∆γAn) =

∫
Y

µ(Ayn∆γAyn)dν(y),∀n ≥ 0, γ ∈ Γ0.

As by our assumption limn→∞(µ × ν)(An∆γAn) = 0, for all γ ∈ Γ0, then, after
eventually passing to a subsequence of {An}, we may assume that

lim
n→∞

µ(Ayn∆γAyn) = 0,∀γ ∈ Γ0,

a.e. y ∈ Y . The strong ergodicity of the action Γ0 y (X,µ) implies that

lim
n→∞

µ(Ayn)(1− µ(Ayn)) = 0,

a.e. y ∈ Y . Thus, if we denote by Bn the set {y ∈ Y | limn→∞ µ(Ayn) = 1}, then
limn→∞(µ× ν)(An∆(X ×Bn)) = 0, which proves the lemma.

Jones and Schmidt showed that an ergodic action Γ y (X,µ) is strongly ergodic if and
only if given any free ergodic Σ y (Z, ρ) of an infinite amenable group Σ there does not exist
a quotient map p : X → Z such that p(Γx) = Σp(x), a.e. x ∈ X ([18]). Next, we generalize
the “only if” part of their result to a relative strong ergodicity situation. We will later use this
generalization to analyze the orbit equivalences between certain diagonal product actions
(see the proof of Theorem 4.1).

P 2.3. – Let Γ y (X,µ) be a measure preserving action which is strongly er-
godic relative to a quotient action Γ y (Y, ν). Let q : X → Y be the associated Γ-equivariant
quotient map. Assume that Σ is an infinite amenable group and let Σ y (Z, ρ) be a free ergodic
measure preserving action.

If p : X → Z is a quotient map such that p(Γx) = Σp(x), a.e. x ∈ X, then p locally factors
through q.
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Proof. – By Ornstein-Weiss’ theorem ([22]), the action Σ y (Z, ρ) is orbit equivalent to
the diagonal action (⊕m≥0Z2) y

∏
m≥0({0, 1}, r)m, where r is the probability measure on

{0, 1} with both weights equal to 1
2 and Z2 acts on {0, 1} in the only non-trivial way. We can

therefore assume that (Z, ρ) =
∏
m≥0({0, 1}, r)m and that Σz = (⊕m≥0Z2)z, a.e. z ∈ Z.

For n ≥ 0, we define (Zn, ρn) =
∏
m≥n({0, 1}, r)m and viewL∞(Zn, ρn) as a von Neumann

subalgebra of L∞(Z, ρ), via the projection πn : Z → Zn.

Claim 1. – For every n, let fn ∈ L∞(Zn, ρn) with ‖fn‖∞ ≤ 1. Then

lim
n→∞

‖fn ◦ p− γ(fn ◦ p)‖2 = 0,∀γ ∈ Γ.

Proof of Claim 1. – For each γ ∈ Γ and every n ≥ 1, define the measurable set Cγ,n =

{x ∈ X|p(γ−1x) ∈ (⊕m<nZ2)p(x)}. Since p(Γx) = Σp(x) = (⊕m≥0Z2)p(x), a.e. x ∈ X, we
deduce that limn→∞ µ(Cγ,n) = 1, for all γ ∈ Γ. Now, for alln and for every f ∈ L∞(Zn, ρn),
we have that

f(z) = f(gz),∀z ∈ Z,∀g ∈ (⊕m<nZ2).

Thus
(γ(fn ◦ p))(x) = fn(p(γ−1x)) = fn(p(x)) = (fn ◦ p)(x),

for all x ∈ Cγ,n and since ‖fn‖∞ ≤ 1, we get that ‖fn ◦ p− γ(fn ◦ p)‖2 ≤ 2
√

1− µ(Cγ,n),

which proves the claim.

Claim 2. – There exists n such that for all fn ∈ L∞(Zn, ρn) with ‖fn‖∞ ≤ 1 we have that

‖fn ◦ p− E(fn ◦ p)‖2 ≤
1

2
,

where E : L∞(X,µ)→ L∞(Y, ν) denotes the conditional expectation onto L∞(Y, ν).

Proof of Claim 2. – Assuming the claim false, for every n we can find fn ∈ L∞(Zn, ρn)

with ‖fn‖∞ ≤ 1 and ‖fn◦p−E(fn◦p)‖2 > 1
2 . If we define f = (fn◦p)n ∈ L∞(X,µ)ω, then

by Claim 1 we get that f ∈ [L∞(X,µ)ω]Γ. By the relative strong ergodicity assumption we
deduce that f ∈ [L∞(Y, ν)]Γ and thus limn→ω ‖fn ◦ p−E(fn ◦ p)‖2 = 0, which contradicts
the above.

Claim 3. – p locally factors through q.

Proof of Claim 3. – The previous claim implies that

‖E(fn ◦ p)‖2 ≥
1

2
,

for all fn ∈ L∞(Zn, ρn), ‖fn‖∞ ≤ 1 with |fn| = 1 a.e. By applying Lemma 1.5 we deduce
that πn◦p : X → Zn locally factors through q. Thus, if we disintegrate µ =

∫
Y
µydν(y), then

there is a set A ⊂ Y with ν(A) > 0 such that (µy × µy)({(x1, x2) ∈ X ×X|(πn ◦ p)(x1) =

(πn ◦ p)(x2)}) > 0, for all y ∈ A.
Using Fubini’s theorem, for every y ∈ A, we can find zy ∈ Zn such that

µy({x ∈ X|(πn ◦ p)(x) = zy}) > 0. Further, if we let πn : Z →
∏

0≤m<n{0, 1}m be the pro-
jection onto the first n-coordinates, then for every y ∈ A, we can find ty ∈

∏
0≤m<n{0, 1}m

such that

µy({x ∈ X|p(x) = (ty, zy)}) = µy({x ∈ X|(πn ◦ p)(x) = zy, (π
n ◦ p)(x) = ty}) > 0.
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Finally, the last inequality implies that (µy×µy)({(x1, x2) ∈ X×X|p(x1) = p(x2)}) > 0,
for all y ∈ A, and thus p locally factors through q.

