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REDUCTION AND LIFTING
OF SPECIAL METACYCLIC COVERS

BY STEFAN WEWERS

ABSTRACT. – Special covers are metacyclic covers of the projective line, with Galois groupZ/p�Z/m,
which have a specific type of bad reduction to characteristicp. Such covers arise in the study of t
arithmetic of Galois covers ofP1 with three branch points. Our results provide a simple descriptio
special covers in terms of certain lifting data in characteristicp.

 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – On définit les revêtements spéciaux comme des revêtements métacycliques de l
projective ayant un certain type de mauvaise réduction. Ces revêtements apparaissent naturellem
l’étude des revêtements galoisiens étales de la droite projective moins trois points. Nos résultats don
description simple des revêtements spéciaux comme relèvements de certaines données en caractép.

 2003 Éditions scientifiques et médicales Elsevier SAS

Introduction

In [13] Raynaud has given a criterion for good reduction of Galois covers of the proje
line which are ramified at three points. The proof of this criterion depends on the analy
Galois covers with bad reduction, under certain conditions on the Galois group. In one pa
step of this analysis, Raynaud introduced the notion of theauxiliary cover: to aG-Galois cover
f :Y → P

1 with bad reduction to characteristicp he associates (under certain conditions)
H-Galois coverfaux :Yaux → P

1, which has, in some sense, the same type of bad redu
asf , but whose Galois groupH is a certain solvable quotient of a subgroup ofG. For instance, if
p strictly divides the order ofG,H is a metacyclic group, isomorphic toZ/p� Z/m. Thus, for
many purposes, the study of bad reduction of Galois covers can be reduced to the study o
with certain solvable (in the easiest case, metacyclic) Galois groups. However, this red
step is paid for by the introduction of extra branch points (the branch locus off is a subset of the
branch locus offaux). In general, it is hard to predict where these extra branch points occu

The present paper is concerned with a detailed study of metacyclic covers ofP
1, with Galois

group isomorphic toZ/p�Z/m, which arise as the auxiliary cover ofG-covers ofP1 with three
branch points and prime-to-p ramification. In Section 1, we give a characterization of such co
which is independent of the groupG; this characterization gives rise to the definition ofspecial
metacyclic covers. In Section 2 we show that the reduction of a special cover to characterip
is as simple as one can expect it to be; in particular, it is determined by a so-calledspecial
degeneration datum. Finally, in Section 3 we show that one can lift any special degener
datum to a special cover. In a subsequent paper [21], we will strengthen this lifting result
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114 S. WEWERS

in [20] we will apply our results on special covers to the study of three point covers with bad
reduction.

We shall now give a more detailed outline of our results. Fix a prime numberp and a finite
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groupG such thatp strictly divides the order ofG. Let us also fix a fieldK0 of characteristic0
which is complete with respect to a discrete valuationv. We assume that the residue fieldk of v is
algebraically closed and of characteristicp. Suppose we are given aG-Galois coverf :Y → P

1

defined over a finite extensionK/K0, branched atx1 = 0, x2 = 1 andx3 = ∞, with prime-
to-p ramification. We assume thatf has bad reduction atv, and has astable modelover the
ring of integers ofK (the latter holds after replacingK by a finite extension). Let̄f : Ȳ → X̄
be thestable reductionof f . For a precise definition of the stable reduction, see Section
Let us only say that̄f is a finiteG-invariant map between semistable curves overk which is
inseparable over certain irreducible components ofX̄ . By a result of Raynaud [13], the cover̄f
is separable exactly over thetails of X̄ , i.e. those irreducible components that are connecte
the rest ofX̄ in a single point. Moreover, the three branch pointsx1 = 0, x2 = 1, x3 = ∞ of f
specialize to points on pairwise distinct tails̄X1, X̄2, X̄3. Let X̄4, . . . , X̄r be the remaining tails
and letDi ⊂ (P1

K)rig be the closed rigid disk corresponding to the tailX̄i, for i= 1, . . . , r. By
definition,xi ∈Di for i= 1,2,3.

Let us chooseK-rational pointsxi ∈ Di, for i= 4, . . . , r. After having made this choice, w
can define theauxiliary coverfaux :Yaux → P

1 associated tof . This is a certainH-Galois cover,
branched atx1, . . . , xr , whereH is the quotient of a subgroup ofG, isomorphic toZ/p� Z/m
for some integerm> 1 dividing p− 1. The coverfaux has bad reduction, as well, and its sta
reductionf̄aux : Ȳaux → X̄ is closely related to the stable reduction off (for instance,f̄ andf̄aux

have the same target̄X). Of course, the coverfaux depends on the choice of the extra bran
points. Raynaud’s results, together with the fact thatf has only three branch points, impo
very strong conditions on the auxiliaryfaux. Furthermore, it is demonstrated in [13] that t
understanding of the arithmetic off can be reduced, to some extend, to the study of its auxi
cover. This motivates the study ofspecial covers.

So from now on, we letf :Y → P
1 denote anH-cover defined overK , whereK/K0 and

H = Z/p � Z/m are as before. We say thatf is specialif it has bad reduction and its stab
reductionf̄ : Ȳ → X̄ satisfies some rather restrictive conditions (which are satisfied by aux
covers of three point covers, as above). In particular, the branch pointsx1, . . . , xr of f specialize
to pairwise distinct tailsX̄1, . . . , X̄r of X̄ . Our first main result is:

THEOREM A. – Let f :Y → P
1 be a specialH-cover overK and f̄ : Ȳ → X̄ its stable

reduction. Then the(semistable) curveX̄ is the union ofr + 1 distinct irreducible componen
X̄0, . . . , X̄r (each isomorphic toP1

k) such that, fori= 1, . . . , r, x̄i ∈ X̄i and X̄i meetsX̄0 in a
unique pointτi. In particular,xi �≡ xj mod v for i �= j (as points onP1).

The essential content of Theorem A is that the stable reduction of a special cover is as
as one can expect it to be. For instance, iff :Y → P

1 is the auxiliary cover of a three poin
G-coverf̃ : Ỹ → P

1, then Theorem A implies that the disksD1, . . . ,Dr determined by the stab
reduction off̃ areequidistant. Note that this is in general wrong forG-covers with more than
three branch points.

The proof of Theorem A shows that the stable reduction of a special cover is determin
a pair (Z̄0, ω0), whereZ̄0 → P

1
k is anm-cyclic cover branched at the pointsτ1, . . . , τr (as in

Theorem A), andω0 is a regular differential form on̄Z0. The differential formω0 verifies the
following conditions: a.)ω0 is logarithmic, i.e. of the formdu/u, b.)ω0 is an eigenvector unde
the action ofZ/m and c.) the zeros ofω0 are contained in the ramification locus ofZ̄0 → P

1
k.

Let us call the pair(Z̄0, ω0) a special degeneration datum. It turns out that condition b.) and c
already determine the differentialω0 up to a constant factor. Therefore, condition a.) pos
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REDUCTION AND LIFTING OF SPECIAL METACYCLIC COVERS 115

restriction on the cover̄Z0 → P
1
k and, in particular, on the branch pointsτ1, . . . , τr. In concrete

terms, this condition translates into an explicit system of equations satisfied by the tuple(τi).
One can show that this system has only a finite number of solutions, and that therefore there exist

cally

has
roof of
rms of
e are
rove
e are
ing

e

B.

at

e

y
]. For

is
up.

a

of the
cal
y,
only a finite number of nonisomorphic special degeneration data, for a given primep.
Our second main result is that every special degeneration datum arises from a specialH-cover.

More precisely, we have:

THEOREM B. – Let (Z̄0, ω0) be a special degeneration datum, defined over an algebrai
closed fieldk of characteristicp. LetK0 be the fraction field of the ringW (k) of Witt vectors
over k, and letx1, . . . , xr beK0-rational points onP

1 lifting the branch points of̄Z0 → P
1
k.

Then there exists a specialH-coverf :Y → P
1 with branch pointsx1, . . . , xr whose reduction

f̄ : Ȳ → X̄ corresponds to(Z̄0, ω0). The coverf is defined over the tame extensionK/K0 of
degree(p− 1)/m and is uniquely determined by(Z̄0, ω0) and(x1, . . . , xr).

Theorem B is a result on lifting inseparable covers of curves from characteristicp to
characteristic0. In this sense, it is similar to the main result of [8]. But even though [8]
had a great influence on the present paper (this is most obvious in Section 2), the p
Theorem B uses a very different approach. First, the results of [8] are formulated in te
automorphisms of thep-adic open disk (and are therefore something local), whereas w
dealing with projective curves. Second, for the applications in [20] it is important to p
uniqueness of lifting and to have a good control over the field of definition. Since w
concerned with liftinginseparablecovers, the usual strategy of first lifting locally and then us
formal patching to obtain a global lifting breaks down.

Our proof of Theorem B is based on an analysis of thep-torsion of the Jacobian of th
intermediatem-cyclic cover and depends crucially on the assumption thatK0 is absolutely
unramified. It is divided into two steps. LetK0 and(Z̄0, ω0) be as in the statement of Theorem
Moreover, letK/K0 be a finite extension andx1, . . . , xr K-rational points onP1 lifting the
branch points ofZ̄0 → P

1
k. In the first step, we show that there exists a uniqueH-cover

f :Y → P
1 with branch pointsx1, . . . , xr , defined over a tame extension ofK , whose stable

reduction gives rise to the special deformation datum(Z̄0, ω0). In the second step we show th
f is special ifK =K0. It is easy to see that the conditionK = K0 is not necessary forf to
be special. To see this, letx1, . . . , xr beK0-rational andf the corresponding lift. Sincef is
special by Theorem B, its stable reduction gives rise to closed rigid disksD1, . . . ,Dr such that
xi ∈ Di. One can show that the disksDi do not depend on the choice ofx1, . . . , xr . Let x′i be
an arbitrary point inDi (not necessarilyK0-rational) and letf ′ be the lift corresponding to th
tuplex′1, . . . , x

′
r . Then a formal patching argument shows thatf ′ is special, as well.

We will show in [21], using an entirely different method, thatxi ∈ Di is in fact a necessar
condition for the lift f to be special. This result has very nice consequences, see [20
instance, if the special coverf is the auxiliary cover of a three point coverf̃ : Ỹ → P

1, thenf̃ can
be defined over a tame extension ofK0. Therefore, the field of moduli of a three point covers
at most tamely ramified atp provided thatp2 does not divide the order of the monodromy gro

1. Special metacyclic covers

In this paper we consider metacyclic coversf :Y → P
1 which are the composition of

ramified m-cyclic coverZ → P
1 and an étalep-cyclic cover Y → Z , with Galois group

Z/p� Z/m. Such a cover corresponds to an element of a certain isotypical component
p-torsion of the JacobianJZ . We give a numerical criterion which implies that this isotypi
component has étale reduction. This forces the coverY → Z to have bad (more specificall
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116 S. WEWERS

multiplicative) reduction, and allows us to compute the field of moduli of the coverf , see
Section 1.2. In Section 1.3, we definespecial coversas metacyclic coversf :Y → P

1 whose
stable reduction satisfies certain (rather restrictive) conditions. In Section 1.4, we show that the
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auxiliary cover of a Galois cover ofP1 branched at three points is special, provided thatp strictly
divides the order of the Galois group.

