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REDUCTION AND LIFTING
OF SPECIAL METACYCLIC COVERS

By STEFaAN WEWERS

ABSTRACT. — Special covers are metacyclic covers of the projective line, with Galois gigpp Z /m,
which have a specific type of bad reduction to characterjstiSuch covers arise in the study of the
arithmetic of Galois covers dP' with three branch points. Our results provide a simple description of
special covers in terms of certain lifting data in characterjstic
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RESUME. — On définit les revétements spéciaux comme des revétements métacycliques de la droite
projective ayant un certain type de mauvaise réduction. Ces revétements apparaissent naturellement dans
I'étude des revétements galoisiens étales de la droite projective moins trois points. Nos résultats donnent une
description simple des revétements spéciaux comme relévements de certaines données en caraetéristique
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Introduction

In [13] Raynaud has given a criterion for good reduction of Galois covers of the projective
line which are ramified at three points. The proof of this criterion depends on the analysis of
Galois covers with bad reduction, under certain conditions on the Galois group. In one particular
step of this analysis, Raynaud introduced the notion ogtheliary cover to a G-Galois cover
f:Y — P! with bad reduction to characteristiche associates (under certain conditions) an
H-Galois coverf,.: Yaux — P, which has, in some sense, the same type of bad reduction
asf, but whose Galois groufd is a certain solvable quotient of a subgrougbfFor instance, if
p strictly divides the order of7, H is a metacyclic group, isomorphic ®/p x Z/m. Thus, for
many purposes, the study of bad reduction of Galois covers can be reduced to the study of covers
with certain solvable (in the easiest case, metacyclic) Galois groups. However, this reduction
step is paid for by the introduction of extra branch points (the branch locfissad subset of the
branch locus off,.x). In general, it is hard to predict where these extra branch points occur.

The present paper is concerned with a detailed study of metacyclic covetswith Galois
group isomorphic t&/p x Z/m, which arise as the auxiliary cover 6tcovers ofP* with three
branch points and prime-teramification. In Section 1, we give a characterization of such covers
which is independent of the group; this characterization gives rise to the definitiorspgcial
metacyclic coverdn Section 2 we show that the reduction of a special cover to characteristic
is as simple as one can expect it to be; in particular, it is determined by a so-spéethl
degeneration datuntinally, in Section 3 we show that one can lift any special degeneration
datum to a special cover. In a subsequent paper [21], we will strengthen this lifting result. Also,
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114 S. WEWERS

in [20] we will apply our results on special covers to the study of three point covers with bad
reduction.

We shall now give a more detailed outline of our results. Fix a prime numlaed a finite
groupG such thaip strictly divides the order of7. Let us also fix a field<, of characteristi®
which is complete with respect to a discrete valuatiowe assume that the residue fiéldf v is
algebraically closed and of characterigiicSuppose we are given@-Galois coverf:Y — P!
defined over a finite extensiol /K, branched at; = 0, 22 = 1 andz3 = oo, with prime-
to-p ramification. We assume thgt has bad reduction at, and has atable modebver the
ring of integers ofX (the latter holds after replacing by a finite extension). Lef:Y — X
be thestable reductiorof f. For a precise definition of the stable reduction, see Section 1.3.
Let us only say thaff is a finite G-invariant map between semistable curves dvevhich is
inseparable over certain irreducible componentXoBy a result of Raynaud [13], the covér
is separable exactly over thails of X, i.e. those irreducible components that are connected to
the rest ofX in a single point. Moreover, the three branch points= 0, 2o = 1,23 = co of f
specialize to points on pairwise distinct taltg, X,, X3. Let X4, ..., X, be the remaining tails,
and letD; C (PL )™ be the closed rigid disk corresponding to the f§jl, fori =1,...,r. By
definition,z; € D, fori=1,2, 3.

Let us chooséd( -rational pointse; € D;, fori = 4,...,r. After having made this choice, we
can define thauxiliary cover f., : Yaux — P! associated tg. This is a certairf{ -Galois cover,
branched aty, ..., z,, whereH is the quotient of a subgroup 6f, isomorphic toZ /p x Z/m
for some integefn > 1 dividing p — 1. The coverf,,x has bad reduction, as well, and its stable
reductionf,. : Yaux — X is closely related to the stable reductionfoffor instance f and f.ux
have the same targéf). Of course, the covef,.« depends on the choice of the extra branch
points. Raynaud’s results, together with the fact tfidtas only three branch points, impose
very strong conditions on the auxiliarfs,. Furthermore, it is demonstrated in [13] that the
understanding of the arithmetic ¢fcan be reduced, to some extend, to the study of its auxiliary
cover. This motivates the study sfpecial covers

So from now on, we leff : Y — P! denote anH -cover defined ovek’, where K/ K, and
H=7Z/p xZ/m are as before. We say thgtis specialif it has bad reduction and its stable
reductionf : Y — X satisfies some rather restrictive conditions (which are satisfied by auxiliary
covers of three point covers, as above). In particular, the branch pqints , z,. of f specialize
to pairwise distinct tails\, ..., X, of X. Our first main result is:

THEOREM A.— Let f:Y — P! be a specialH-cover overK and f:Y — X its stable
reduction. Then thésemistablecurve X is the union of- + 1 distinct irreducible components
Xo, ..., X, (each isomorphic td®;) such that, fori = 1,...,r, Z; € X; and X; meetsX, in a
unique pointr;. In particular, z; # z; mod v for i # j (as points orP?).