3. Rigidity and Bernoulli actions

We first review S. Popa’s notion of rigidity for actions.

3.1. Rigid actions

LetN be a separable, finite von Neumann algebra together with a faithful, normal trace τ
and letB ⊂ N be a von Neumann subalgebra. OnN we consider the 2-norm given by ‖x‖2 =

τ(x∗x)1/2, for all x ∈ N . The inclusion B ⊂ N is called rigid (cf. [25, Section 4]) if for any
sequence φn : N → N of unital, tracial, completely positive maps such that φn → 1N (i.e.
limn→∞ ‖φn(x)− x‖2 = 0, for all x ∈ N ) we must have that

lim
n→∞

sup
x∈B,‖x‖≤1

‖φn(x)− x‖2 = 0.

A free ergodic measure preserving action Γ y (X,µ) is called rigid if its associated Cartan
subalgebra inclusionL∞(X,µ) ⊂ L∞(X,µ)oΓ is rigid. For example, if Γ is a non-amenable
subgroup of F2, then the action of Γ y (T2, λ2) is rigid, where λ2 denotes the Haar measure
of the 2-torus T2. This follows by combining the fact (proven in [2]) that the pair (ΓnZ2,Z2)

has the relative property (T) of Kazhdan-Margulis with Proposition 5.1 in [25].

Next, we briefly recall the definition of generalized Bernoulli actions.

3.2. Bernoulli actions

Let Γ be a countable group, I be a countable set on which Γ acts (e.g. I = Γ/Γ0, for
some subgroup Γ0 of Γ) and (X0, µ0) be a probability space. The measure preserving ac-
tion Γ y (X0, µ0)I given by γ((xi)i) = ((xγ−1·i)i), for all x = (xi)i ∈ (X0, µ0)I and each
γ ∈ Γ, is called a generalized Bernoulli action. In the case I = Γ, with Γ acting on itself by
left multiplication, we will call such an action a Bernoulli action.

In recent years, S. Popa proved remarkable rigidity results concerning Bernoulli actions
(see the survey [29]). The general philosophy behind these results is that any rigidity phe-
nomenon that is exhibited by the group measure space, M , associated with a Bernoulli ac-
tion Γ y (X,µ) = (X0, µ0)Γ, has to come, in some sense, from the group Γ. Following this
principle, it is proven in [16] (see Corollary 3.7 forB = L∞(X0, µ0)) that ifA ⊂M is a rigid
inclusion of von Neumann algebras, thenA can be essentially conjugated, via a unitary, into
the group von Neumann algebra LΓ. In particular, one derives that A cannot be a diffuse
subalgebra of L∞(X,µ).

A direct consequence of this result is the following fact: given any rigid action Λ y (Z, ρ)

of an infinite group Λ, there is no quotient map p : X → Z such that p(Γx) = Λp(x) and p|Γx
is 1-1, a.e. x ∈ X. Indeed, if there is such a p, then Lemma 1.2 would imply that the inclusion
A = p∗(L∞(Z, ρ)) ⊂M is rigid. This is, however, a contradiction since A ⊂ L∞(X,µ).

More generally, we have:
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P 3.1. – Let Γ y I be an action of a countable group Γ on a countable set I
and let (X0, µ0) be a (possibly atomic) probability space. Denote (X,µ) = (X0, µ0)I and let
Γ y (X,µ) be the generalized Bernoulli action induced by the action of Γ on I. Let Γ y (Y, ν)

be another measure preserving action and on X × Y consider the diagonal product action of Γ.
Denote by q : X × Y → Y the projection onto the Y -coordinate.

Let Λ y (Z, ρ) be a free ergodic rigid measure preserving action of an infinite countable
group Λ. Suppose that p : X × Y → Z is a quotient map such that p(Γ(x, y)) = Λp(x, y) and
p|Γ(x,y) is 1-1, a.e. (x, y) ∈ X × Y .

Then p locally factors through q.

Proof. – We begin by encoding the hypothesis in the language of von Neumann algebras.
Let p∗ : L∞(Z, ρ)→ L∞(X ×Y, µ× ν) be the embedding given by p∗(f) = f ◦ p. Using the
hypothesis, Lemma 1.2 implies that p∗ extends to an embedding p∗ : L∞(Z, ρ) o Λ→M :=

L∞(X × Y, µ× ν) o Γ. Moreover, since the inclusion L∞(Z, ρ) ⊂ L∞(Z, ρ) o Λ is assumed
rigid, we get that the inclusion A := p∗(L∞(Z, ρ)) ⊂M is also rigid (see 4.6. in [25]).

Before continuing, we need to review some von Neumann algebra notions.

3.3. Terminology

Hereafter, we will work with finite von Neumann algebras N endowed with a fixed faith-
ful normal trace τ . We denote by L2(N) the completion of N with respect to the norm ‖.‖2.
The scalar product on L2(N) therefore verifies 〈x, y〉 = τ(y∗x), for all x, y ∈ N . Note that
N is also endowed with the operator norm ‖.‖ and that ‖xy‖2 ≤ min{‖x‖ ‖y‖2, ‖x‖2‖y‖},
for all x, y ∈ N . Let P be a von Neumann subalgebra of N , which we will always assume to
be endowed with the trace τ|P . The orthogonal projection from L2(N) onto L2(P ) takes N
onto P and its restriction to N is precisely the unique τ -preserving conditional expectation,
EP , from N onto P . Recall that EP is P -bimodular, i.e. EP (p1xp2) = p1EP (x)p2, for
all p1, p2 ∈ P and x ∈ N , and that EP is a contraction in both of the above norms. We
also denote by U(N) the group of unitaries of N , i.e. elements u ∈ N such that u∗u = 1.
Every unitary element u induces an automorphism Ad(u) of N through the formula
Ad(u)(x) = uxu∗.