1.1. Metacyclic covers of multiplicative type

Let us fix the following objects:
• A complete discrete valuation ringR0, with fraction fieldK0 of characteristic0 and residue

field k of characteristicp > 0. We will assume thatk is algebraically closed. Let̄K be an
algebraic closure ofK0 andζp ∈ µp(K̄) a fixedpth root of unity. We writevR0 for the
valuation ofK0 corresponding toR0. We normalizevR0 such thatvR0(p) = 1.

• An integerm> 0 dividing p−1, and a characterχ :Z/m→µm(K0) of orderm. We write
χ̄ :Z/m→ F

×
p for the reduction ofχ modvR0 . We define the groupH ∼= Z/p� Z/m by

two generatorsα,β with relationsαp = βm = 1 andβiαβ−i = αχ̄(i).
• An integerr � 3 and anr-tuple (a1, . . . , ar) of integers such thatgcd(a1, . . . , ar) = 1,

0< ai <m and
∑
i ai ≡ 0 modm.

• An r-tuple(x1, . . . , xr) of pairwise distinctK0-rational points on the projective lineP1.
The inverse image of an elementa ∈ (Z/m)× under the natural mapH→ Z/m is a conjugacy

class ofH , containing elements of orderm/(m,a). We denote this conjugacy class byCa.

DEFINITION 1.1. – Ametacyclic cover of type(xi;ai) is anH-cover

f :Y H−→ P
1
K̄

defined overK̄, branched inx1, . . . , xr , such that the canonical generator of inertia abovexi
(with respect to the characterχ) is an element ofCai , for i= 1, . . . , r (see e.g. [18]). The cove
f is calledof multiplicative typeif

r∑
i=1

ai =m.(1)

The meaning of the term ‘of multiplicative type’ will become clear later. For the momen
us fix a metacyclic coverf :Y → P

1 of type(xi;ai), not necessarily of multiplicative type. L
Z be the quotient ofY by the normal subgroup〈α〉 ✁H of orderp. Thus,g :Z→ P

1
K̄

is anm-
cyclic cover, branched inx1, . . . , xr such that the image ofβai inH/〈α〉 ∼= Z/m is the canonica
generator of inertia abovexi. We shall callg :Z→ P

1 them-cyclic cover of type(xi;ai), with
respect toχ. In concrete terms,Z is the normalization of the plane curve with equation

zm =
r∏
i=1

(x− xi)ai(2)

(provided xi �= ∞), and the restriction ofβ ∈ H to Z yields a generator̃β :Z ∼→ Z of
Gal(Z/P1)∼= Z/m such that̃β∗z = χ(1) z.

The p-cyclic cover Y → Z is étale. Hence it corresponds to a nontrivial classθ in
H1

ét(Z,Z/p)χ (for any Fp[Z/m]-module M , we denote byMχ the χ-eigenspace). Le
JZ = Pic0(Z) denote the Jacobian ofZ , andJZ [p] its group ofK̄-rational points of orderp.
Kummer theory gives us a canonical isomorphism

H1
ét(Z,Z/p)χ ∼= JZ [p]χ(−1) = HomFp

(
µp(K̄), JZ [p]χ

)
,(3)
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REDUCTION AND LIFTING OF SPECIAL METACYCLIC COVERS 117

see [10], III §4. Here is how one can define the coverY → Z from a classθ ∈H1
ét(Z,Z/p)χ.

Using our choice of apth root of unityζp, we can identifyJZ [p]χ(−1) with JZ [p]χ. Let L be
the line bundle onZ of orderp corresponding to the classθ under the isomorphism (3). LetD

t

the

e
d

p

is

me
.3

on
ere
be a divisor onZ such thatL ∼= OZ(D). Thenp ·D is the divisor of some rational functionu
onZ . LetY → Z be the cover which is (birationally) given by the equation

yp = u.(4)

We let the generatorα of thep-cyclic subgroup ofH act onY such thatα∗y = ζpy. By our choice
ofD we haveβ̃∗D≡ χ̄(1) ·D. Therefore, there exist an integerµ such thatµ≡ χ̄(1) mod p and a
rational functionv onZ such that̃β∗D= µ ·D+(v). We can normalizev such that̃β∗u= uµvp.
We see that̃β lifts to an automorphismβ :Y ∼→ Y of orderm such thatβ∗y := yµv. It is easy to
check that this defines an action ofH = 〈α,β〉 onY .

1.2. The field of moduli

Let K in be thefield of moduliof theH-coverf :Y → P
1, relative to the extension̄K/K0

(see e.g. [4]). Since the groupH has trivial center, this means thatK in/K0 is the smalles
field extension such that theH-coverf descends to anH-coverfKin :YKin → P

1
Kin overK in.

Moreover, the extensionK in/K0 is finite, and the modelfKin of f is unique up toK in-linear
isomorphism. We letΓin := Gal(K̄/K in).

The field of moduli of them-cyclic coverg :Z → P
1 is justK0. Althoughg has no unique

K0-model (becauseZ/m is abelian), there is a canonical modelgK0 :ZK0 → P
1
K0

, given by
Eq. (2). (SinceK0 is strictly henselian,gK0 is characterized by the fact that it is unramified at
generic point ofP1

k. Note, however, that them-cyclic quotientYKin/(Z/p)→ P
1
Kin of fKin will

not beK in-isomorphic togK0 ⊗K in, in general.) The choice of the modelgK0 determines an
action ofΓK0 := Gal(K̄/K0) on theFp[Z/m]-moduleH1

ét(Y,Z/p), and hence an action on th
χ-eigenspaceH1

ét(Z,Z/p)χ. We can describe the subgroupΓin ⊂ ΓK0 , and therefore the fiel
extensionK in/K0, in terms of this action, as follows.

PROPOSITION 1.2. – Let θ ∈ H1(Z,Fp)χ be the class corresponding to the étalep-cyclic
coverY →Z . Then

Γin =
{
σ ∈ ΓK0 | σθ = χ̄(a)θ, a ∈ Z/m

}
.

Proof. –Let σ ∈ ΓK0 . By definition, σ is an element ofΓin if and only if the conjugate
coverσf : σY → P

1 is isomorphic tof . This means that there exists āK-linear isomorphism
φ : σY ∼→ Y which is equivariant with respect to theH-action, such thatf ◦ φ = σf . We may
(and will) identify σZ with Z (using the modelZK0 ). So, if it exists, the isomorphismφ
restricts to aK̄-linear automorphism ofZ which commutes with theZ/m-action and the ma
g :Z → P

1; therefore,φ|Z = β̃a, for somea ∈ Z/m. In other words,σ ∈ Γin if and only if
σθ = (β̃a)∗θ = χ̄(a)θ, for somea ∈ Z/m. This is what we wanted to prove.✷

Of course, the choice of the modelgK0 also determines an action ofΓK0 on JZ [p]χ and
JZ [p]χ(−1), such that (3) becomes an isomorphism ofFp[ΓK0 ]-modules. One way to study th
action is to regardJZ [p]χ as the group of̄K-rational points of thegroup schemeJac(ZK0)[p]χ̄
overK0. A crucial fact we will use in this paper is the following. Iff is of multiplicative type and
if the branch points off are equidistant, thenJac(ZK0)[p]χ̄ extends to a constant group sche
overR0. Equivalently,ΓK0 acts trivially onJZ [p]χ. This is a special case of Proposition 1
below.

Since we do not want to assume that the branch points off are equidistant, we need the noti
of admissible reduction. This notion was introduced in [7]. Another reference is [15], wh
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118 S. WEWERS

admissible covers are called ‘kummérien’. Let(XR0 ;xi,R0) be the (unique) stably pointed model
overR0 of ther-pointed curve(P1

K0
;xi), in the sense of [9]. LetK/K0 be a finite extension,R

the ring of integers ofK andXR :=XR0 ⊗R. Furthermore, letZR be the normalization ofXR
y

e

p

Prof.
in the function field ofZK := ZK0 ⊗K and letgR :ZR → XR be the canonical map. We sa
thatgR is an admissible cover if the following holds:

(a) The curveZR is semistable.
(b) The mapgR :ZR →XR is finite, and its restriction to the smooth locus ofXR is a tame

cover, ramified only along the sectionsx1,R, . . . , xr,R.
(c) Let x be a singular point of the special fiber̄X :=XR ⊗R k and letz ∈ Z̄ := ZR ⊗R k

be a point abovex. Thenz is also a singular point of̄Z . Moreover, ifX̄ ′, X̄ ′′ denote the
two branches ofX̄ passing throughx andZ̄ ′, Z̄ ′′ denote their inverse images in̄Z , then
the canonical generator of inertia of them-cyclic coverZ̄ ′ → X̄ ′ at z is the inverse of the
canonical generator of̄Z ′′ → X̄ ′′ at z.

If gR is an admissible cover, then we say thatgK0 has admissible reduction overK/K0 and call
gR :ZR→XR the admissible model ofgK0 overR.

PROPOSITION 1.3. – Suppose thatf is of multiplicative type, i.e. Eq.(1) holds. Then there
exists a finite, at most tamely ramified extensionK/K0 such that the following holds.

(i) The covergK0 has admissible reduction overK .
(ii) Let ḡ : Z̄ → X̄ be the special fiber of the admissible model ofgK0 overR, (X̄j) the

collection of irreducible components of̄X and Z̄j the inverse image of̄Xj . Then for
eachj, the curveZ̄j is smooth(but not necessarily connected) and the group schem
Jac(Z̄j)[p]χ̄ is étale.

(iii) Specialization yields an isomorphism

JZ [p]χ̄(K̄) ∼−→
⊕
j

Jac(Z̄j)[p]χ̄(k)

of Fp[Z/m]-modules.
If, moreover,xi �≡ xj mod vR0 for i �= j then Z̄ is smooth and we can takeK := K0.
Furthermore,Jac(ZK0)[p]χ̄ is isomorphic, as group scheme overK0, to the constant grou
scheme(Z/p)r−2.

To prove this proposition, we need the following lemma. Its proof follows a suggestion of
Raynaud.

LEMMA 1.4. – Let k, p, m and χ̄ be as at the beginning of Section1.1. Let x̄1, . . . , x̄r be
pairwise distinct elements ofk. Leta1, . . . , ar be integers such that0< ai <m and

∑
i ai =m

(we do not assume thatgcd(ai) = 1). Let ḡ : Z̄→ P
1
k be them-cyclic cover of type(x̄i;ai), with

respect toχ̄ (this makes sense even ifgcd(ai) �= 1 in which caseZ̄ is not connected). Then
(i) H1(Z̄,OZ̄)χ̄ = 0.
(ii) dimkH

0(Z̄,ΩZ̄/k)χ̄ = r− 2.
(iii) The group schemeJac(Z̄)[p]χ̄ is étale, isomorphic to(Z/p)r−2.
(iv) The Cartier operator is a bijection onH0(Z̄,ΩZ̄/k)χ̄.

Proof. –We may identifyZ̄ with the nonsingular model of the plane curvezm =
∏
i(x− x̄i)ai

overk. The action ofZ/m on Z̄ induces an action on the sheafḡ∗OZ̄ ; let

ḡ∗OZ̄ =
⊕
ψ̄

Lψ̄
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REDUCTION AND LIFTING OF SPECIAL METACYCLIC COVERS 119

be the decomposition into isotypical subsheaves, whereψ̄ runs through all charactersZ/m→ k×.
It is clear thatLψ̄ is a line bundle, for all̄ψ. By assumption, the rational functionz is a rational
section ofLχ̄ which defines a trivializationLψ̄|A1 ∼=OA1 and has a pole of order(

∑
i ai)/m= 1

d

a,

ith
proof

that
e
-

-

t
y

ints
e
,

k k

at∞. We conclude that

dimkH
1(Z̄,OZ̄)χ̄ = dimkH

1
(
P

1
k,Lχ̄

)
= degLχ̄ − 1 = 0.