The essential content of Theorem A is that the stable reduction of a special cover is as simple
as one can expect it to be. For instancef ift” — P! is the auxiliary cover of a three point
G-coverf:Y — P!, then Theorem A implies that the disKx, . .., D, determined by the stable
reduction of f areequidistant Note that this is in general wrong f@#-covers with more than
three branch points.

The proof of Theorem A shows that the stable reduction of a special cover is determined by
a pair (Zy,wo), where Z, — ]P’,lC is anm-cyclic cover branched at the points,..., 7. (as in
Theorem A), andy, is a regular differential form o¥,. The differential formw, verifies the
following conditions: a.)v is logarithmic, i.e. of the fornadlu/u, b.) wy is an eigenvector under
the action ofZ/m and c.) the zeros af, are contained in the ramification locus &f — P;.

Let us call the paif Zy, wo) aspecial degeneration daturtt turns out that condition b.) and c.)
already determine the differentialy up to a constant factor. Therefore, condition a.) poses a
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REDUCTION AND LIFTING OF SPECIAL METACYCLIC COVERS 115

restriction on the covet, — IP’}C and, in particular, on the branch points ..., .. In concrete
terms, this condition translates into an explicit system of equations satisfied by thétyple
One can show that this system has only a finite number of solutions, and that therefore there exist
only a finite number of nonisomorphic special degeneration data, for a given prime
Our second main result is that every special degeneration datum arises from aEpeoiadr.
More precisely, we have:

THEOREM B. — Let(Zy,wy) be a special degeneration datum, defined over an algebraically
closed fieldk of characteristicp. Let K be the fraction field of the ringV (k) of Witt vectors
overk, and letzy, ..., z, be Ky-rational points onP! lifting the branch points o, — Pj.
Then there exists a speCIH cover f:Y — P! with branch pointsey, ..., z, whose reduction
f:Y — X corresponds tdZy,wp). The coverf is defined over the tame extensifif K of
degree(p — 1)/m and is uniquely determined By, wo) and (z1, ..., z,).

Theorem B is a result on lifting inseparable covers of curves from charactepistic
characteristid. In this sense, it is similar to the main result of [8]. But even though [8] has
had a great influence on the present paper (this is most obvious in Section 2), the proof of
Theorem B uses a very different approach. First, the results of [8] are formulated in terms of
automorphisms of the-adic open disk (and are therefore something local), whereas we are
dealing with projective curves. Second, for the applications in [20] it is important to prove
unigueness of lifting and to have a good control over the field of definition. Since we are
concerned with liftingnseparablecovers, the usual strategy of first lifting locally and then using
formal patching to obtain a global lifting breaks down.

Our proof of Theorem B is based on an analysis of gh@rsion of the Jacobian of the
intermediatem-cyclic cover and depends crucially on the assumption figtis absolutely
unramified. It is divided into two steps. L&f, and(Zy,wo) be as in the statement of Theorem B.
Moreover, letK/K, be a finite extension ang,...,z, K-rational points orP! lifting the
branch points ofZ, — P}. In the first step, we show that there exists a unidiieover
f:Y — P! with branch pointszy, ..., z,, defined over a tame extension Af, whose stable
reduction gives rise to the special deformation dafufm wy). In the second step we show that
f is special if K = K. It is easy to see that the conditidn = K is not necessary fof to
be special. To see this, let, ...z, be Ky-rational andf the corresponding lift. Sincé is
special by Theorem B, its stable reduction gives rise to closed rigid @isks ., D,. such that
x; € D;. One can show that the disi% do not depend on the choice of, ..., z,. Letz} be
an arbitrary point irfD; (not necessarilyK-rational) and letf’ be the lift corresponding to the
tuplez’,..., .. Then a formal patching argument shows tfiais special, as well.

We will show in [21], using an entirely different method, thatc D; is in fact a necessary
condition for the lift f to be special. This result has very nice consequences, see [20]. For
instance, if the special coveris the auxiliary cover of a three point covgrY — P, thenf can
be defined over a tame extensionfo§. Therefore, the field of moduli of a three point covers is
at most tamely ramified atprovided thap? does not divide the order of the monodromy group.