Next, we briefly recall three fundamental constructions involving von Neumann algebras.
Given an (always assumed τ -preserving) action α : Γ → Aut(N) of a countable group Γ

on N , the associated crossed product von Neumann algebra N oα Γ is defined in the same
way as the group measure space algebra L∞(X,µ) o Γ, where one replaces L∞(X,µ) by N
throughout the construction in 1.2. Note that every element x ∈ N oα Γ can be uniquely
written as x =

∑
γ∈Γ xγuγ , where xγ ∈ N , for all γ ∈ Γ. The trace τ onN extends to a trace

on τ̃ on N oα Γ through the formula τ̃(x) = τ(xe).
If (N1, τ1) and (N2, τ2) are two finite von Neumann algebras, then N1⊗N2 denotes their

tensor product von Neumann algebra endowed with the trace τ = τ1 ⊗ τ2. For example,
if (Ni, τi) = (L∞(Xi, µi),

∫
dµi), for some probability spaces (Xi, µi) (i = 1, 2), then

(N1⊗N2, τ1 ⊗ τ2) is naturally isomorphic to (L∞(X1 ×X2, µ1 × µ2),
∫
d(µ2 × µ2)). Now,

if θi is an automorphism of Ni, then θ1 ⊗ θ2 denotes the automorphism of N1⊗N2 given
by (θ1 ⊗ θ2)(x1 ⊗ x2) = θ1(x1) ⊗ θ2(x2), for all xi ∈ Ni. Thus, the diagonal product
action α = α1 × α2 : Γ → Aut(N1⊗N2) of two actions αi : Γ → Aut(Ni) is defined by
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α(γ) = α1(γ) ⊗ α2(γ). Given a von Neumann algebra N and a countable set I, we denote
by N I the tensor product von Neumann algebra ⊗i∈I(N)i. If J is a subset of I, then we
view NJ as a subalgebra of N I , via the isomorphism NJ ∼= (⊗i∈J(N)i)⊗(⊗i∈I\J(C1)i).

Finally, the free product of two finite von Neumann algebras (N1, τ1) and (N2, τ2) is the
unique finite von Neumann algebra (N, τ) (in symbols, N = N1 ∗N2) such that: (1) N con-
tains both N1 and N2, (2) τ|Ni = τi, for i ∈ {1, 2}, (3) N1 and N2 generate N as a von
Neumann algebra and (4) τ(xi1xi2 · · ·xin) = 0, for all n ≥ 1, i1 6= i2 6= · · · 6= in ∈ {1, 2}
and all xik ∈ Nik with τik(xik) = 0, for all k.

Going back to the proof of Proposition 3.1, we defineB = L∞(X0, µ0) andC = L∞(Y, ν).
Then L∞(X,µ) ∼= BI and the action Γ y (X,µ) induces a Bernoulli action α : Γ→ Aut(BI).
Similarly, let β : Γ → Aut(C) be the action induced by Γ y (Y, ν). With these notations,
M can be viewed as the crossed product von Neumann algebra (BI⊗C) o(α×β) Γ. To sum-
marize, at this point, we know that A is a von Neumann subalgebra of BI⊗C such that the
inclusion A ⊂M is rigid.

Following Popa’s deformation/rigidity strategy we will use the deformability properties
of Bernoulli actions against the rigidity of the inclusion A ⊂ M in order to determine the
position of A inside M .

Step 1. – First, we recall a construction from [16, Proposition 2.3]. More precisely, we aug-
ment M to a von Neumann algebra M̃ and define a 1-parameter group of automorphisms
{Θt}t∈R of M̃ such that Θt → 1M̃ , as t → 0. Towards this, we define the free product von
Neumann algebra B̃ = B ∗ L∞(T, λ), where λ is the Haar measure on the torus T. Let
α̃ : Γ → Aut(B̃I) be the Bernoulli action given by the action of Γ on I. It is clear that
BI ⊂ B̃I and that α̃ extends α, hence we have the inclusion

M ⊂ M̃ := (B̃I⊗C) o(α̃×β) Γ.

We denote by τ the natural trace on M̃ , i.e. the trace obtained from the integration traces
on B and C by applying the corresponding constructions from 3.3.

Now, let u ∈ L∞(T, λ) be the Haar unitary given by u(z) = z, for all z ∈ T, and let
h ∈ L∞(T, λ) be a real-valued function such that u = eih. For every t ∈ R, we define the
unitary element ut = eith ∈ L∞(T, λ) (thus ut ∈ B̃) and consider the automorphism

(3) θt = (⊗i∈IAd(ut)i)⊗ 1C ∈ Aut(B̃I⊗C).

Notice that θt commutes with the action α̃× β, for all t. Thus, θt extends to an automor-
phism Θt ∈ Aut(M̃) given by

Θt(x) =
∑
γ∈Γ

θt(xγ)uγ ,

for all x =
∑
γ∈Γ xγuγ ∈ M̃ , where xγ ∈ B̃I⊗C, for all γ ∈ Γ. Since limt→0 ‖ut − 1‖2 = 0,

we get that θt → 1B̃I⊗C , thus Θt → 1M̃ , as t goes to 0.
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Step 2. – Secondly, we use the rigidity of the inclusionA ⊂M to deduce that for some t > 0

we can find a non-zero v ∈ B̃I⊗C such that θt(u)v = vu, for all u ∈ U(A). Indeed, since the
inclusion A ⊂M is rigid, we get that the inclusion A ⊂ M̃ is rigid (by [25, 4.6]). Thus, since
Θt → 1M̃ , we can find t > 0 such that

‖θt(x)− x‖2 = ‖Θt(x)− x‖2 ≤
1

2
,∀x ∈ A, ‖x‖ ≤ 1.