This proves (i). A similar calculation (using the functionzm−1 instead ofz) shows that the
k-dimension ofH1(Z̄,OZ̄)χ̄−1 is r − 2. ButH1(Z̄,OZ̄)χ̄−1 is dual toH0(Z̄,ΩZ̄/k)χ̄, so (ii)
follows. Let J̄ be the Jacobian of the curvēZ . We have a canonicalk-linear isomorphism

Lie(J̄ [p]) = Lie(J̄)∼=H1(Z̄,OZ̄),

see [11], p. 147. This isomorphism is compatible with the naturalZ/m-action on both sides an
therefore induces an isomorphism on theχ̄-eigenspaces. From (i) we conclude

Lie(J̄ [p])χ̄ ∼=H1(Z̄,OZ̄)χ̄ = 0.

This shows that̄J [p]χ̄ is an étale group scheme. The rank ofJ̄ [p]χ̄ is equal to

dimkH
1
dR(Z̄)χ̄ = dimkH

1(Z̄,OZ̄)χ̄ + dimkH
0(Z̄,ΩZ̄/k)χ̄ = r− 2,

by (i) and (ii). This proves (iii). The canonical polarization onJ̄ identifiesJ̄ [p]χ̄ with the Cartier
dual of J̄ [p]χ̄−1 . Hence (iii) impliesJ̄ [p]χ̄−1 ∼= (µp)r−2. Under the isomorphism

H1(Z̄,OZ̄)χ̄−1 ∼= Lie(J̄ [p])χ̄−1 ∼= Lie(µp)
r−2,

the action of Frobenius on cohomology corresponds to thepth power map on the Lie algebr
see [11], Theorem 15.3. It is elementary to see that thepth power map onLie(µp) is a bijection.
Therefore, the Frobenius is a bijection onH1(Z̄,OZ̄)χ̄−1 . But the transpose of Frobenius w
respect to Serre duality is the Cartier operator (see [16]), so (iv) follows. This finishes the
of Lemma 1.4. ✷

Proof of Proposition 1.3. –We will proceed in two steps. First, let us assume
xi �≡ xj mod vR0 for i �= j. Then them-cyclic covergK0 :ZK0 → P

1
K0

extends to a tam
Z/m-cover gR0 :ZR0 → P

1
R0

. In particular,ZR0 is smooth overR0. Let JR0 be the Jaco
bian ofZR0 and J̄ its special fiber. Then̄J is the Jacobian of the special fiberZ̄ of ZR0 . By
Lemma 1.4(iii),J̄ [p]χ̄ is étale, isomorphic to(Z/p)r−2. SinceK0 is strictly henselian, this im
plies thatJac(ZK0)[p]χ̄ is a constant group scheme overK0, isomorphic to(Z/p)r−2. This
proves the proposition in the casexi �≡ xj mod vR0 .

We now consider the general case. Sincem is prime top, it follows from the results of [15] tha
the covergK0 has admissible reduction overK , whereK/K0 is any sufficiently large, tamel
ramified extension. This proves Part (i) of Proposition 1.3. LetgR :ZR→XR be the admissible
model ofgK0 overR andḡ : Z̄→ X̄ the special fiber ofgR. By the definition of admissibility,̄Z
andX̄ are semistable curves and the mapḡ is finite and étale, except above the singular po
of X̄ and the specializations of the branch pointsxi. Let (X̄j) be the collection of irreducibl
components of̄X andZ̄j the inverse image of̄Xj in Z̄ . Also by the definition of admissibility
Z̄j → X̄j is a (possibly disconnected)m-cyclic cover of type(x̄j,l;aj,l). Herex̄j,1, . . . , x̄j,rj are
the points onX̄j which are either singular on̄X or the specialization of a branch pointxi. We
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may assume that0 � aj,l �m. If x̄j,l is the specialization ofxi thenaj,l = ai. Moreover, if two
componentsX̄j andX̄j′ intersect in the pointxj,l = xj′,l′ thenaj′,l′ =m− aj,l. It is now an
easy exercise to show that the equality

∑
i ai =m and the strict inequality0< ai <m imply the

h

f

rty

nt
a

,

equality
rj∑
l=1

aj,l =m(5)

for all j and the strict inequality0< aj,l <m for all j, l. Moreover, we have∑
j

(rj − 2) = r− 2.(6)

(To prove (5) and (6) we use the fact that the graph of components ofX̄ is a tree; compare wit
Lemma 2.3 and Proposition 2.4.) From (5) and Lemma 1.4 we conclude thatJac(Z̄j)[p]χ̄ is étale
of rankprj−2. This shows (ii).

LetK ′/K be a finite extension,ZK′ := ZK0 ⊗K0 K
′ andJK′ the Jacobian ofZK′ . We may

chooseK ′ such that all points of the group schemeJK′ [p]χ̄ areK ′-rational. As in the proof o
Lemma 1.4 one shows that

JK′ [p]χ̄ ∼= (Z/p)r−2.(7)

Let JR′ be the Néron model ofJZ′ . It follows from our assumption and the universal prope
of the Néron model thatG := JR′ [p]χ̄ is a finite and flat group scheme overR′, with generic
fiber JK′ [p]χ̄. Let J̄ := JR′ ⊗ k be the special fiber ofJR′ and J̄0 its connected compone
containing0. SinceZK′ has semi-stable reduction,̄J0 is a semi-abelian variety and sits inside
short exact sequence

0→ T −→ J̄0 −→
⊕
j

Jac(Z̄j)→ 0.(8)

HereJZ̄j
is the Jacobian of̄Zj andT is an algebraic torus overk. See [1]. The groupZ/m acts

on all terms of (8). In particular, we can define theχ̄-isotypical subtorusTχ̄ ⊂ T . Furthermore
Z/m acts on the finite abelian group̄J/J̄0, and we let(J̄/J̄0)[p]χ̄ be theχ̄-isotypical part of the
group of elements of orderp in J̄/J̄0. By (7) and (8) we have

∑
j

(rj − 2)+ dimTχ̄ +
log |(J̄/J̄0)[p]χ̄|

logp
= r− 2.

With (6) we conclude that(J̄/J̄0)[p]χ̄ = 0 and thatTχ̄ = 1. In other words, we have

G ⊗ k ∼=
⊕
j

Jac(Z̄j)[p]χ̄.

This proves (iii). ✷
COROLLARY 1.5. – If f is of multiplicative type, thenf has bad reduction, andK in/K0 is

at most tamely ramified. If, moreover,xi �≡ xj mod vR0 for all i �= j then

K in =K0

(
ζ(m)
p

)
:=K0(ζp)Z/m

(wherea ∈ Z/m acts onK0(ζp) asζp �→ ζ
χ̄(a)
p ).

4e SÉRIE– TOME 36 – 2003 –N◦ 1



REDUCTION AND LIFTING OF SPECIAL METACYCLIC COVERS 121

Proof. –The statement aboutK in follows directly from Proposition 1.2 and Proposition 1.3.
It follows from [12] and Proposition 1.3 that thep-cyclic coverY → Z reduces to aµp-torsor
over the generic point of̄Zj . In particular, if Ȳ is the special fiber of a semistable model ofY

f

the
r
d

e

l)
nt

of a

s

ts
s
in the
ather

f

;

e

which admits a finite map̄Y → Z̄, then this map will be inseparable. This means thatf has bad
reduction. ✷
1.3. Special covers

For the rest of this section, we will assume thatf :Y → P
1 is a metacyclic cover o

multiplicative type(xi;ai). We donot assume thatxi �≡ xj mod vR0 . By Corollary 1.5,f has
bad reduction. LetK in/K0 be the field of moduli off andfKin :YKin → P

1
Kin the model off

overK in. Furthermore, letK/K in be a sufficiently large finite extension over whichfKin has
stable reduction, see [20]. By this we mean the following, compare with [13] and [3]. First,
ramification pointsy1, . . . , ys ∈ Y of theH-coverf areK-rational points onYKin . Second, afte
the base changeYK := YKin ⊗Kin K , the pointed curve(YK ;yi) extends to a stably pointe
curve(YR;yR,i) over the ring of integersR of K . The quotient mapfR :YR →XR := YR/H
is called thestable modelof f overR. Its special fiberf̄ : Ȳ → X̄ is called thestable reduction
of theH-coverf . Note thatf̄ is a finite map between pointed semistablek-curves. Here the
distinguished points on̄Y are the specializations̄y1, . . . , ȳs of the ramification points, and th
distinguished points on̄X are the specializations̄x1, . . . , x̄r of the branch points off . However,
(X̄; x̄i) is not a stably pointed curve, in general.

We call a component̄X ′ of X̄ separableif the restriction off̄ to one (and therefore to al
components of̄Y aboveX̄ ′ is a separable morphism. Note thatX̄ has at least one compone
that is not separable, by the definition of bad reduction. Let us denote byX̄i the component of̄X
containingx̄i.

For convenience, we make the following assumption, which will be part of the definition
special cover (Definition 1.9 below).

Assumption1.6. – (i) A component̄X ′ of X̄ is separable if and only if it is a tail, i.e. if it i
connected to the rest of̄X in a single point.

(ii) The components̄X1, . . . , X̄r are pairwise distinct, and they are precisely the tails ofX̄ .

Remark1.7. – It is easy to see that the componentsX̄i are separable. If the branch poin
of f do not coalesce, i.e.xi �≡ xj mod vR0 for i �= j, then part (i) of Assumption 1.6 hold
automatically, by [13], Lemme 3.1.2. In this case, Assumption 1.6(ii) can be phrased (
terminology of [13]) as: ‘there are no new tails’. One should keep in mind that this is a r
strong condition.

Fix i ∈ {1, . . . , r}. The restriction off̄ to the tailX̄i is a (possibly disconnected)H-Galois
coverf̄i : Ȳi→ X̄i. The coverf̄i is ramified at exactly two points, namely atx̄i and at the unique
intersection point ofX̄i with the rest ofX̄ (let us call this pointτi). The ramification abovēxi
is tame and, sincēxi is the specialization of the branch pointxi of f , the canonical generator o
inertia abovēxi is in the conjugacy classCai . On the other hand, the ramification atτi is wild,
of orderpmi, wheremi :=m/(ai,m). The coverf̄i : Ȳi → X̄i ∼= P

1
k is of ‘Katz–Gabber-type’

see e.g. [5], §2, where such covers are called ‘mi-special’. We setσi := hi/mi, wherehi is the
conductor of thep-part of inertia. Recall thatσi is the jump in the inertia group filtration of th
coverf̄i : Ȳi → X̄i, with respect to theupper numbering(see [17]).