1. Special metacyclic covers

In this paper we consider metacyclic covefsY” — P! which are the composition of a
ramified m-cyclic cover Z — P! and an étalep-cyclic coverY — Z, with Galois group
Z/p x Z/m. Such a cover corresponds to an element of a certain isotypical component of the
p-torsion of the Jacobiad;. We give a numerical criterion which implies that this isotypical
component has étale reduction. This forces the cdver Z to have bad (more specifically,
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116 S. WEWERS

multiplicative) reduction, and allows us to compute the field of moduli of the cgyesee
Section 1.2. In Section 1.3, we defispecial coversas metacyclic coverg:Y — P! whose

stable reduction satisfies certain (rather restrictive) conditions. In Section 1.4, we show that the
auxiliary cover of a Galois cover @' branched at three points is special, provided trsttictly

divides the order of the Galois group.

1.1. Metacyclic coversof multiplicative type

Let us fix the following objects:

e A complete discrete valuation ring), with fraction field Ky of characteristi® and residue
field & of characteristipp > 0. We will assume that is algebraically closed. Lek be an
algebraic closure oy and ¢, ,up(f() a fixed pth root of unity. We writevy, for the
valuation of Ky corresponding t®,. We normalizevg, such thawg, (p) = 1.

e Anintegerm > 0 dividingp — 1, and a charactey: Z/m — p,,,(Ko) of orderm. We write
X:Z/m — ) for the reduction ofy modvg,. We define the groupl = Z/p x Z/m by
two generators:, 5 with relationsa? = ™ =1 andfiaf~" = aX(),

e An integerr > 3 and anr-tuple (aq,...,a,) of integers such thatcd(as,...,a,) =1,
0<a; <mand),a; =0mod m.

e Anr-tuple(z1,...,x,) of pairwise distinctK,-rational points on the projective lirig'.

The inverse image of an element (Z/m)* under the natural mafl — Z/m is a conjugacy

class ofH, containing elements of ordet/(m, a). We denote this conjugacy class &Y.

DerINITION 1.1. — Ametacyclic cover of typer;; a;) is an H-cover
1y A, Px

defined overk, branched incy, ..., z,, such that the canonical generator of inertia abeye
(with respect to the charactg) is an element of’,,, fori =1,...,r (see e.g. [18]). The cover
f is calledof multiplicative typef

1) i a; =m.
i=1

The meaning of the term ‘of multiplicative type’ will become clear later. For the moment, let
us fix a metacyclic covef : Y — P! of type (z;; a;), not necessarily of multiplicative type. Let
Z be the quotient of” by the normal subgroufax) <t H of orderp. Thus,g: Z — ]P’}( is anm-
cyclic cover, branchediny, . .., x, such that the image ¢f*: in H/(«) = Z/m is the canonical
generator of inertia above;. We shall callg: Z — P! the m-cyclic cover of type(z;; a;), with
respect toy. In concrete terms? is the normalization of the plane curve with equation

T

) 2= — i)

=1

(provided z; # o0), and the restriction of3 € H to Z yields a generatoB: Z = Z of
Gal(Z/P') = Z/m such that3*z = x(1) z.

The p-cyclic coverY — Z is étale. Hence it corresponds to a nontrivial classn
H} (Z,Z/p)y (for any F,[Z/m]-module M, we denote by)M, the x-eigenspace). Let
Jz =Pic’(Z) denote the Jacobian ¢f, and.Jz[p] its group of K -rational points of ordep.

Kummer theory gives us a canonical isomorphism
(3) Hélt(Z’ Z/p)x = Jz [p]x(_l) = Hom]Fp (p’p(K)v JZ[p]X)v
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REDUCTION AND LIFTING OF SPECIAL METACYCLIC COVERS 117

see [10], Ill 84. Here is how one can define the co¥er> Z from a class) € H), (Z,Z/p)y.
Using our choice of ath root of unity(,, we can identify.Jz [p], (—1) with Jz[p],. Let L be
the line bundle or¥ of orderp corresponding to the clagsunder the isomorphism (3). Ld?
be a divisor onZ such thatL = O4(D). Thenp - D is the divisor of some rational function
onZ. LetY — Z be the cover which is (birationally) given by the equation

(4) Yy’ =u.

We let the generatar of thep-cyclic subgroup off actonY such thatv*y = (,y. By our choice
of D we haved* D = x(1)- D. Therefore, there exist an integesuch thaj: = (1) mod p and a
rational functiorv on Z such that3* D = ji- D + (v). We can normalize such thap*u = utv?.
We see tha# lifts to an automorphisns: Y = Y of orderm such that3*y := y*wv. Itis easy to
check that this defines an action®f= («, 3) onY'.

1.2. Thefield of moduli

Let K™ be thefield of moduliof the H-cover f:Y — P!, relative to the extensiok /Ky
(see e.g. [4]). Since the grouli has trivial center, this means that® /K, is the smallest
field extension such that theé-cover f descends to afi-cover fxin : Ygin — PL.. over K",
Moreover, the extensiok "/ K is finite, and the modef . of f is unique up toK™-linear
isomorphism. We lef'" := Gal(K /K'™).