We next employ a standard functional analysis trick (see e.g. the proof of 4.4 in [25]). Let
K be the ‖.‖2-closed convex hull of the set {θt(u)u∗|u ∈ U(A)} and note that if k ∈ K and
u ∈ U(A), then θt(u)ku∗ ∈ K and ‖θt(u)ku∗‖2 = ‖k‖2. Thus, if v denotes the unique ele-
ment of minimal ‖.‖2 in K, then v ∈ B̃I⊗C, ‖v‖ ≤ 1 and θt(u)vu∗ = v, for all u ∈ U(A).
Thus θt(u)v = vu, for all u ∈ U(A). Moreover, since ‖θt(u)u∗ − 1‖2 = ‖θt(u) − u‖2 ≤ 1

2 ,
for all unitaries u ∈ A, we get that ‖v − 1‖2 ≤ 1

2 , hence v 6= 0.

We denote by H the Hilbert space L2(B̃I⊗C). For every subset F of I, we let PF be the
orthogonal projection ofH ontoL2(BF⊗C). Also, we denote byQF andRF the orthogonal
projections ofH onto L2(B̃F⊗C) and onto L2(B̃F⊗(utBu

∗
t )
I\F⊗C), respectively.

Step 3. – In this context, we next prove that we can find c > 0 and F ⊂ I finite such that

(4) ‖PF (u)‖2 ≥ c,∀u ∈ U(A).

To this end, let t > 0 and v be as given by Step 2 and assume for simplicity that ‖v‖ ≤ 1.
We start by approximating v with a finitely supported vectorw. Notice that if Fn are increas-
ing finite subsets of I such that ∪nFn = I, then QFn → 1L2(B̃I⊗C), in the strong operator
topology. Thus, for large enough n, w = QFn(v) satisfies

(5) c = (1− |τ(ut)|2)‖w‖2 − 2‖w − v‖2 > 0

(here we are using the fact that |τ(ut)| < 1, for all t > 0). Set F = Fn and note that
w ∈ B̃F⊗C and ‖w‖ ≤ ‖v‖ ≤ 1.

Now, if we fix u ∈ U(A), then since u ∈ BI⊗C and w ∈ B̃F⊗C, we get that
θt(u)v ∈ L2(B̃F⊗(utBu

∗
t )
I\F⊗C) and thus that RF (θt(u)w) = θt(u)w. By combining

this fact with the equality θt(u)v = vu and using triangle’s inequality, we derive that

(6) ‖RF (wu)− wu‖2 = ‖RF (wu− θt(u)w)− (wu− θt(u)w)‖2

≤ 2‖wu− θt(u)w‖2 = 2‖(w − v)u− θt(u)(w − v)‖2 ≤ 2‖w − v‖2.

Further, (6) and (5) together imply that for every u ∈ U(A)

(7) ‖RF (wu)‖2 ≥ ‖wu‖2 − 2‖w − u‖2 = ‖w‖2 − 2‖w − u‖2 = c+ |τ(ut)|2‖w‖2.

Next, we estimate from above the expression ‖RF (wu)‖2.

L 3.2. – For all ω ∈ L2(B̃F⊗BI\F⊗C), we have that

‖RF (ω)‖22 ≤ |τ(ut)|4‖ω‖22 + (1− |τ(ut)|4)‖QF (ω)‖22.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



688 A. IOANA

We postpone the proof of this lemma until the end of this section. For the moment, we
assume the lemma true and explain how it finishes the proof of Step 3. Indeed, if u ∈ U(A),
then it is clear thatwu ∈ B̃F⊗BI\F⊗C. SinceQF is B̃F⊗C-bimodular andw ∈ B̃F⊗C, we
get that QF (wu) = wQF (u). Also, since u ∈ BI⊗C, it is clear that QF (u) = PF (u). Thus,
‖QF (wu)‖2 = ‖wPF (u)‖2 ≤ ‖w‖ ‖PF (u)‖2 ≤ ‖PF (u)‖2.

Altogether, we can apply Lemma 3.2 to ω = wu to deduce that

‖RF (wu)‖22 ≤ |τ(ut)|4‖wu‖22 + (1− |τ(ut)|4)‖QF (wu)‖22
≤ |τ(ut)|4‖w‖22 + (1− |τ(ut)|4)‖PF (u)‖22,∀u ∈ U(A).

It is now clear that this inequality combined with (7) proves the claim of Step 3.

Step 4. – We can now finish the proof of Proposition 3.1. First, we strengthen the conclusion
of Step 3 by showing that there exists a finite dimensional subalgebra D ⊂ BI such that

(8) ‖ED⊗C(u)‖2 ≥ c/2,∀u ∈ U(A)

where ED⊗C denotes the conditional expectation onto D ⊗ C. To see this, let Bn ⊂ B be
an increasing sequence of finite dimensional ∗-algebras such that the ∗-algebra ∪n≥1Bn is
dense in B, in the strong operator topology. Using the rigidity of the inclusion A ⊂ M ,
the same argument as in the proof of 5.3.1 in [25] shows that there exists n such that
‖EBIn⊗C(u) − u‖2 ≤ c/2, for all u ∈ U(A). Indeed, this follows by just noticing that if En
denotes the conditional expectation onto Mn = (BIn⊗C) o(α×β) Γ, then En → 1M and
En(u) = EBIn⊗C(u), for all u ∈ U(A).

Since PF is a contraction, we further get that ‖PF (EBIn⊗C(u))−PF (u)‖2 ≤ c/2, for every
unitary u ∈ A. On the other hand, by Step 3, ‖PF (u)‖2 ≥ c. Therefore combining the last
two inequality yields

‖(PF ◦ EBIn⊗C)(u)‖2 ≥ c/2,∀u ∈ U(A).

It is clear that if D = BFn , then D is finite dimensional and PF ◦EBIn⊗C = ED⊗C . Thus, (8)
is proven.

Next, since D is a finite dimensional abelian algebra, we can find projections p1, . . . , pn
such that D = Cp1 ⊕ · · · ⊕ Cpn. A simple calculation then shows that ED⊗C(x) =∑n
i=1(pi ⊗ EC(xpi))/τ(pi), for all x ∈ BI⊗C. Thus,

‖ED⊗C(x)‖22 =
n∑
i=1

‖EC(xpi)‖22/τ(pi),∀x ∈ BI⊗C.