PROPOSITION 1.8. – There exist integersνi � 0, i= 1, . . . , r, such that
(i) σi = νi + ai/m, and
(ii)

∑r
i=1 νi = r− 3.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. –Let us fix an indexi and setdi := (m,ai). The coverZ̄i := Ȳi/〈α〉 → X̄i is a
(possibly disconnected)Z/m-cover of type(x̄i, τi;ai,m−ai) with respect tōχ (see Section 1.1).
Let ξi ∈ Z̄i be any point aboveτi and letw be a local parameter atξi. In a neighborhood ofξi,

d’s

overs.
er, see

d
ils
the

to
thep-cyclic coverȲi → Z̄i admits a representation as an Artin–Schreier cover

yp − y =w−hi ,

such thatα∗y = y+ 1. The congruence(
βm−ai

)∗
w ≡ χ̄(di) ·w mod w2

implies the congruence (
βm−ai

)∗
y ≡ χ̄(−hidi) · y+ η mod w2,

for someη ∈ Fp. The ruleβαβ−1 = αχ̄(1) and a short calculation show that

m− ai ≡−hidi modm.

This proves (i), i.e.σi = νi + ai/m, for integersνi � 0. On the other hand, we have Raynau
vanishing cycle formula, [13], §3.4.2 (5). In our situation, it becomes

r∑
i=1

(1− σi) = 2.(9)

Now (ii) follows from (i) and (9). ✷
Here comes the central definition of this paper.

DEFINITION 1.9. – Letf :Y → P
1 be a metacyclic cover of multiplicative type(xi;ai),

with (bad) reduction̄f : Ȳ → X̄ . Suppose Assumption 1.6 holds, and letσi = νi + ai/m be the
invariant attached to the wild ramification above the tailX̄i, as above. We say thatf is special
if there are exactly three indicesi1, i2, i3 with νij = 0 (therefore,νi = 1 for i /∈ {i1, i2, i3}, by
Proposition 1.8).

Thus, after reordering the branch pointsxi, we may assume thatν1, ν2, ν3 = 0 andνi = 1 for
i= 4, . . . , r.

1.4. The auxiliary cover of a three point cover is special

In this subsection we discuss briefly the example that motivated our study of special c
For more details, and for arithmetic applications of the results obtained in the present pap
[20].

LetG be a finite, center free group such thatp strictly divides the order ofG. Leth :W → P
1

be aG-cover overK̄ , ramified in0, 1 and∞, with ramification indices of order prime-to-p.
Assume that the coverh has bad reduction. LethR :WR → XR be its stable model an
h̄ : W̄ → X̄ the special fiber ofhR. By [13], §3.1, the map̄h is separable exactly over the ta
of X̄ . Let X̄1, X̄2, X̄3 be theprimitive tails, i.e. those which contain the specialization of
branch points0, 1, ∞, respectively. LetX̄4, . . . , X̄r be the new tails. As above, we associate
each tailX̄i the invariantσi = hi/mi. By [13], Proposition 3.3.5, we have

σi > 1, for i= 4, . . . , r.(10)
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For i= 4, . . . , r, we choose a smooth pointx̄i on X̄i, and lift it to a pointxi of P
1
K . Setx1 := 0,

x2 := 1, x3 :=∞.
Now letf :Y → P

1 be theauxiliary coverassociated toh, see [13]. The coverf is metacyclic

the

cept
e

t

m

to

cover
ence of
.

s from
that
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t (the

,

sing
table
r
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ict
of type(xi;ai), with m and(a1, . . . , ar) as at the beginning of Section 1.1. Furthermore,f has
bad reduction, and the special fiber of its stable model is of the formf̄ : Ȳ → X̄ (whereX̄ is
the target curve of̄h). Finally, the tailsX̄i of X̄ are exactly the separable components (for
mapf̄ ), and the induced maps̄fi : Ȳi → X̄i over the tails are (possibly disconnected)H-Galois
covers of Katz–Gabber type, tamely ramified atx̄i and wildly ramified atτi, with invariantσi.

We claim thatf is special. Indeed, Assumptions 1.6(i) and (ii) hold by construction (ex
maybe forf being of multiplicative type, i.e.

∑
i ai =m). As in the proof of Proposition 1.8, w

show thatσi = νi + ai/m, with integersνi � 0 such that

∑
i

νi = r− 2−
∑

i ai
m

.(11)

But νi > 0 for i = 4, . . . , r, by (10), so the left hand side of (11) is� r − 3. We conclude tha∑
i ai =m, νi = 0 for i= 1,2,3 andνi = 1 for i= 4, . . . , r. In other words,f is special.
It is very likely that every specialH-coverf :Y → P

1 arises as the auxiliary cover of aG-cover
h :W → P

1 with three branch points, forsomegroupG. At the moment, we can prove this clai
only modulo the following hypothesis.

Hypothesis1.10. – Letp be a prime andm,h > 1 integers such thatm|p − 1, (h, p) = 1
and1 < σ := h/m < 2. Then there exists a finite groupG and an étaleG-coverf :W → A

1
k

of the affine line, defined overk = F̄p, such that the inertia group at infinity is isomorphic
Z/p� Z/m and the jump in the inertia group filtration is equal toσ = h/m.

The hypothesis implies the claim, essentially because we can ‘reverse’ the auxiliary
construction, using formal patching. This fact establishes a strong link between the exist
étale Galois covers of the affine line in characteristicpwith prescribed ramification at infinity (i.e
certain generalized forms of Abhyankar’s Conjecture) and the reduction of Galois cover
characteristic0 to characteristicp. For results in this direction, see [2]. These results show
we cannot expect Hypothesis 1.10 to hold for a given groupG satisfying the obvious restriction
(quasi-p, containsH).

2. The structure of special covers

The main goal of this section is to prove the following result, which essentially states tha
reduction of) a special cover is as simple as we can expect it to be.

THEOREM 2.1. – Letf :Y → P
1 be a special metacyclic cover of type(xi;ai), with reduction

f̄ : Ȳ → X̄ . Then the curvēX is the union ofr + 1 components̄X0, X̄1, . . . , X̄r, such thatX̄0

meetsX̄i in exactly one point, and̄Xi is the component to whichxi specializes. In particular
xi �≡ xj mod vR0 (as points onP1) for i �= j.

This was called Theorem A in the introduction. Here is a brief outline of the proof. U
results of [14] (which essentially reformulate earlier results of [12,6] and [8] in a form sui
for us), we analyze the stable reduction of thep-cyclic partY → Z of a given special cove
f :Y → P

1. We find that, in case Theorem 2.1 did not hold, one of the components of the s
fiber Ȳ of Y would be anαp-torsor. Moreover, thisαp-torsor would have to satisfy certain str
numerical conditions, coming from specialty off and compatibility with theZ/m-action. Then
a direct calculation shows that such anαp-torsor cannot exist, and Theorem 2.1 follows.
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In Sections 2.1 and 2.2 we analyze the stable reduction off and translate its properties into a
combinatorial language similar to the notion of aHurwitz treedeveloped in [8]. Here we work
under slightly more general assumptions than is actually necessary for the proof of Theorem 2.1.

state
er of a

n

1.6.

f
t

f

e
r
of
,

f

This will be useful in Section 3.
In Section 2.3 we prove the key lemma which implies Theorem 2.1. In Section 2.4 we

a strengthening of Theorem 2.1, which concerns the monodromy action on the special fib
special cover.

2.1. Admissible reduction of Z→ P
1

Let f :Y → P
1 be a metacyclic cover of multiplicative type(xi;ai). Concerning the reductio

of f , we use the notation introduced in Section 1.3. In particular,fR :YR → XR is the stable
model off , defined over a sufficiently large finite extensionR/R0, with special fiberf̄ : Ȳ → X̄ .
The branch pointxi specializes to a point̄xi ∈ X̄ , and X̄i denotes the component of̄X
containinḡxi. We make the following assumption, which is slightly weaker than Assumption
In particular, it holds iff is special.

Assumption2.2. – (i) The map̄f : Ȳ → X̄ is separable exactly over the tails ofX̄ .
(ii) The components̄X1, . . . , X̄r are pairwise distinct tails.

We define a treeT associated to the semistable curveX̄ , as follows. The set ofvertices
V of T is defined as the set of (irreducible) components ofX̄ . For v ∈ V , we refer to the
corresponding component of̄X as X̄v. The set ofedgesE of T is, by definition, the set o
triples e = (x̄e, v, v′), wherex̄e ∈ X̄ is a singular point andv, v′ ∈ V are vertices such tha
x̄e ∈ X̄v ∩ X̄v′ . The assignmentss(e) := v andt(e) := v′ define thesource maps :E→ V and
thetarget mapt :E→ V . The edgēe := (x̄e, v′, v) ∈E is called theopposite edgeof e.

We defineB ⊂ V as the set ofleavesof T , i.e. the vertices corresponding to the tails ofX̄ . In
other words, for eachv ∈B there is a unique edgeev such thatt(ev) = v. We call the elements o
V ′ := V −B theinterior vertices. By Assumption 2.2(ii), we may identify the setI := {1, . . . , r}
with the corresponding subset ofB. Note thatB = I if f is special.

Let us state the following easy lemma without proof.

LEMMA 2.3. – There exists a unique mapE→{0, . . . ,m}, e �→ ae, such that
(i) ae = ai, if i := t(e) ∈ I, andae = 0 if v := t(e) ∈B − I,
(ii) for all interior verticesv, we have

∑
s(e)=v ae =m, and

(iii) aē + ae =m, for all edgese ∈E.
If f is special, then0< ae <m for all e ∈E.

Let ZR := YR/(Z/p) be the quotient ofYR by thep-cyclic normal subgroup ofH . It is well
known thatZR is again a semistable curve overR, with generic fiberZK . Also, the action of
Z/m on Z extends toZR, and the (tamely ramified)m-cyclic covergK :ZK → PK extends
to a finite morphismgR :ZR → XR of semistableR-curves. Since, by Assumption 2.2(ii), th
branch pointsxi of gK specialize to pairwise distinct points of̄X , it follows that the cove
gR :ZR→XR is anm-cyclic admissible cover overR, i.e. satisfies Conditions (a), (b) and (c)
Section 1.2. (However,gR is not exactly the admissible model ofgK0 as defined in Section 1.2
becauseXR is not the stably pointed model of the pointed curve(P1

K , xi).) For v ∈ V , we set
Z̄v := ḡ−1(X̄v).

PROPOSITION 2.4. – For each vertexv ∈ V , the restriction ḡv : Z̄v → X̄v of ḡ to Z̄v is
a (possibly disconnected) tamely ramifiedm-cyclic cover. If v is an interior vertex, then
ḡv is branched at most at the points̄xe ∈ X̄v, with s(e) = v. The canonical generator o
inertia abovex̄e (with respect toχ̄) is ae, whereae is as in Lemma2.3. In other words,
ḡv : Z̄v → X̄v ∼= P

1
k is them-cyclic cover of type(x̄e;ae).
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For i ∈ I, the coverZ̄i → X̄i is ramified at the two points̄xi andx̄e (wheree is the unique edge
with s(e) = i). The canonical generator of inertia abovex̄i (resp.x̄e) is ai (resp.ae =m− ai).
Finally, for v ∈ B − I, the coverZ̄v → X̄v is totally disconnected, i.e. identifies̄Zv with m

of

oose

ll from
f

and

e

s

n

ich

ted as
disjoint copies ofX̄v.