The field of moduli of them-cyclic coverg: Z — P! is just K. Although g has no unique
Ky-model (becaus&/m is abelian), there is a canonical modgl, : Zx, — P}KO, given by
Eq. (2). (SinceK) is strictly henseliang k, is characterized by the fact that it is unramified at the
generic point of?}. Note, however, that thei-cyclic quotientYyin /(Z/p) — P, Of frin will
not be K'-isomorphic togx, ® K™, in general.) The choice of the modgl, determines an
action of 'k, := Gal(K /Ky) on theF,[Z/m]-moduleH}, (Y,Z/p), and hence an action on the
x-eigenspacéi}, (Z,Z/p),. We can describe the subgrolit C I',, and therefore the field
extensionK " / K, in terms of this action, as follows.

PROPOSITION 1.2. — Let§ € H'(Z,F,), be the class corresponding to the étaleyclic
coverY — Z. Then

I'"={o€lk,|70=x(a)d, a€Z/m}.

Proof. —Let o € I'x,. By definition, o is an element of"* if and only if the conjugate
cover? f:°Y — P! is isomorphic tof. This means that there existsi&linear isomorphism
#:°Y =Y which is equivariant with respect to thig-action, such thaf o ¢ = “ f. We may
(and will) identify ©Z with Z (using the modelZg,). So, if it exists, the isomorphism
restricts to ak -linear automorphism of which commutes with th& /m-action and the map
g:Z — P'; therefore,¢|; = 3%, for somea € Z/m. In other words € T'" if and only if
70 = (6*)*0 = x(a), for somea € Z/m. This is what we wanted to prove.

Of course, the choice of the modgk, also determines an action ®fx, on Jz[p], and
Jz[plx(—1), such that (3) becomes an isomorphisnirgfl x, ]-modules. One way to study this
action is to regard’z[p], as the group of<-rational points of thegroup schemédac(Zx, )[plx
overKj. A crucial fact we will use in this paper is the following.ffis of multiplicative type and
if the branch points of are equidistant, thefac(Zk, )[p]x extends to a constant group scheme
over Ry. Equivalently,I'x, acts trivially onJz[p],. This is a special case of Proposition 1.3
below.

Since we do not want to assume that the branch poinfsaoé equidistant, we need the notion
of admissible reductionThis notion was introduced in [7]. Another reference is [15], where
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118 S. WEWERS

admissible covers are called ‘kummérien’. (&ir ; z; r,) be the (unique) stably pointed model
over R, of ther-pointed curve(]P’K ;x;), in the sense of [9]. Lek / K, be a finite extension®
the ring of integers oK and X := X, ® R. Furthermore, leZr be the normalization ok

in the function field ofZx := Zx, ® K and letgr: Zr — Xr be the canonical map. We say
thatgp is an admissible cover if the following holds:

(a) The curveZy is semistable.

(b) The mapgr: Zr — Xg is finite, and its restriction to the smooth locusX#f; is a tame
cover, ramified only along the sectiongg, ..., z, g.

(c) Letz be a singular point of the special f|bﬁ’r Xr®rpkandletz€ Z:=Zr®gpk
be a point above. Thenz is also a singular point of . Moreover, if X', X" denote the
two branches of{ passing through and Z’, Z" denote their inverse |magesjh then
the canonical generator of inertia of thecyclic coverZ’ — X’ at z is the inverse of the
canonical generator &f” — X" at 2.

If gr is an admissible cover, then we say that has admissible reduction ovAf/ K, and call
gr: Zr — X g the admissible model gfx, overR.

PROPOSITION 1.3. — Suppose thaf is of multiplicative type, i.e. Eq1) holds. Then there

exists a finite, at most tamely ramified extensiofi, such that the following holds.

() The covelk, has admissible reduction oveés.

(i) Letg:Z — X be the special fiber of the admissible modekgf over R, (X;) the
collection of irreducible components 6f and Z; the inverse image ok ;. Then for
eachj, the curveZ; is smooth(but not necessarlly connectednd the group scheme
Jac(Z;)[ply is étale.

(iif) Specialization yields an isomorphism

Jzplx( @Jae [plx (k)

of F,,[Z/m]-modules.
If, moreover,z; # x; mod vg, for i # j then Z is smooth and we can tak& := Kj.
Furthermore,Jac(Zk, )[p]s is isomorphic, as group scheme ovEp, to the constant group
schemdZ/p)" 2.

To prove this proposition, we need the following lemma. Its proof follows a suggestion of Prof.
Raynaud.