From this identity and (8) it follows that
∑n
i=1 ‖EC(upi)‖22/τ(pi) ≥ c/2, for all u ∈ U(A).

Finally, after noticing that for every f ∈ L∞(Z, ρ) with |f | = 1, a.e., u = f ◦ p is a unitary
in A, we can apply Lemma 1.5 to deduce the conclusion.

In the proof of Lemma 3.2 we will need the following result:

L 3.3. – If P1 denotes the orthogonal projection of L2(B̃) onto L2(utBu
∗
t ), then

P1(1) = 1 and P1(ζ) = |τ(ut)|2(utζu
∗
t ), for all ζ ∈ L2B 	 C1.
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Proof. – Using the ‖.‖2-density of B in L2B we can assume that ζ ∈ B with τ(ζ) = 0.
Fix b ∈ B and set b0 = b− τ(b). Also, let zt = ut − τ(ut). Then we have that

〈P1(ζ), utbu
∗
t 〉 = 〈ζ, utbu∗t 〉 = 〈ζ, utb0u∗t 〉 = τ(u∗t b

∗
0utζ)

= τ(z∗t b
∗
0ztζ) + τ(ut)τ(z∗t b

∗
0ζ) + τ(ut)τ(b∗0ztζ) + |τ(ut)|2τ(b∗0ζ).

Since ζ, b0 ∈ B and zt ∈ L∞(T, λ) all have zero traces, by using the fact that B and
L∞(T, λ) are in a free position, we deduce that the first three terms in the last sum are equal
to 0. Thus, we have that

〈P1(ζ), utbu
∗
t 〉 = |τ(ut)|2τ(b∗0ζ) = |τ(ut)|2〈ζ, b0〉 = |τ(ut)|2〈ζ, b〉

= 〈|τ(ut)|2(utζu
∗
t ), utbu

∗
t 〉,∀b ∈ B,

which, again by the density of the inclusion B ⊂ L2B, implies the conclusion of the lemma.

Proof of Lemma 3.2. – If K = L2(B̃F⊗C), then we identify H = L2(B̃I⊗C) with the
tensor product Hilbert space (⊗i∈I\FL2B̃)⊗K, in the natural way. Under this identification,
we have that RF = (⊗i∈I\FP1) ⊗ 1K, while QF = (⊗i∈I\FP0) ⊗ 1K, where P0 denotes the
orthogonal projection of L2B̃ onto C1 (in other words, P0(x) = τ(x), for all x ∈ B̃).

Next, using this identification, we construct a specific orthonormal basis Ω for the Hilbert
space L2(B̃F⊗BI\F⊗C) which is now identified with (⊗i∈I\FL2B)⊗K. To this end, let
{ξj}j≥0, and {ηk}k≥0 be orthonormal bases for the Hilbert spaces L2B and K, respectively,
and assume that ξ0 = η0 = 1. Let S be the set of pairs (j, k) ∈ NI\F × N such that
Sj := {i ∈ I \ F |ji 6= 0} is finite. For every (j, k) ∈ S, we define

ω(j,k) = (⊗i∈I\F ξji)⊗ ηk.

Then clearly Ω := {ω(j,k)|(j, k) ∈ S} is an orthonormal basis for (⊗i∈I\FL2B)⊗K.
By Pythagoras’ theorem in order to prove the lemma it is sufficient to check that (1) the

conclusion of the lemma holds for every ω = ω(j,k) ∈ Ω and that (2) RF (ω) ⊥ RF (ω′) and
QF (ω) ⊥ QF (ω′), for every ω 6= ω′ ∈ Ω. Indeed, using the tensor product decomposition of
RF and Lemma 3.3, we have that

RF (ω(j,k)) = (⊗i∈I\FP1(ξji))⊗ ηk = |τ(ut)|2|Sj |(⊗i∈Sjutξjiu∗t )⊗ ηk.

Similarly,QF (ω(j,k)) is equal to ηk, if Sj = ∅, and to 0, otherwise. Using these formulas, (2)
is immediate. To check (1), we differentiate two cases. If Sj = ∅, then RF (ω) = QF (ω) = ω

(all being equal to ηk), while if Sj 6= ∅, then ‖RF (ω)‖2 = |τ(ut)|2|Sj | ≤ |τ(ut)|2‖ω‖2. In
conclusion, (1) holds true in both cases.

4. Orbit equivalence and product actions

T 4.1. – Let Γ,Λ be two countable groups and suppose that:
(i) ∆ = Γ/Γ0 and Σ = Λ/Λ0 are infinite amenable quotients of Γ and Λ.
(ii) ∆ has no non-trivial finite normal subgroup.
(iii) ∆ y (X1, µ1) = (X0

1 , µ
0
1)∆ is a Bernoulli action.

(iv) Γ y (X2, µ2) is a free, weakly mixing, strongly ergodic, measure preserving action.
(v) Σ y (Y1, ν1) is a free, mixing, measure preserving action.
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(vi) Λ y (Y2, ν2) is a free, ergodic, rigid, measure preserving action.
Let Γ act on X1 and Λ act on Y1 through the homomorphisms Γ→ ∆ and Λ→ Σ.
Assume that the diagonal product actions Γ y (X1×X2, µ1×µ2) and Λ y (Y1×Y2, ν1×ν2)

are orbit equivalent. Then a quotient ∆ y (X0, µ0) of the action ∆ y (X1, µ1) is conjugate
to the restriction of the action Σ y (Y1, ν1) to some subgroup Σ0 ⊂ Σ.

Proof. – Step 1. Let θ = (θ1, θ2) : X1 ×X2 → Y1 × Y2 be a measure space isomorphism
such that θ(Γx) = Λθ(x), a.e. x ∈ X1×X2. In the first part of the proof we use the results of
the previous two sections to show that θi “locally” only depends on the i-th coordinate. To
this end, let qi : X1×X2 → Xi denote the projection onto the i-th coordinate, for i ∈ {1, 2}.