Proof. –By the definition of admissibility, the covers̄gv : Z̄v → X̄v are as in the statement
the proposition, forcertain integersae. Moreover, the integersae verify condition (i), (ii) and
(iii) of Lemma 2.3, at least modulom. Now the statement of Lemma 2.3 says that we may ch
theae’s such that they verify condition (i), (ii) and (iii) exactly.✷
2.2. The reduction of the p-cyclic cover Y → Z

We continue with the notation and assumptions of the previous subsection. Reca
Section 1.1 that the étalep-cyclic subcoverY → Z of f is given (birationally) by an equation o
the formyp = u, whereu is a certain rational function onZ , unique up to multiplication with a
pth power. We may assume that theK-modelYK → ZK (obtained from the stable model off )
is defined by the same equation. By assumption,YK → ZK extends to a finite mapYR → ZR
between semistableR-curves, whereYR is the stably pointed model ofYK andZR = YR/(Z/p).
Neglecting theZ/m-action onZR, this is precisely the situation studied in [14] (see also [6]
[8]).

Choose a vertexv ∈ V , and writeȲv for the inverse image of̄Zv in Ȳ . We distinguish the
following three cases (compare with [14], §1.4 and [8], §5.1):
• (multiplicative reduction) Suppose that the map̄Yv → Z̄v is inseparable (therefore,v ∈ V ′

is an interior vertex, by Assumption 2.2). Suppose, moreover, that the restrictionūv := u|Z̄v

of u to Z̄v is not apth power (in the function field of̄Zv). Then the cover̄Yv → Z̄v is given
(birationally) by the equationyp = ūv and carries a natural structure ofµp-torsor over the
open subset̄Uv := Z̄v − ḡ−1({x̄e | s(e) = v}). Let ωv := dūv/ūv. The differentialωv is
not zero, regular on̄Zv and does not depend on the choice of the rational functionu. One
easily checks that̃β∗ωv = χ̄(1)ωv. We writeωv ∈H0(Z̄v,Ω1)χ̄. Furthermore,ωv has no
zero onŪv.

• (additive reduction) Suppose that̄Yv → Z̄v is inseparable (hencev ∈ V ′), and that the
restriction ofu to Z̄v is apth power. Then, in a neighborhood of any pointz̄ ∈ Z̄v onZR and
after multiplyingu with a suitablepth power, we can writeu= 1+ πpwv , such thatπ ∈R,
0< vR(π) < vR(p)/(p− 1) and such that̄wv := wv|Z̄v

is not apth power. The restriction
of Ȳv → Z̄v to the open subset̄Uv := Z̄v − ḡ−1({x̄e | s(e) = v}) carries a natural structur
of αp-torsor, locally given by the equatioñyp = w̄v . The differentialωv := dw̄v is not zero,
independent of all the choices we have made, and is regular onŪv. Again, one easily check
thatβ̃∗ωv = χ̄(1)ωv, i.e.ωv ∈H0(Ūv,Ω1)χ̄. Furthermore,ωv has no zero on̄Uv.

• (étale reduction) If v is a leaf, then̄Yv → Z̄v is generically étale, ramified only atḡ−1
v (x̄e),

where e is the unique edge withs(e) = v. Choose a point̄z ∈ Z̄v above x̄e ∈ X̄v.
In a neighborhood of̄z, the coverȲv → Z̄v is an Artin–Schreier cover, with equatio
yp − y =w−hv , wherew is some local coordinate for̄Zv at z̄ andhv is theconductor.

We shall say that the vertexv has multiplicative, additive or étale reduction, according to wh
of the three cases occurs.

The data(ωv, hv) which we obtained from the reduction of the étalep-cyclic coverY → Z
satisfies certain compatibility conditions, see [14]. In our situation, they can be formula
follows. Lete be an edge, and let̄ze ∈ Z̄ be a point abovēxe ∈ X̄ . Define

he :=
{

ordz̄e(ωv) + 1 if v := s(e) ∈ V ′,
−hv if v := s(e) ∈B.

(12)
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Sinceω is an eigenvector under theZ/m-action,he is well defined. As a special case of [14],
Cor. 2.8, we obtain

s

e

nt

proof

q. (14)

.9).
he + hē = 0,(13)

for all edgese. (It is also possible to derive (13) from [8], Proposition 5.2.1.)
Using the fact that the data(ωv;hi) has to be compatible with theZ/m-action, we can

express the numbershe in terms of certain (more convenient) numbersνe. This generalize
Proposition 1.8.

PROPOSITION 2.5. – For each edgee, there exists an integerνe such that

he =
νem+ ae
(ae,m)

.(14)

The collection(νe) satisfies

νe + νē =−1(15)

and ∑
s(e)=v

(νe − 1) =−3,(16)

for all interior verticesv.

Proof. –Recall that β̃ae is the canonical generator of inertia for them-cyclic cover
ḡv : Z̄v → X̄v abovex̄e, see Proposition 2.4. Ifae ∈ {0,m} then(ae,m) =m, and the existenc
of an integerνe as in (14) is trivial. Now assume0< ae <m, i.e. Z̄v → X̄v is actually branched
at x̄e, of orderm/(ae,m). Then the vertexs(e) is either an interior vertex, or an eleme
of I. Suppose thatv := s(e) is an interior vertex. The equality(β̃a)∗ωv = χ̄(a)ωv implies the
congruenceordz̄e(ωv)≡ ae/(ae,m)−1 modm/(ae,m). This proves the existence ofνe in this
case. The casei= s(e) ∈ I has already been proved in Proposition 1.8. This completes the
of the existence of the integersνe. Now (15) follows from (13), (14) and the equalityae+aē =m
by a straightforward calculation. Finally, (16) is a direct consequence of Proposition 2.4, E
and the Riemann–Hurwitz formula.✷

We shall call an edgee terminal if v := t(e) is a leaf; for such an edge,

hv = he = (νem+ ae)/(ae,m)

is the conductor of the Artin–Schreier coverȲv → Z̄v. In particular,

hv = νe if v = t(e) ∈B − I.

If f is special, thenI = B; moreover, for each terminal edgee (with i := t(e) ∈ I), the integer
νe = νi is either0 or 1 and takes the value0 for exactly three terminal edges (see Definition 1
In this case, we can also say a lot about the valuesνe on all edgese.

LEMMA 2.6. – Assume thatf is special. Then:
(i) The integersνe (defined in Proposition2.5) lie between−2 and1.
(ii) There exists a unique interior vertexv0 ∈ V ′ such thatνe � 0 for all edgese with

sourcev0.
(iii) If v �= v0 is an interior vertex, then there exists a unique edgee with sourcev such that

νe < 0.
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Proof. –Since f is special, we may assume thatνi = 0 for i = 1,2,3 and νi = 1 for
i = 4, . . . , r. Furthermore,I = B. For any edgee ∈ E, let Ie ⊂ I be the set of leavesi ∈ I
which ‘lie in the direction ofe’. More precisely,i ∈ Ie if and only if i lies in the connected

vial

)
f

li
t

d

osi-

ment
nterior
ique
t

y

component ofT − {e} which contains the vertext(e). We claim that

νe = 1− |Ie ∩ {1,2,3}|,(17)

for all e ∈ E. Let us check that the lemma follows from this claim. Indeed, (i) is a tri
consequence of (17), and parts (ii) and (iii) of the lemma follow once we observe thatv0 ∈ V has
to be themedianof the three leavesi= 1,2,3.

Recall thatνe = νi if i := t(e) ∈ I. Using νi = 0 for i = 1,2,3 andνi = 1 for i > 3, we
conclude that (17) holds for all edgese such thatt(e) ∈ I. For a general edgee ∈ E, define
ν′e := 1− |Ie ∩ {1,2,3}|. An easy verification shows that the functione �→ ν′e verifies Eqs. (15
and (16). We conclude thatνe = ν′e for all edgese ∈ E, by induction. This finishes the proof o
the lemma. ✷

Remark2.7. – It is shown in [8] that the integershe determine the radii of the formal annu
corresponding to the singular points ofYR. To be more precise, let̄y be an ordinary double poin
of the special fiber of a semistableR-curveYR. Then the complete local ring ofYR at ȳ is of the
form ÔYR,ȳ

∼=R[[u, v | uv = π]], with π ∈R. We define thethicknessof YR at ȳ as the (positive
rational) numberε(YR, ȳ) := vR(π) (recall thatvR(p) = 1). Supposēy ∈ Ȳ is a point above
x̄e ∈ X̄ , e ∈ E. Suppose, moreover, thatv := s(e) is a vertex with multiplicative reduction an
v′ := t(e) has additive reduction. Then

0< ε(YR, ȳ)<
1

(p− 1)he
.(18)

On the other hand, ifv := s(e) has multiplicative andv′ := t(e) étale reduction, then

ε(YR, ȳ) =
1

(p− 1)he
.(19)

This follows immediately from [8], Chap. 5, Proposition 2.1. Moreover, using [13], Prop
tion 2.3.2, one shows that

ε(XR, x̄e) =
pae

(ae,m)
· ε(YR, ȳ).(20)

2.3. The proof of Theorem 2.1

Let v0 be the ‘median vertex’ of Lemma 2.6(ii). Theorem 2.1 is equivalent to the state
that v0 is the unique interior vertex. Therefore, let us assume that there exists another i
vertexv �= v0, and then try to arrive at a contradiction. By Lemma 2.6(iii), there exists a un
edgee with s(e) = v such thatνe < 0. This means that the differentialωv has a pole in each poin
z̄e ∈ Z̄v abovex̄e ∈ X̄v. If the coverY → Z had multiplicative reduction at the componentZ̄v,
then the differentialωv would be regular on̄Zv. Therefore, we have additive reduction atZ̄v.
In particular, the differentialωv is a nonzeroexact differential, i.e. of the formωv = du,
for some rational functionu on Z̄v. Moreover, the divisor(ωv) is completely determined b
the integersνe, wheree runs through the set of edges with sourcev. By Lemma 2.6(i) and
Proposition 2.5, these numbers satisfy−2 � νe � 1 and

∑
s(e)=v(νe − 1) =−3. The following

lemma gives the desired contradiction, and thus finishes the proof of Theorem 2.1.
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LEMMA 2.8. – Let k be an algebraically closed field of characteristicp > 0, m > 1 an
integer dividingp − 1, and r � 3. Let g :Z → P

1
k be anm-cyclic cover given(birationally)

by an equation of the form

r

zm =
r∏
i=1

(x− xi)ai ,

with x1, . . . , xr ∈ k pairwise distinct, and0< ai <m such that
∑

i ai =m. Letφ :Z ∼→ Z be a
generator ofAut(Z/P1

k), such thatφ∗z = ζz, ζ ∈ k× anmth root of unity. Fori= 1, . . . ,m, let
mi :=m/(ai,m), ãi := ai/(ai,m) andPi := g−1(xi) (considered as a divisor onZ). Letω be
a meromorphic differential form onZ such that

(i) φ∗ω = ζω, and
(ii) (ω) =

∑r
i=1(miνi+ ãi−1)Pi, with integers−2 � νi � 1 such that

∑
i νi = r−3, ν1 < 0

andνi � 0 for i > 1.
ThenC(ω) �= 0, i.e.ω is not exact.

Proof. –Assume thatω is a meromorphic differential onZ such that (i) and (ii) hold. After a
change of coordinate, we may assume thatx1 = 0. By (i), we can writeω = fz dx, wheref is a
rational function inx. Expandingf as a Taylor series atx= x1 = 0, we obtain

ω =

( ∞∑
j=−3

cjx
j

)
z dx,(21)

with cj ∈ k. Note thatx (resp.z) has a zero of orderm1 (resp. of order̃a1) at each point̄z ∈ P1.
In particular, the coefficientsc−3 andc−2 contribute to the poles ofω in P1, which are of orde
(−m1ν1 + a1 − 1), by (ii).