LEMMA 1.4.- Letk, p, m and x be as at the beginning of Sectidnl Letz,,...,z, be
pairwise distinct elements &f Leta, ..., a, be integers such thét< a; <m and)_,a;, =m
(we do not assume thatd(a;) = 1). Letg: Z — P}, be them-cyclic cover of typéz;; a;), with
respect toy (this makes sense evemifd(a;) # 1 in which caseZ is not connected Then

(i) HY(Z,05)x =0

(||) dlmk HO(Z, QZ/k))Z =r—2.

(iii) The group scheméac(Z)[p]y is étale, |somorph|c tdZ/p)"~

(iv) The Cartier operator is a bijection o °(Z, Qz/k)x

Proof. —~We may identifyZ with the nonsingular model of the plane cuw/é = [ [, (z — z;)*
overk. The action ofZ/m on Z induces an action on the shegfD;; let

3:0;7 = @ 5113
P
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REDUCTION AND LIFTING OF SPECIAL METACYCLIC COVERS 119

be the decomposition into isotypical subsheaves, whewms through all characte?s/'m — k*.

Itis clear thatl is a line bundle, for alt). By assumption, the rational functianis a rational
section ofL, which defines a tr|V|aI|zat|0ﬂw|A1 O, and has a pole of orded . a;)/m=1

atoo. We concludethat

dimy H'(Z,0z)x = dimy H (P, L) =degLy —1=0.

This proves (i). A similar calculation (using the functiafit—! instead ofz) shows that the
k-dimension of H'(Z,07)y-1 isr — 2. But H'(Z,0z)-1 is dual to H(Z,Qz )« so (ii)
follows. Let.J be the Jacobian of the curve We have a canonicatlinear isomorphism

Lie(J[p]) = Lie(J) 2 H(Z,05),

see [11], p. 147. This isomorphism is compatible with the natfiyak-action on both sides and
therefore induces an isomorphism on fheigenspaces. From (i) we conclude

Lie(Jlpl)x = H'(Z,07)x =
This shows that/[p];, is an étale group scheme. The rankdf];, is equal to
dimy, Hyg(Z)g = dim, H'(Z,0z)5 + dimg HY(Z, Q3 1) =7 — 2,

by (i) and (ii). This proves (jii). The canonical polarization dridentifies.J[p]; with the Cartier
dual of J[p] ;1. Hence (iii) impliesJ[p] -1 = (p,,)" 2. Under the isomorphism

H'(Z,07)x-+ = Lie(J[p])x-+ = Lie(u,)" 7,

the action of Frobenius on cohomology corresponds tgpthgpower map on the Lie algebra,
see [11], Theorem 15.3. Itis elementary to see thapth@power map orlie(u,,) is a bijection.
Therefore, the Frobenius is a bijection & (Z,0z)-1. But the transpose of Frobenius with
respect to Serre duality is the Cartier operator (see [16]), so (iv) follows. This finishes the proof
of Lemmal.4. O

Proof of Proposition 1.3.¥e will proceed in two steps. First, let us assume that
x; Z x; mod vg, for i # j. Then them-cyclic covergg, : Zx, — ]P’K extends to a tame
Z,/m-Cover gp, Zry, — IP’R In particular, Zg, is smooth overR,. Let Jg, be the Jaco-
bian of Zr, and.J its special fiber. Thew is the Jacobian of the special fib&rof Zg,. By
Lemma 1.4(iii),J [p] is étale, isomorphic t¢Z/p)" 2. SinceK is strictly henselian, this im-
plies thatJac(Zk,)[plx is a constant group scheme ouvEp, isomorphic to(Z/p)"~2. This
proves the proposition in the casg# x; mod vg,.

We now consider the general case. Sincis prime top, it follows from the results of [15] that
the covergk, has admissible reduction ovéf, where K/ K is any sufficiently large, tamely
ramified extension. This proves Part (i) of Proposition 1.3.detZr — X be the admissible
model ofgx, overR andg: Z — X the special fiber ofir. By the definition of admissibilityZ
and X are semistable curves and the niajs finite and étale, except above the singular points
of X and the specializations of the branch pointsLet (X;) be the collection of irreducible
components of andZ; the inverse image ok in Z. Also by the definition of admissibility,
Z;— X;isa (possibly dlsconnected) cyclic coverof type(z;,;a;,:). Herez; 1, ..., z;,, are
the pomts onX; which are either singular oX or the specialization of a branch point. We
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may assume that< a;; < m. If z;, is the specialization of; thena;; = a;. Moreover, if two
componentsX; and.X;, intersect in the point;; = z; i thenaj y =m — a;,. It is now an
easy exercise to show that the equality a; = m and the strict inequality < a; < m imply the
equality

(5) Z aj=m
=1

for all j and the strict inequalit) < a;; < m for all j,/. Moreover, we have

(6) Z(Tj —2)=r—2.

J

(To prove (5) and (6) we use the fact that the graph of componerisisfa tree; compare with
Lemma 2.3 and Proposition 2.4.) From (5) and Lemma 1.4 we concludéth@; ) [p]y is étale
of rankp™ 2. This shows (ii).