Firstly, since the action Γ y (X2, µ2) is strongly ergodic and ∆ is amenable, by Lemma 2.2
we get that the action Γ y (X1 × X2, µ1 × µ2) is strongly ergodic relative to the quotient
Γ y (X1, µ1). Since we also have that θ1(Γx) = Λθ1(x) = Σθ1(x), a.e. x ∈ X1 ×X2, and Σ

is amenable, we can thus use Proposition 2.3 to deduce that θ1 locally factors through q1.
Secondly, note that θ2(Γx) = Λθ2(x) and θ2|Γx is 1-1, a.e. x ∈ X1 ×X2. Since

Γ y (X1, µ1) is a generalized Bernoulli action, while the action Λ y (Y2, ν2) is as-
sumed rigid, we are in a position to apply Proposition 3.1 and thereby get that θ2 locally
factors through q2.

Altogether, in view of Remark 1.4 (2), we conclude that the sets {(x1, x2, x
′
2) ∈

X1 × X2 × X2|θ1(x1, x2) = θ1(x1, x
′
2)} and {(x1, x

′
1, x2) ∈ X1 × X1 × X2|θ2(x1, x2) =

θ2(x′1, x2)} both have positive measures. Let us exploit this information further and show
that

(9) θ1(x1, x2) ∈ Λθ1(x1, x
′
2), θ2(x1, x2) ∈ Λθ2(x′1, x2)

a.e. (x1, x
′
1, x2, x

′
2) ∈ X1 × X1 × X2 × X2. Indeed, from the above we get that the set

T = {(x1, x2, x
′
2) ∈ X1 ×X2 ×X2|θ1(x1, x2) ∈ Λθ1(x1, x

′
2)} has positive measure. On the

other hand, T is clearly invariant under the diagonal product action of Γ on X1 ×X2 ×X2.
Since this action is weakly mixing (as all actions in the product are) it follows that
T = X1 × X2 × X2, a.e. This proves the first assertion in (9) and the second one
follows similarly.

Step 2. Next, we use (9) in combination with S. Popa’s criterion for untwisting cocycles
(Theorem 1.1) to show that some perturbation ρ = φ θ of θ with a function φ : X → Λ is of
the form ρ = (ρ1, ρ2), where ρi : Xi → Yi is a measurable map, for i ∈ {1, 2}. Moreover, we
prove that ρ1 verifies the formula ρ1(γx1) = χ(γ)ρ1(x1), for some group homomorphism
χ : Γ → Σ. To start with, let w : Γ × (X1 × X2) → Λ be the Zimmer cocycle associated
with θ.

By (9), we can find a measurable map ψ2 : X1 × X1 × X2 → Λ such that θ2(x1, x2) =

ψ2(x1, x
′
1, x2)θ2(x′1, x2), a.e. (x1, x

′
1, x2) ∈ X1 ×X1 ×X2. Using the fact that Λ acts freely

on Y2, we deduce that

(10) ψ2(γx1, γx
′
1, γx2)w(γ, (x′1, x2)) = w(γ, (x1, x2))ψ2(x1, x

′
1, x2)

for all γ ∈ Γ and a.e. Indeed, it is clear that if we apply both sides of (10) to θ2(x′1, x2) and
use the definitions of w and ψ2 then we obtain the same result.

Since the action Γ y (X1, µ1) is weakly mixing, it follows from Theorem 1.1 that we
can find a cocycle w2 : Γ × X2 → Λ and a measurable map φ2 : X1 × X2 → Λ such

4 e SÉRIE – TOME 42 – 2009 – No 4



NON-ORBIT EQUIVALENT ACTIONS OF Fn 691

that w(γ, (x1, x2)) = φ2(γx1, γx2)−1w2(γ, x2)φ2(x1, x2), for all γ ∈ Γ and a.e. (x1, x2) ∈
X1 ×X2. Combining this with the definition of w further yields that

(11) φ2(γx1, γx2)θi(γx1, γx2) = w2(γ, x2)φ2(x1, x2)θi(x1, x2)

for each γ ∈ Γ, a.e. (x1, x2) ∈ X1 ×X2 and all i ∈ {1, 2}.
Now, we denote η = φ2 θ : X1 × X2 → Y1 × Y2 and claim that if η = (η1, η2), then

η2(x1, x2) = η2(x′1, x2), a.e. (x1, x
′
1, x2) ∈ X1×X1×X2. LetU denote the set of such triples

(x1, x
′
1, x2). By (11) it is clear that U is invariant under the diagonal Γ-action and since this

action is ergodic (being a product of weakly mixing actions) it is therefore sufficient to show
that U has positive measure. In turn, this is a consequence of the following three facts:
η2 = φ2 θ2, φ2 takes countably many values and the set {(x1, x

′
1, x2) ∈ X1 ×X1 ×X2|

θ2(x1, x2) = θ2(x′1, x2)} has positive measure.
To summarize, at this point we have that a perturbation η = φ2 θ of θ is of the form

η = (η1, η2), with η2 : X2 → Y2 (by the claim), and satisfies η(γx1, γx2) = w2(γ, x2)η(x1, x2),
for every γ ∈ Γ and a.e. (x1, x2) ∈ X1 ×X2 (by (11)).

Our plan is now to repeat the above arguments, with η1 instead of θ2. Note first that by (9),
η1(x1, x2) ∈ Λη1(x1, x

′
2), a.e. (x1, x2, x

′
2) ∈ X1 ×X2 ×X2. Thus, we can find a measurable

map ψ1 : X1 × X2 × X2 → Λ such that η1(x1, x2) = ψ1(x1, x2, x
′
2)η1(x1, x

′
2), a.e. Let

π : Λ→ Σ be the quotient homomorphism. By taking into account that Σ acts freely on Y1,
we deduce that