CLAIM 1. – There exist elementsb1, b2 ∈ k such that

ω′ := ω− du is regular onZ, whereu :=
(
b1x

−2 + b2x−1
)
z.(22)

Sinceω andu are regular away fromP1, we only have to pay attention to the points inP1. We
compute ‘Taylor series’ as in (21):

dz =
(
a1

m
x−1 + d0 + d1x+ · · ·

)
z dx(23)

and

du=
(
−2b1x−3 − b2x−2

)
z dx+

(
b1x

−2 + b2, x−1
)
dz

=
((

a1

m
− 2
)
b1x

−3 +
(
d0b1 +

(
a1

m
− 1
)
b2

)
x−2 + · · ·

)
z dx.(24)

Hence, to prove Claim 1, we have to findb1, b2 such that(
a1

m
− 2
)
b1 = c−3, d0b1 +

(
a1

m
− 1
)
b2 = c−2.(25)

Usingm|p−1 anda1 �m−2 one shows thatp does not divide2m−a1 andm−a1; therefore,
a1/m− 2, a1/m− 1 �= 0 in k, and we can solve (25) inb1 andb2. This proves Claim 1.
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CLAIM 2. – ω �= du.

Assuming the contrary, we would have

s

on

r
so

what is

,

li of

n

(du) = (ω) =
r∑
i=1

(miνi + ãi − 1)Pi,(26)

by condition (ii). Assume for the moment that the order ofu at all the ramification points i
prime-to-p. Then (26) implies

(u) �
∑
i

(miνi + ãi)Pi.(27)

But the divisor on the right has degree
∑

imνi + ai =m(r − 2) > 0, contradiction! Thus, in
order to prove Claim 2, it suffices to show thatu has no zero or pole in one of the ramificati
points of order divisible byp. Let zi ∈ Pi be a ramification point abovexi, for somei. Since
φ∗u = ζu, ordzi(u) = mik + ãi, for some integerk. If p dividesordzi(u) = mik + ãi then
eitherk � 1 or k < 0. In the first case, we would haveordzi(du) =miνi + ãi >mi + ãi, hence
νi > 1, which contradicts our assumptions. The second case can occur only fori = 1. But for
i= 1, k ∈ {−2,−1}, and in this case we have already shown thatkmi+ ãi is prime top (see the
end of the proof of Claim 1). We conclude thatω �= du, as asserted by Claim 2.

Setω′ := ω−du, and note thatφ∗ω′ = ζω′, by condition (i) and the definition ofu. Following
our previous notation, we can writeω′ ∈H0(Z,Ω1

Z/k)χ, whereχ :Z/m→ k× is the characte
with χ(1) = ζ. By Lemma 1.4(iv), we haveC(ω) = C(ω′) �= 0. This proves the lemma, and al
Theorem 2.1. ✷
2.4. The monodromy group of a special cover

The analysis of the stable reduction of a special cover shows somewhat more than
stated in Theorem 2.1. We use the same notation as in Theorem 2.1. In particular,f :Y → P

1 is
a special cover of type(xi;ai), with stable reduction̄f : Ȳ → X̄ . Define

Di =
{
x ∈ P

1(K̄) | x specializes to a point on̄Xi − X̄0
∼= A

1
k

}
,(28)

the closed rigid disk containing all points ofP
1 which specialize toX̄i. In particular,xi ∈Di.

PROPOSITION 2.9. – We have

Di =
{
x∈ P

1(K̄) | vR(x− xi) � pmi

(p− 1)hi

}
.

(Recall thatmi =m/(ai,m) andhi = (mνi + ai)/(ai,m).)

Proof. –This follows immediately from Remark 2.7, Eqs. (19) and (20).✷
For the rest of this section, we assume that the absolute ramification index ofK0 is one. Thus

we can identifyR0 with the ringW (k) of Witt vectors over the residue fieldk (in view of the
results of Section 3, this is not a serious restriction). By Proposition 1.3, the field of moduf
is K in = K0(ζ

(m)
p ). Let K = Kst be the minimal extension ofK in over whichf has stable

reduction. It follows from [13] that the extensionK/K in is Galois, of degree prime-to-p. The
Galois groupΓ := Gal(K/K in) acts faithfully andk-linearly on Ȳ (wheref̄ : Ȳ → X̄ is the
stable reduction off ), and this action commutes with the action ofH . Therefore, we get a
induced action ofΓ on X̄ . The groupΓ is called themonodromy groupof f .
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THEOREM 2.10. – Letf :Y → P
1 be a special cover of type(xi;ai). Assume that the branch

pointsxi are rational overK0, the fraction field ofW (k). Then the order of the monodromy
groupΓ of f is

r

t

s from

m

) states
cover

.
the
tep
ranch
|Γ|= [K :K in] =m · lcm(h1, . . . , hr).

Furthermore, the action ofΓ is trivial on X̄0 and cyclic of orderhi(p− 1)/mi on X̄i.

Proof. –The proof of Theorem 2.1 shows that there exists an open subsetU ⊂ ZR such that
U ⊗R k ⊂ Z̄0 is nonempty andV := U ×ZR YR → U is a µp-torsor. But the generic fibe
VK → UK is a Z/p-cover. Therefore, the extensionK/K0 contains thepth roots of unity.
Moreover, the subgroup̃Γ := Gal(K/K0(ζp)) ⊂ Γ is precisely the stabilizer of̄Y0 ⊂ Ȳ (where
Ȳ0 denotes the inverse image ofZ̄0). It follows from Proposition 1.3(ii) thatΓ/Γ̃∼= Z/m. Recall
thatȲ is the union ofȲ0 andȲi, the (possibly disconnected) inverse image ofX̄i, for i= 1, . . . , r.
Let ȳ be a point wherēYi intersects̄Y0, and letȲ ′

i be the connected component ofȲi containinḡy.
SinceΓ̃ acts trivially onȲ0, it fixes Ȳ ′

i andȳ. By Remark 2.7, Eq. (20),ε(YR, ȳ) = 1/(p− 1)hi.
This means that the complete local ring ofYR at ȳ is of the formR[[u, v | uv = λ1/hi ]], with
λ := ζp − 1 ∈K0(ζp). Applying an element of̃Γ to the equationuv = λ1/hi , one shows that̃Γ
induces a cyclic action on̄Y ′

i , of orderhi. More precisely, the image of̃Γ in Autk(Ȳ ′
i ) is the

quotientGal(K0(ζp, λ1/hi)/K0(ζp)) ∼= Z/hi. Note that the action of̃Γ on Ȳ ′
i commutes with

the action of the decomposition groupHi ⊂H of Ȳ ′
i , which is of orderpmi. Now the statemen

of Theorem 2.10 on the order ofΓ follows from the fact that the action ofΓ on Ȳ is faithful. The
statement about the action ofΓ on X̄i follows as well, using the fact thathi is relatively prime
to pmi (it can also be deduced directly from Proposition 2.9).✷

3. Construction of special covers

This section is concerned with the construction of special covers by lifting certain object
characteristicp to characteristic0. We start by definingspecial degeneration data, which are
essentially given by anm-cyclic coverZ̄0 → P

1
k of the projective line in characteristicp, together

with a logarithmic differential formω0 on Z̄0, with certain prescribed zeros. It is immediate fro
the results of the previous section that the reductionf̄ : Ȳ → X̄ of a special coverf corresponds
essentially to a special degeneration datum. The main result of this section (Theorem 3.2
that, conversely, every special degeneration datum arises as the reduction of a specialf .
Moreover, the coverf is essentially unique, once we have chosen the branch pointsxi.

The proof of Theorem 3.2 is divided into two steps. In the first step, we lift theµp-torsor
Ȳ0 → Z̄0 corresponding to the differentialω0 to characteristic0, in a Z/m-equivariant way
This construction yields a metacyclic coverf :Y → P

1, which is essentially unique because
χ̄-eigenspace of thep-torsion of the Jacobian of̄Z0 is étale (Proposition 1.3). In the second s
we show that the coverf we have constructed is special provided that we have chosen the b
pointsxi inside certain closed rigid disksDi ⊂ P

1. The proof uses themonodromy actionon the
stable reduction of Galois covers, and a deformation argument.

In Section 3.5 we determine all special degeneration data in the caser = 4.

3.1. Special degeneration data

Let f : Y → P
1 be a special cover of type(xi;ai), with stable modelfR :YR → XR and

reductionf̄ : Ȳ → X̄ (see Definition 1.9). By Theorem 2.1,̄X consists ofr + 1 components
X̄0, . . . , X̄r, such that, fori � 1, X̄i is the tail containing the specialization̄xi of the branch
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point xi. The componentX̄0, which intersects all of the components̄Xi, i � 1, is called
the original componentof X̄ . We have a canonical isomorphism̄X0

∼= P
1
k arising from

the contraction morphismq :XR → P
1
R. This isomorphism identifies the intersection point

t

f

er
rm

e

uction

is way.

ic

,
uch

t

er
τi ∈ X̄0 ∩ X̄i with the specialization ofxi, regarded as point onP1
R. We may assume, withou

loss of generality, thatτi �=∞.
We have seen in Section 2.1 that the mapf̄ : Ȳ → X̄ is the composition of anm-cyclic

admissible cover̄g : Z̄ → X̄ with a finite mapȲ → Z̄ of degreep which is the reduction o
the étalep-cyclic coverY → Z . By Proposition 2.4, the restriction̄g0 : Z̄0 → X̄0 = P

1
k of ḡ to

the original component can be identified with them-cyclic cover of type(τi;ai). Moreover,
thep-cyclic coverY → Z has multiplicative reduction at̄Z0. This means that the induced cov
Ȳ0 → Z̄0 carries the structure of aµp-torsor. This structure gives rise to a regular differential fo
ω0 such thatβ∗ω0 = χ̄(1)ω0. As before, we writeω0 ∈ H0(Z̄0,Ω1)χ̄. Let mi :=m/(ai,m),
ãi := ai/(ai,m) andPi := ḡ−1

0 (τi) (we regardPi as a divisor on̄Z0). By Proposition 2.5, ther
exist integersνi ∈ {0,1} with

∑
i νi = r− 3 such that

(ω0) =
∑
i

(miνi + ãi − 1)Pi.(29)

Furthermore,ω0 is logarithmic. In terms of the Cartier operatorC, this means that

C(ω0) = ω0.(30)

DEFINITION 3.1. – Letk be an algebraically closed field of characteristicp > 0. A special
degeneration datumoverk is given by
• pairwise distinctk-rational pointsτ1, . . . , τr ∈ P

1
k, with r � 3,

• an integerm > 1 dividing p − 1, and integersa1, . . . , ar such that0 < ai < m and∑
i ai =m, (we let ḡ0 : Z̄0 → P

1
k be them-cyclic cover of type(τi;ai); furthermore, we

setmi :=m/(ai,m), ãi := ai/(ai,m) andPi := ḡ−1
0 (τi)),

• integersν1, . . . , νr ∈ {0,1} such that
∑
i νi = r− 3, and

• a differential formω0 ∈H0(Z̄0,Ω1)χ̄, such that (29) and (30) hold.