Let K’/ K be afinite extension/ i := Zk, ®k, K’ andJk- the Jacobian of k.. We may
chooseK’ such that all points of the group schemfig: [p]; are K'-rational. As in the proof of
Lemma 1.4 one shows that

(7 Jrer [Pl = (Z/p) 2.

Let Jr' be the Néron model af 2. It follows from our assumption and the universal property
of the Néron model tha§ := Jr/ [p]5 is a finite and flat group scheme ovEBf, with generic
fiber Ji [pls. Let J := Jr ® k be the special fiber of r; and J° its connected component
containing0. SinceZx+ has semi-stable reductio is a semi-abelian variety and sits inside a
short exact sequence

(8) O—»T—>j0—>@Jac(Zj)—>O.

J
Here.Jz, is the Jacobian af; andT is an algebraic torus ovér. See [1]. The grouf/m acts
on all terms of (8). In partlcular we can define thésotypical subtoru§y C 7'. Furthermore,
Z/m acts on the finite abelian groufy J°, and we let.J/.J°)[p]y be they- |sotyp|cal part of the
group of elements of orderin J/J°. By (7) and (8) we have

—
Sy - 2) 4 dim T TNl
- logp

With (6) we conclude thatJ/J°)[p]x = 0 and thatl; = 1. In other words, we have
®k= @Jae(zj)[pk
J

This proves (iii). O

COROLLARY 1.5.— If f is of multiplicative type, therf has bad reduction, an&™ /K is
at most tamely ramified. If, moreover, # x; mod vg, for all ¢ # j then

K = Ko(G") o= Ko(G)™™
(wherea € Z/m acts onKy(¢,) as¢, — (X™).
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Proof. —The statement about™ follows directly from Proposition 1.2 and Proposition 1.3.
It follows from [12] and Proposition 1.3 that thecyclic coverY — Z reduces to qu,,-torsor
over the generic point aZ;. In particular, ifY is the special fiber of a semistable modelyof
which admits a finite map{ — Z, then this map will be inseparable. This means haas bad
reduction. O

1.3. Special covers

For the rest of this section, we will assume thatY — P! is a metacyclic cover of
multiplicative type(x;;a;). We donot assume that; # =; mod vg,. By Corollary 1.5,f has
bad reduction. Lef{™®/ K be the field of moduli off and fxin : Yicin — P}, the model off
over K. Furthermore, lef</ K™ be a sufficiently large finite extension over whi¢h:» has
stable reductionsee [20]. By this we mean the following, compare with [13] and [3]. First, the
ramification pointg;y,...,y, € Y of the H-coverf are K -rational points orY . Second, after
the base chang€x := Yiin Q@ K, the pointed curvéYy;y;) extends to a stably pointed
curve(Yg;yr,;) over the ring of integers of K. The quotient magr:Yg — Xg:=Yr/H
is called thestable modebf f over R. Its special fiberf : Y — X is called thestable reduction
of the H-cover f. Note thatf is a finite map between pointed semistableurves. Here the
distinguished points o’ are the specializationg, . .., 7, of the ramification points, and the
distinguished points oX are the specializations, . .., z, of the branch points of . However,
(X; ;) is not a stably pointed curve, in general.

We call a componenk” of X separableif the restriction off to one (and therefore to all)
components ot aboveX’ is a separable morphism. Note théthas at least one component
that is not separable, by the definition of bad reduction. Let us denakg bye component ok
containingz;.

For convenience, we make the following assumption, which will be part of the definition of a
special cover (Definition 1.9 below).

Assumptionl.6. — (i) A componen’ of X is separable if and only if it is a talil, i.e. if it is
connected to the rest of in a single point.
(i) The components(y, ..., X, are pairwise distinct, and they are precisely the tailX of

Remark1.7. — It is easy to see that the componeklisare separable. If the branch points
of f do not coalesce, i.e:; # z; mod vg, for i # j, then part (i) of Assumption 1.6 holds
automatically, by [13], Lemme 3.1.2. In this case, Assumption 1.6(ii) can be phrased (in the
terminology of [13]) as: ‘there are no new tails’. One should keep in mind that this is a rather
strong condition.

Fix i € {1,...,7}. The restriction off to the tail X; is a (possibly disconnectedj-Galois
coverf;:Y; — X The coverf; is ramified at exactly two points, namelyatand at the unique
intersection point ofX; with the rest ofX (let us call this pointr;). The ramification above;
is tame and, sincg; is the specialization of the branch poirtof f, the canonical generator of
inertia abovez; is in the conjugacy class,,,. On the other hand, the ramificationatis wild,
of orderpm;, wherem; := m/(a;, m). The coverf;:Y; — X; = P} is of ‘Katz—Gabber-type’;
see e.g. [5], 82, where such covers are calleg-special’. We set; := h;/m;, whereh; is the
conductor of they-part of inertia. Recall that; is the jump in the inertia group filtration of the
coverf; : Y; — X;, with respect to theipper numberingsee [17]).