π(ψ1(γx1, γx2, γx
′
2))π(w2(γ, x′2)) = π(w2(γ, x2))π(ψ1(x1, x2, x

′
2)),

for all γ ∈ Γ and a.e. (x1, x2, x
′
2) ∈ X1 × X2 × X2. As before, one verifies this formula by

applying both sides to η1(x1, x
′
2). Since the action Γ y (X2, µ2) is weakly mixing, Theo-

rem 1.1 gives a measurable map φ1 : X2 → Λ and a group homomorphism χ : Γ → Σ

such that π(φ1(γx2)w(γ, x2)φ1(x2)−1) = χ(γ), for each γ ∈ Γ and a.e. x2 ∈ X2. Thus, if
we define ρ = (ρ1, ρ2) : X1 × X2 → Y1 × Y2 by ρ(x1, x2) = φ1(x2)η(x1, x2), then for a.e.
(x1, x2) ∈ X1 ×X2 and all γ ∈ Γ we have that

ρ1(γx1, γx2) = π(φ1(γx2))η1(γx1, γx2) = π(φ1(γx2)w2(γ, x2))η1(x1, x2)

= χ(γ)π(φ1(x2))η1(x1, x2) = χ(γ)ρ1(x1, x2).

The same argument as above now shows that ρ1 only depends on the X1-coordinate. Thus,
the above formula rewrites as

(12) ρ1(γx1) = χ(γ)ρ1(x1)

for each γ ∈ Γ and a.e. x1 ∈ X1. It is also clear by construction that ρ2 only depends on the
X2-coordinate. To complete the proof of this step, just notice that if φ : X1 × X2 → Λ is
given by φ(x1, x2) = φ1(x2)φ2(x1, x2), then ρ = φ θ.

Step 3. In this step we aim to show that ρ1 is a quotient map, χ(Γ0) = e and that the induced
group homomorphism χ : ∆ = Γ/Γ0 → Σ is injective. Prior to proving these assertions, let
us indicate how they imply the conclusion of the theorem. Indeed, assuming them true, let
(X0, µ0) = (Y1, ν1) and note that ∆ acts on X0 by γx0 = χ(γ)x0, for each γ ∈ Γ and all
x0 ∈ X0. It is now clear that ρ1 : X1 → X0 is a ∆-equivariant (by (12)) quotient map and that
the identity mapX0 → Y1 conjugates the actions ∆ y (X0, µ0) and Σ0 =: χ(∆) y (Y1, ν1).
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Turning to the proof of the above assertions, we first claim that there exists a mea-
surable set A1 ⊂ X1 such that µ1(A1) > 0, ν1(ρ1(A1)) > 0 and ρ1 : (A1, cµ1|A1

) →
(ρ1(A1), ν1|ρ1(A)) is a measure space isomorphism, where c = ν1(ρ1(A1))

µ1(A1) . To see this, for
every γ ∈ Γ, let Xγ = {x ∈ X1 × X2|φ(x) = γ}. Then {Xγ}γ∈Γ is a measurable partition
of X1 ×X2, so, in particular, we can find γ such that (µ1 × µ2)(Xγ) > 0. After discarding
a measure zero set from Xγ we can assume that θ|Xγ is 1-1 and since ρ = γ θ on Xγ , we
deduce that ρ|Xγ is 1-1. This implies that there exist measurable sets Ai ⊂ Xi such that
µi(Ai) > 0 and ρi|Ai is 1-1, for i ∈ {1, 2}. Thus, ρ|A is 1-1, where A = A1 × A2. Moreover,
note that ρ|Xγ∩A : Xγ ∩ A → ρ(Xγ ∩ A) is measure preserving (being equal to γ θ), for all
γ ∈ Γ. Thus, we get that ρ|A : A→ ρ(A) is a measure preserving isomorphism (where on A
and ρ(A) we consider the restrictions of the measures µ1×µ2 and ν1× ν2, respectively) and
since ρ = (ρ1, ρ2), the claim follows.

Next, we prove that χ(Γ0) = e. This is a consequence of the following three facts: (1)
χ(γ) stabilizes ρ1(x1), a.e. x1 ∈ X1 and for all γ ∈ Γ0 (by (12)), (2) ν1(ρ1(C)) > 0 for every
C ⊂ X1 such that µ1(X1 \C) = 0 (by the above claim) and (3) Σ acts freely on Y1. Now, let
χ also denote the induced homomorphism ∆ = Γ/Γ0 → Σ. Since ∆ has no non-trivial finite
normal subgroups, in order to prove that χ is injective, it is enough to show that Ker(χ) is
finite. Assume by contradiction that Ker(χ) is infinite and let B ⊂ Y1 be a measurable set.
By (12) we get that ρ−1

1 (B) is Ker(χ)-invariant and since the action ∆ y (X1, µ1) is mixing
(hence its restriction to Ker(χ) is ergodic), we would derive that µ1(ρ−1

1 (B)) ∈ {0, 1}. On
the other hand, if we choose B ⊂ ρ1(A1) such that ν1(B) ∈ (0, ν1(ρ1(A1))), then, by using
the claim proved above, it is clear that µ1(ρ−1

1 (B)) ∈ (0, 1), a contradiction.
Finally, let us show that ρ1 is a quotient map. By (12) we have that ρ1(X1) is Σ0-invariant,

while the claim insures that ν1(ρ1(X1)) > 0. Since Σ0
∼= ∆ is infinite and the action

Σ y (Y1, ν1) is mixing, we get that the restriction Σ0 y (Y1, ν1) is ergodic, hence it follows
that ρ1(X1) = Y1. Thus, it remains to show that ρ1 is measure preserving. In other words,
we need to prove that if ν is the probability measure on Y1 given by ν(B) = µ1(ρ−1

1 (B)),
for every measurable subset B ⊂ Y1, then ν = ν1. Notice that by (12) we get that
γ(ρ−1

1 (B)) = ρ−1
1 (χ(γ)B), for each γ ∈ ∆ and every subset B of Y1. This implies that

ν is Σ0-invariant. Since the action Σ0 y (Y1, ν1) is ergodic, to finish the proof, it is thus
sufficient to show that ν is absolutely continuous with respect to ν1. Let B ⊂ Y1 such that
ν1(B) = 0. Then for every γ ∈ ∆ we have that

µ1(ρ−1
1 (B) ∩ γ−1A1) = µ1(γρ−1

1 (B) ∩A1) = µ1(ρ−1
1 (χ(γ)B) ∩A1)

which by the above claim is further equal to c−1ν1(χ(γ)B ∩ ρ1(A1)) and thus to 0 (since
ν1(χ(γ)B) = ν1(B) = 0). Using the ergodicity of the action ∆ y (X1, µ1) we get that
X1 = ∪γ∈∆γA1, which altogether implies that µ1(ρ−1

1 (B)) = 0, as needed.