As explained in the paragraph preceding Definition 3.1, we can attach to (the red
of) a special coverf :Y → P

1 of type (xi;ai) a special degeneration datum(τi;ai;νi;ω0).
Theorem 3.2 below states that, conversely, every special degeneration datum arises in th

For the rest of this section, we fix a special degeneration datum(τi;ai;νi;ω0) overk. LetK0

denote the fraction field ofR0 :=W (k), the ring of Witt vectors overk. Choose an algebra
closureK̄ of K0. For i ∈ I, choose aK0-rational pointx̃i ∈ P

1(K0) which lifts τi ∈ P
1(k). Let

Di :=
{
x∈ P

1(K̄) | vR(x− x̃i) � pmi

(p− 1)hi

}
(31)

(compare to the statement of Theorem 2.10). We claim that the collection of disks(Di) does not
depend, up to an automorphism ofP

1
K0

, on the choice of the points̃xi. To show that this is so
we may assume thatν1 = ν2 = ν3 = 0. Furthermore, we can always normalize our choice s
that x̃1 = 0, x̃2 = 1 andx̃3 = ∞. For i= 4, . . . , r, we have0 < pmi/(p− 1)hi < 1. Using the
triangle inequality and the fact that the valuationvR takes integral values onK0, one shows tha
Di does not depend on the choice ofx̃i, for i= 4, . . . , r.

THEOREM 3.2. – Let (τi;ai;νi;ω0) be a special degeneration datum overk and let
x1, . . . , xr be K̄-rational points onP

1, such thatxi ∈ Di. Then there exists a special cov
f :Y → P

1 of type(xi;ai), unique up to isomorphism, which gives rise to(τi;ai;νi;ω0).
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This theorem implies Theorem B in the introduction. The proof is given in the next three
subsections. We will prove in [21] that the conditionxi ∈Di is also necessary forf to be special.
Unfortunately, the method of proof we use here does not give such an ‘if and only if’ result.

,

odel
n

,

stable

ts
er

nd 2.2,
r

3.2. Definition of the lift

Let (τi;ai;νi;ω0) be a special degeneration datum overk andḡ0 : Z̄0 → P
1
k them-cyclic cover

of type(τi;ai). ChooseK̄-rational pointsxi ∈ P
1(K̄) lifting the pointsτi (for the moment, we

do not assume thatxi ∈ Di). Choose a finite extensionK/K0 such thatxi isK-rational; letR
be the ring of integers ofK .

Them-cyclic coverḡ0 lifts uniquely to anm-cyclic coverg′R :Z ′
R → P

1
R of smooth curves

tamely ramified along the closure of{x1, . . . , xr} ⊂ P
1
K insideP

1
R. Let gK :ZK → P

1
K be the

generic fiber ofg′R andg :Z→ P
1 its base change tōK. Note thatg is them-cyclic cover of type

(xi;ai). Let JR be the Néron-model ofJZK overR. SinceZ ′
R is smooth overR, JR represents

the functorPic0(Z ′
R/R), see [1], §9, Proposition 4. The universal property of the Néron m

defines a surjective specialization mapJZK (K)→ JZ̄0
(k). By Proposition 1.3, the specializatio

map induces an isomorphism

JZ [p]χ̄
∼−→ JZ̄0

[p]χ̄(32)

of Fp-modules (of rankr− 2).
The logarithmic differentialω0 corresponds to a line bundlēL on Z̄0, in the following way

(see e.g. [10], III, §4). Let̄u be a rational function on̄Z0 such thatω0 = dū/ū. Then(ū) = p · D̄,
for a divisorD̄ of degree0 on Z̄0; we setL̄ :=OZ̄0

(D̄). By definition,L̄⊗p ∼=OZ̄0
. Moreover,

β∗ω0 = χ̄(1)ω0 impliesβ∗L̄∼= L̄⊗χ̄(1) (note that this makes sense becauseχ̄(1) ∈ F
×
p ). In other

words,L̄ corresponds to an element ofJZ̄0
[p]χ. Let L be the line bundle onZ corresponding

to L̄ under the isomorphism (32). By the definition of the specialization map (32),L is actually
the pullback of a line bundleLR on Z ′

R, andLR ∼= OZ′
R
(D), whereD is a horizontal divisor

onZ ′
R such thatp ·D= (u) for some rational functionu. By construction, we haveω0 = dū/ū,

with ū := u|Z̄0
. We letY → Z be theµp-torsor corresponding toL (birationally given by the

equationyp = u). After choosing apth root of unityζp ∈ K̄ , we can regardY → Z as an étale
p-cyclic cover. Now the compositionf :Y →Z→ P

1 is a metacyclic cover of type(xi;ai) (see
Section 1.1).

The coverf we have constructed will not be special, in general. However, iff is special then
by construction, it gives rise to the special degeneration datum(τi;ai;νi;ω0) we started with. It
is also clear that any special cover which gives rise to(τi;ai;νi;ω0) is isomorphic tof . Thus,
in order to prove Theorem 3.2, we have to show thatf is special provided thatxi ∈ Di, for all
i ∈ I. Before we can give a proof of this claim (in Section 3.4), we need to analyze the
reduction off . For this step, it is not yet necessary to assumexi ∈Di.

3.3. Analyzing the stable reduction of f

We may assume that the coverf constructed above has stable reduction over the fieldK . Let
fR :YR →XR be the stable model off , andf̄ : Ȳ → X̄ its reduction. Fori= 1, . . . , r, let x̄i ∈ X̄
be the specialization of the branch pointxi, and letX̄i be the component of̄X containingx̄i.
Sincexi �≡ xj mod vR0 for i �= j (as points onP1), it follows from [13], §3, that the componen
X̄i are pairwise distinct tails of̄X and thatf̄ : Ȳ → X̄ is separable exactly over the tails. In oth
words, Assumption 2.2 holds. Note that the stronger Assumption 1.6 may not hold, asX̄ might
have new tails.

However, Assumption 2.2 being valid, we may use the notation set up in Sections 2.1 a
concerning the structure of̄f : Ȳ → X̄ as the composition of them-cyclic admissible cove
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ḡ : Z̄→ X̄ and the ‘mixed torsor’̄Y → Z̄ . Recall that we described this structure using certain
combinatorial data(T ;ae;νe). Here T is the dual graph of components of the semistable
curve X̄ . The integersae (wheree is an edge ofT ) describe the admissiblem-cyclic cover

the

t

int

ier
ḡ : Z̄→ X̄ . Finally, the integersνe (together with theae) determine the order of the zeros and
poles of the differentialsωv attached to the torsors̄Yv → Z̄v, wherev is an interior vertex ofT .
By construction off , Y →Z has multiplicative reduction above the original componentX̄0, and
the resultingµp-torsorȲ0 → Z̄0 corresponds to the differentialω0. Therefore, (29) implies tha

νei = νi ∈ {0,1},(33)

whereνi is given by the special degeneration datum andei is the edge corresponding to the po
τi ∈ X̄0 (in particular,τi is a singular point of̄X). Note that we do not know (unlessf is special)
whetherhi = νimi + ãi is the conductor of the Artin–Schreier coverȲi → Z̄i over the tailX̄i.

Let v0 ∈ V be the vertex of the treeT corresponding to the original componentX̄0. For any
edgee of T , we letTe be the connected component ofT − {e} which containst(e). We shall
call an edgee positiveif v0 /∈ Te, i.e. if e is directed away from the vertexv0.

LEMMA 3.3. – (i)Let e be a positive edge. Thenνe � 0. If, moreover,ae ≡ 0 mod m, then
νe > 1.

(ii) The pointsτ1, . . . , τr are precisely the points of̄X0 which are singular points of̄X .
(iii) Fix i ∈ I = {1, . . . , r}, and letei be the edge with sourcev0 corresponding toτi. If νi = 0,

thenTei = {i}. On the other hand, ifνi = 1, then eitherTei = {i} or we are in the following
case. The vertexv := t(ei) is the source of exactly three edges,ēi, e

′, e′′. Also,t(e′) = i ∈ I and
t(e′′) ∈B − I is a leaf. See Fig.1.

Proof. –Suppose we have a positive edgee such thatae ≡ 0 modm andνe � 1. Note that this
impliesae′ ≡ 0 mod m for all edges contained in the subtreeTe (otherwise,Te would contain
exactly one leafi ∈ I, and thenae ≡ ai �≡ 0 mod m). Assume first thatv := t(e) is not a leaf.
From (15) and (16) we deduce the inequality∑

s(e′)=v, e′ �=ē
(νe′ − 1) =−1+ νe � 0.(34)

Thus, we haveνe′ � 1 andae′ ≡ 0 modm for at least one positive edgee′ with sourcev. Hence,
after a finite number of steps, we find an edgee such thatv := t(e) is a leaf,ae ≡ 0 mod m
andνe � 1. This means that̄Xv is a new tail ofX̄ and that the conductor of the Artin–Schre

Fig. 1.
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coverȲv → Z̄v is hv = νe � 1. It follows that each connected component ofȲv is a tail of Ȳ
of genus0; furthermore, no ramification point specializes toȲv . This contradicts the minimality
of the stable modelYR, and proves the second assertion of (i). The proof of the first assertion is

s

h

hat

tion

a

imal
ion

h

similar, and uses the fact that the conductor of an Artin–Schreier cover is� 1.
Statement (ii) of the lemma follows immediately from (i). Indeed, a singular point onX̄0

which is not one of theτi would correspond to a positive edgee with ae ≡ 0 mod m such that
νe = 1 (by the assumption (29)).

To prove (iii), fix i ∈ I and let us assume thatv := t(ei) is not a leaf. LetEi be the set of edge
with sourcev which are distinct from̄ei. There is a unique edgee′ ∈ Ei such thatae′ = ai,
andae ≡ 0 mod m for all e ∈ Ei − {e′}. In other words, them-cyclic coverZ̄v → X̄v ∼= P

1
k is

ramified at two points, so each component ofZ̄v has genus0. SinceȲv → Z̄v is inseparable, eac
component of̄Yv has genus0 as well, andȲv intersects with as many components ofȲ asZ̄v
intersect with components of̄Z . Thus, the minimality of the stable model implies that|Ei| � 2.
Sinceνei = νi ∈ {0,1} (Eq. (33)) we have∑

e∈Ei

(νe − 1) =−1+ νi ∈ {−1,0}.(35)

It follows from (i) thatνe′ � 0 andνe > 1 for all e ∈ Ei − {e′}. We conclude thatEi contains
exactly two edges,e′ ande′′. Furthermore, we findνi = 1, νe′ = 0 andνe′′ = 2. The remaining
assertion thatt(e′) = i and thatt(e′′) is a leaf is left to the reader (we will not use them in w
follows). ✷

Here is an immediate consequence of Lemma 3.3:

COROLLARY 3.4. – Suppose thatf is not special. Then there exists an indexi ∈ I such that
the following holds. Let̄Xv be the component which meets the original componentX̄0 in τi. Then
X̄v has nontrivial intersection with exactly three components ofX̄ (includingX̄0). Furthermore,
the torsorY → Z has additive reduction over̄Xv.

See Fig. 1 for an illustration of the relevant part of the treeT and the curvēX , in the situation
of Corollary 3.4.