PROPOSITION 1.8. — There exist integers; >0, i =1,...,r, such that
(I) o; =V; + ai/m, and

(i) i vi=r—3.
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Proof. —Let us fix an indexi and setd; := (m,a;). The coverZ; :=Y;/{a) — X; is a
(possibly disconnected)/m-cover of type(z;, 7;; a;, m — a; ) with respect toy (see Section 1.1).
Let&; € Z; be any point above; and letw be a local parameter &f. In a neighborhood of;,
the p-cyclic coverY; — Z; admits a representation as an Artin—Schreier cover

Y-y =w",

such thatv*y = y + 1. The congruence
(B7) w=x(d)-w mod w?
implies the congruence
(8™ ) y=x(~hid;) -y +n mod w?,
for somen € F,. The rulefaf=! = X and a short calculation show that
m—a; = —h;d; modm.

This proves (i), i.ec; = v; + a;/m, for integersy; > 0. On the other hand, we have Raynaud’s
vanishing cycle formula, [13], 83.4.2 (5). In our situation, it becomes

T

(9) Z(l—Ui):Z

=1
Now (i) follows from (i) and (9). O
Here comes the central definition of this paper.

DEFINITION 1.9.— Letf:Y — P! be a metacyclic cover of multiplicative type;;a;),
with (bad) reductiorf : Y — X. Suppose Assumption 1.6 holds, anddet= v; 4 a;/m be the
invariant attached to the wild ramification above the #jl as above. We say thdtis special
if there are exactly three indicés, iz, i3 with v;, = 0 (thereforey; = 1 for i ¢ {i1,i2,43}, by
Proposition 1.8).

Thus, after reordering the branch points we may assume that, v»,v3 = 0 andy; =1 for
t=4,...,7r.

1.4. Theauxiliary cover of athree point cover is special

In this subsection we discuss briefly the example that motivated our study of special covers.
For more details, and for arithmetic applications of the results obtained in the present paper, see
[20].

Let G be a finite, center free group such tipatrictly divides the order ofs. Leth: W — P!
be aG-cover overK, ramified in0, 1 and co, with ramification indices of order prime-ta-
Assume that the covek has bad reduction. Lekr: Wr — Xg be its stable model and
h:W — X the special fiber ofz. By [13], §3.1, the mayh is separable exactly over the tails
of X. Let X, X5, X3 be theprimitive tails i.e. those which contain the specialization of the
branch points), 1, co, respectively. LetXy, ..., X, be the new tails. As above, we associate to
each tailX; the invariantr; = h;/m;. By [13], Proposition 3.3.5, we have

(20) o; >1, fori=4,... r.
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Fori=4,...,r, we choose a smooth point on X;, and lift it to a pointz; of PL. Setz; :=0,
To:=1, x3:=00.

Now let f: Y — P! be theauxiliary coverassociated té, see [13]. The covef is metacyclic
of type (z;; a;), with m and(ay, ..., a,) as at the beginning of Section 1.1. Furthermgréas
bad reduction, and the special f|ber of its stable model is of the forii — X (whereX is
the target curve ok). Finally, the tailsX; of X are exactly the separable components (for the
map f), and the induced maps:Y; — X; over the tails are (possibly disconnecté#Galois
covers of Katz—Gabber type, tamely ramifiedzaind wildly ramified at-;, with invarianto;.

We claim thatf is special. Indeed, Assumptions 1.6(i) and (ii) hold by construction (except
maybe forf being of multiplicative type, i.€) ", a; = m). As in the proof of Proposition 1.8, we
show thato; = v; + a;/m, with integersy; > 0 such that

(11) Sn=r o2 2l

Buty, > 0fori=4,...,r, by (10), so the left hand side of (11) isr — 3. We conclude that
Yiai=m,v;=0fori=1,2,3andy; =1fori=4,...,r. In other wordsf is special.

Itis very likely that every specidll-coverf : Y — P! arises as the auxiliary cover ofacover
h: W — P! with three branch points, f@omegroupG. At the moment, we can prove this claim
only modulo the following hypothesis.

Hypothesis1.10. — Letp be a prime andn, h > 1 integers such that|p — 1, (h,p) =1
and1 < o := h/m < 2. Then there exists a finite group and an étalez-cover f: W — Al
of the affine line, defined over = IF,,, such that the inertia group at infinity is isomorphic to
Z/p x Z/m and the jump in the inertia group filtration is equabte= h/m.