5. Proof of the main result

In this section, we derive the main result as a consequence of Theorem 4.1. Before stating
and proving a more general version of the main result (Theorem 5.1), let us recall a few well-
known facts about entropy (see [23] and [24] for a reference). Let ∆ be an infinite amenable
group. Given a measure preserving action σ : ∆ y (X,µ) of ∆ on a standard probability
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space (X,µ) we denote by h(σ) its entropy. If σ0 : ∆ y (X0, µ0) is a quotient action of σ,
then h(σ0) ≤ h(σ). In particular, two isomorphic actions have the same entropy.

For n ≥ 1 and a n-tuple p = (p1, p2, . . . , pn) of positive numbers with sum equal to 1,
let (Xp, µp) be the product probability space ({1, 2, . . . , n}, rp)∆, where rp({i}) = pi, for
all i ∈ {1, 2, . . . , n}. If βp denotes the Bernoulli action of ∆ on (Xp, µp), then h(βp) =

−
∑n
i=1 pi log2(pi). On the other hand, if (Z, ρ) is a standard probability space then the en-

tropy of the Bernoulli action ∆ y (Z, r)∆ is equal to +∞. Given a subgroup ∆0 of ∆, the
restriction βp|∆0

is precisely the Bernoulli action of ∆0 with base ({1, 2, . . . , n}, rp)∆/∆0 .
Thus, using the above remarks, it is easy to see that h(βp|∆0

) = |∆/∆0|h(βp).

T 5.1. – Let Γ be a countable group and assume that
(i) ∆ is an infinite amenable quotient of Γ together with a surjective homomorphism

π : Γ→ ∆,
(ii) ∆ has no non-trivial finite normal subgroup and
(iii) σ : Γ y (Y, ν) is a free, weakly mixing, strongly ergodic, rigid measure preserving action

of Γ on a standard probability space (Y, ν).

For every n-tuple p = (p1, p2, . . . , pn) as above, let αp denote the diagonal product action
of Γ on (Xp × Y, µp × ν) given by αp(γ) = βp(π(γ))× σ(γ), for all γ ∈ Γ.

If αp is orbit equivalent to αq, then h(βp) = h(βq). In particular, {α(t,1−t)}t∈(0, 12 ] gives a
1-parameter family of free ergodic non-OE actions of Γ.

Proof. – Assume that αp and αq are orbit equivalent and suppose by contradiction that
h(βp) < h(βq) (after interchanging p and q, if necessary). By applying Theorem 4.1 we get
that a quotient β0

p : ∆ y (X0
p , µ

0
p) of βp is conjugate to the restriction of βq to a subgroup

∆0 of ∆. Thus,

h(βp) ≥ h(β0
p) = h(βq |∆0

) = |∆/∆0|h(βq) ≥ h(βq),

a contradiction. For the second assertion, note that the function t→ h(β(t,1−t)) is injective
on (0, 1

2 ].

Since the action σ : Fn y (T2, λ2) is free, weakly mixing, strongly ergodic and rigid, for
any 2 ≤ n ≤ ∞ and any embedding of Fn into SL2(Z), we see that Theorem 5.1 implies our
main result.

5.1. Final remarks

(1) In the context from 5.1, letMp = L∞(Xp×Y )oαpΓ and assume that Γ has Haagerup’s
property (e.g. Γ = Fn, 2 ≤ n ≤ ∞). Then Mp is not isomorphic to Mq, whenever h(βp) 6=
h(βq). Indeed, following [25],Mp is a II1 factor in Popa’sHT class withL∞(Xp×Y ) being its
unique (up to conjugacy with a unitary element) HT Cartan subalgebra. Thus, isomorphism
of the factors Mp and Mq implies orbit equivalence of the actions αp and αq, and the claim
follows from Theorem 5.1. In particular, the actions {α(t,1−t)}t∈(0, 12 ] are non-von Neumann
equivalent, i.e. their associated group measure space factors are non-isomorphic.

(2) If two groups Γ1 and Γ2 satisfy the hypothesis of 5.1, then their product Γ = Γ1 × Γ2

also does. To see this, just note that if the actions σi : Γi y (Yi, νi) verify condition (iii), then
the product action σ : Γ y (Y1 × Y2, ν1 × ν2) verifies it as well. In particular, Theorem 5.1
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provides uncountably many non orbit equivalent actions of Fm × Fn, for all 2 ≤ m,n ≤ ∞,
using an approach different from the previous ones ([20], [30]).

(3) If Λ is an arbitrary group and Γ is a group which satisfies the hypothesis of 5.1, then
the free product Γ∗Λ also does. Indeed, assume that σ : Γ y (X,µ) is a free, weakly mixing,
strongly ergodic, rigid action. Following [17, A.1], there exists a free action σ̃ : Γ∗Λ y (X,µ)

such that σ̃|Γ = σ. Then it is clear that σ̃ is weakly mixing and strongly ergodic. Moreover,
since σ is rigid and since L∞(X,µ) ⊂ L∞(X,µ) oσ Γ ⊂ L∞(X,µ) oσ̃ (Γ ∗ Λ), we get that
σ̃ is a rigid action ([25, 4.6]).

(4) A related question (to the one considered in this paper) is to find measure preserving
actions of the free groups, Fn, whose associated orbit equivalence relation has trivial outer
automorphism group. Note that the existence of such actions has been very recently shown
by S. Popa and S. Vaes for n =∞ ([31]) and by D. Gaboriau for 2 ≤ n <∞ ([9]).
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