3.4. The proof of Theorem 3.2

In Section 3.2 we have constructed, for any tuple ofK̄-rational points(xi) lifting (τi), a
metacyclic coverf :Y → P

1 of type(xi;ai). In Section 3.3 we have analyzed the stable reduc
of f . In this section we show thatf is special provided thatxi ∈ Di, with Di as in (31), thus
proving Theorem 3.2. We do this in two steps. First, we prove thatf is special if thexi are
K0-rational. Note that this is a special case of Theorem 3.2, as anyK0-rational point liftingτi
is automatically a center of the diskDi. Then, we show that the coverf remains special under
deformation which moves the branch pointxi into an arbitrary pointx′i ∈Di.

PROPOSITION 3.5. – Let x1, . . . , xr beK0-rational points ofP1 which lift τ1, . . . , τr . Then
the metacyclic coverf :Y → P

1 of type(xi;ai) defined in Section3.2 is special.

Proof. –By Proposition 1.3, the field of moduli off is K in =K0(ζ
(m)
p ) ⊂K0(ζp). We may

assume that the fieldK we have been working with in Sections 3.2 and 3.3 is the min
extension ofK in over whichf has stable reduction. It is proved in [13] that the extens
K/K in is Galois, of degree prime-to-p. The Galois groupΓ := Gal(K/K in) acts faithfully and
k-linearly onȲ (wheref̄ : Ȳ → X̄ is the stable reduction off ), and this action commutes wit
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the action ofH . We obtain an induced action ofΓ on Z̄ andX̄ . The action ofΓ on the original
componentX̄0 is trivial. Compare with Section 2.4.

In our setup, thep-cyclic coverY → Z reduces to aµp-torsor Ȳ0 → Z̄0 over the original

lar,

t

tion

er

es

§3.2).
e,
componentX̄0. Therefore, the fieldK contains thepth roots of unity. Let

Γ̃ := Gal
(
K/K0(ζp)

)
⊂ Γ.

One shows easily that̃Γ acts trivially onȲ0 (see also the proof of Theorem 2.10).
Now suppose thatf is not special. LetX̄v be a component as in Corollary 3.4. In particu

X̄v meets the rest of̄X in exactly three points. One of these points isτi, whereX̄v meetsX̄0.
Let τ ′ andτ ′′ be the two other points, corresponding to the edgese′ ande′′ of Lemma 3.3(iii).
Note thatτi andτ ′′ are the two branch points of them-cyclic coverZ̄v → X̄v. Since the action
of Γ̃ is trivial on X̄0 and commutes with theZ/m-action onZ̄ , it fixes the pointτ ′ and the se
{τi, τ ′′}. But the value ofν at the pointτi andτ ′′ is different, soτi andτ ′′ are fixed individually.
Therefore,̃Γ acts trivially onX̄v.

Choose a point̄y ∈ Ȳ aboveτi and let z̄ be the image of̄y in Z̄ . Note thatȳ and z̄ are
ordinary double points of̄Y and Z̄, respectively. Let̂YR be the completion ofYR at ȳ and
ẐR the completion ofZR at z̄. SinceYR is semistable,̂YR is a formal annulus, of the form
ŶR ∼= SpecR[[u, v | uv = π]], with π ∈ R. Corollary 3.4 states that we have additive reduc
over the component̄Zv. By Remark 2.7, this implies

0< vR(π)<
1

(p− 1)hi
.(36)

Let λ := ζp − 1. Note thatvR(λ) = 1/(p − 1) and thatλ is a uniformizer ofK0(ζp). We
conclude from (36) thatK0(ζp, λ1/N ) ⊂ K andvR(π) = c/(p − 1)N , with N > hi > m and
c prime-to-N . Moreover,N is prime-to-p becauseK/K0 is of degree prime-to-p. Let ζN be a
primitiveN th root of unity andσ ∈ Γ̃ such thatσ(λ1/N ) = ζNλ

1/N . Thenσ(π) = ζcNπ. Up to
permutation, the parameteru (resp.v) of the formal annuluŝYR reduces to a local paramet
of Ȳ0 (resp.Ȳv) at ȳ. Applying σ to the equationuv = π and using the fact that̃Γ acts trivially
on Ȳ0, we find thatσ induces an automorphism of̄Yv of orderN which fixesȳ. We conclude
thatσ induces an automorphism of̄Xv of order at leastN/(N,m)> 1. But this contradicts the
fact (proved earlier) that̃Γ acts trivially onX̄v. The proposition follows. ✷

Let f :Y → P
1 be as in Proposition 3.5. In particular,f is special. Proposition 3.6 below stat

that, given pointsx′i ∈Di, we can deformf into a coverf ′ of type(x′i;ai). By construction, the
coverf ′ is special and gives rise to(τi;ai;νi;ω0). This completes the proof of Theorem 3.2.

PROPOSITION 3.6. – For i ∈ I, choosex′i ∈Di. There exists a special coverf ′ :Y ′ → P
1 of

type(x′i;ai) which gives rise to the special degeneration datum(τi;ai;νi;ω0).

Proof. –By Theorem 2.10, the diskDi (as defined by (31), with centerxi = x̃i) corresponds
to the tailX̄i, i.e.

Di =
{
x ∈ P

1(K̄) | x specializes to a point on̄Xi − {τi} ∼= A
1
k

}
.(37)

In particular,x′i specializes to a point̄x′i ∈ X̄i −{τi}.
We define a finite,H-invariant map f̄ ′ : Ȳ ′ → X̄ between semistablek-curves. It is

determined, up to unique isomorphism, by the following requirements (compare with [13],
Over the original component̄X0, the maps̄f : Ȳ → X̄ andf̄ ′ : Ȳ ′ → X̄ are the same. Even mor
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there exists an étale mapU → X̄ whose image contains̄X0 such that the pullbacks̄f |U andf̄ ′|U
are isomorphic, asm-cyclic covers ofU . Finally, for eachi ∈ I, the restriction off̄ ′ to the open
subsetX̄i − {τi} ⊂ X̄ is a (possibly disconnected)H-cover which is at most tamely ramified

ial
roof

ing
e

at x̄′i.
Arguing as in [13], §3.2, one shows thatf̄ ′ : Ȳ ′ → X̄ lifts to a finite,H-invariant morphism

f ′R :Y ′
R →XR between semistableR-curves such that the following holds. First,f ′R is the stable

model of anH-cover f ′ :Y ′ → P
1 of type (x′i;ai). Second, the restrictions off ′R and fR

to the formal completionX0 of XR along X̄0 are isomorphic (as finite,H-invariant maps
to X0). It follows immediately that theH-cover f ′ is special and gives rise to the spec
degeneration datum(τi;ai;νi;ω0). This proves Proposition 3.6 and therefore completes the p
of Theorem 3.2. ✷
3.5. The case r = 4

Let us call two special degeneration data(τi;ai;νi;ω0) and (τ ′i ;a
′
i;ν

′
i;ω

′
0) equivalent if

there exists aZ/m-equivariant isomorphismφ : Z̄0
∼→ Z̄ ′

0 (whereZ̄0 → P
1
k and Z̄ ′

0 → P
1
k are

the correspondingm-cyclic covers) such thatφ∗ω′
0 = cω0, for some constantc ∈ F

×
p . In this

section we determine all special degeneration data(τi;ai;νi;ω0) with four branch points, up to
equivalence.

Fix p,m and(ai), as in the beginning of Section 1.1. It is clear that for given primep, there is
only a finite number of possibilities form and(ai), which are easy to describe. After reorder
the indices, we may assume thatν1 = 1 andν2 = ν3 = ν4 = 0. Furthermore, after a projectiv
linear transformation, we may assume thatτ1 = 0, τ2 = 1, τ4 = ∞. We writeλ instead ofτ3;
note thatλ ∈ k−{0,1}. LetZλ→ P

1 be them-cyclic cover given by the equation

zm = xa1(x− 1)a2(x− λ)a3 .(38)

By an easy calculation, involving the divisors ofz, x anddx, one shows that any differentialω0

onZλ satisfying Eq. (29) is of the form

ω0 = µ
z dx

(x− 1)(x− λ) = µ
xdx
w
,(39)

for some constantµ ∈ k×. Here we have setw := z−1x(x− 1)(x− λ). Note that

wm = xa
′
1(x− 1)a

′
2(x− λ)a′3 ,

with a′i :=m− ai.
Recall that the Cartier operator is defined as the unique additive mapC on differentials such

that

C(upω) = uC(ω),(40)

C(du) = 0, and(41)

C(du/u) = du/u,(42)

for all rational functionsu and differentialsω on Zλ. We want to find allλ andµ such that
C(ω0) = ω0. We setα := (p− 1)/m and andf(x) := wm = xa

′
1(x− 1)a

′
2(x− λ)a′3 . Following

[22] and using (40)–(42), we compute
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C(ω0) = µ1/pC
(
xf(x)α dx

wp

)
= µ1/pw−1

α(2m−a1)∑
k=αa′1

c
1/p
k C

(
xk+1 dx

)

if

n
w that

i-
ta
cial
e

nce

a
would

arlier

d

= µ1/p
(
c
1/p
p−2 + c1/p2p−2x

)dx
w
,(43)

whereck is the coefficient ofxk in f(x)α. We see thatC(ω0) = ω0 implies cp−2 = 0. On the
other hand, ifcp−2 = 0, thenc2p−2 �= 0, becauseC(ω0) �= 0, by Lemma 1.4(iv). Therefore,

cp−2 = 0, we can setµ := c1/(p−1)
2p−2 , to obtainC(ω0) = ω0. We conclude: ifλ is a zero of

Φ(λ) =
N∑
l=0

(
αa′2
N − l

)(
αa′3
l

)
λl(44)

(with N := p − αa′1 − 2 = αa1 − 1), then there exists a differentialω0 on Zλ satisfying (29)
and (30), unique up to a constant factor inF

×
p .

LEMMA 3.7. – The zeros of the polynomialΦ in (44)are simple and�= 0,1.

Proof. –It is shown in [19] that the zeros ofΦ other than0 and 1 are simple (the reaso
is thatΦ satisfies a certain hypergeometric differential equation). Hence we have to sho
Φ(0),Φ(1) �= 0. Recall thata′i =m− ai and

∑
i ai =m. Sincea′2 = a1 + 2m− a′3 − a′4 � a1,

we haveαa′2 >αa1 − 1 =N , soΦ(0) =
(
αa′2
N

)
�= 0. On the other hand, we have

Φ(1) = coeff. ofxN in (x− 1)α(a′2+a
′
3) =

(
α(a′2 + a′3)

N

)
.(45)

Butα(a′2 +a′3)−N = α(a′1 +a′2 +a′3−m)+1 = α(m+a4)+1> 1, soΦ(1) �= 0 as well. ✷
We can summarize the discussion as follows:

PROPOSITION 3.8. – Let r := 4. Given p, m, (ai) and (νi) (satisfying the usual cond
tions, and withν1 = 1), there are exactlyαa1 − 1 nonequivalent special degeneration da
(τi;ai;νi;ω0). In particular, for givenp, there exist only a finite number of nonequivalent spe
degeneration data, and they are all defined over some finite fieldFpn . Therefore, we may assum
k = F̄p throughout.

Remark3.9. – Forr > 4, it is still true that there exist only a finite number of equivale
classes of special degeneration data, for fixedp. This is less obvious than forr = 4, because
the polynomialΦ is replaced by a system ofr − 3 equations inr − 3 variables. However,
deformation argument shows that this system has only finitely many solutions, see [21]. It
be interesting to obtain a formula for the number of solutions, as in the caser = 4.
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