The hypothesis implies the claim, essentially because we can ‘reverse’ the auxiliary cover
construction, using formal patching. This fact establishes a strong link between the existence of
étale Galois covers of the affine line in characterigtiath prescribed ramification at infinity (i.e.
certain generalized forms of Abhyankar’'s Conjecture) and the reduction of Galois covers from
characteristi® to characteristip. For results in this direction, see [2]. These results show that
we cannot expect Hypothesis 1.10 to hold for a given gi@wgatisfying the obvious restrictions
(quasip, containsH ).

2. Thestructure of special covers

The main goal of this section is to prove the following result, which essentially states that (the
reduction of) a special cover is as simple as we can expect it to be.

THEOREM 2.1. — Let f: Y — P! be a special metacyclic cover of ftype; a;), with reduction
f:Y — X. Then the curveX is the union of- + 1 componentsY,, X1, ..., X,, such thatX,
meetsX; in exactly one point, an&; is the component to which; specializes. In particular,
z; # zj; mod vg, (as points orP!) for i # j.

This was called Theorem A in the introduction. Here is a brief outline of the proof. Using
results of [14] (which essentially reformulate earlier results of [12,6] and [8] in a form suitable
for us), we analyze the stable reduction of flreyclic partY — Z of a given special cover
f:Y — P We find that, in case Theorem 2.1 did not hold, one of the components of the special
fiberY of Y would be anx,-torsor. Moreover, thigy,-torsor would have to satisfy certain strict
numerical conditions, coming from specialty pfind compatibility with theéZ/m-action. Then
a direct calculation shows that suchap-torsor cannot exist, and Theorem 2.1 follows.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



124 S. WEWERS

In Sections 2.1 and 2.2 we analyze the stable reductighaofd translate its properties into a
combinatorial language similar to the notion oHarwitz treedeveloped in [8]. Here we work
under slightly more general assumptions than is actually necessary for the proof of Theorem 2.1.
This will be useful in Section 3.

In Section 2.3 we prove the key lemma which implies Theorem 2.1. In Section 2.4 we state
a strengthening of Theorem 2.1, which concerns the monodromy action on the special fiber of a
special cover.

2.1. Admissible reduction of Z — P!

Let f: Y — P! be a metacyclic cover of multiplicative tyge;; a;). Concerning the reduction
of f, we use the notation introduced in Section 1.3. In particylar,Yz — Xg is the stable
model of f, defined over a sufficiently large finite extensiBriR,, with special fiberf : Y — X.
The branch pointz; specializes to a poing; € X, and X; denotes the component of
containingz;. We make the following assumption, which is slightly weaker than Assumption 1.6.
In particular, it holds iff is special.

Assumption2.2. — (i) The mggf: Y — X is separable exactly over the tails %t
(i) The components(y, ..., X,. are pairwise distinct tails.

We define a tred’” associated to the semistable cur¥e as follows. The set ofertices
V of T is defined as the set of (irreducible) componentsXofFor v € V, we refer to the
corresponding component & as X,. The set ofedgesE of T is, by definition, the set of
triples e = (z.,v,v’), wherez, € X is a singular point and,v’ € V are vertices such that
7. € X, N X,s. The assignments(e) := v andt(e) := v’ define thesource map: £ — V and
thetarget mapt: E — V. The edge := (Z.,v’,v) € E is called theopposite edgef e.

We defineB C V as the set oleavesof T, i.e. the vertices corresponding to the tails¥ofIn
other words, for each € B there is a unique edgg such that(e, ) = v. We call the elements of
V'’ :=V — B theinterior vertices. By Assumption 2.2(ii), we may identify the $et= {1,...,r}
with the corresponding subset Bf Note thatB = I if f is special.

Let us state the following easy lemma without proof.

LEMMA 2.3. - There exists a unique mdp— {0, ...,m}, e — a., such that
() ac=a,ifi:=t(e)el,anda,=0if v:=t(e) e B—1,
(i) for all interior verticesv, we haved a. =m, and
(i) ag +a. =m, forall edges € F.
If fis special, the) < a. < mforall e € E.

s(e)=v

Let Zr := Yr/(Z/p) be the quotient oYz by thep-cyclic normal subgroup off. It is well
known thatZg is again a semistable curve ov&r with generic fiberZg. Also, the action of
Z/m on Z extends toZg, and the (tamely ramified).-cyclic covergy : Zx — Pk extends
to a finite morphismyr : Zr — Xg of semistableR-curves. Since, by Assumption 2.2(ii), the
branch pointsz; of gx specialize to pairwise distinct points &f, it follows that the cover
gr: Zr — Xpgis anm-cyclic admissible cover oveR, i.e. satisfies Conditions (a), (b) and (c) of
Section 1.2. (Howevegr is not exactly the admissible model g@f, as defined in Section 1.2,
becauseX is not the stably pointed model of the pointed cu(®e,, z;).) Forv € V, we set
Zy =g 1 (X,).

PROPOSITION 2.4. — For each vertexv € V, the restrictiong,: Z, — X, of g to Z, is
a (possibly disconnect¢damely ramifiedm-cyclic cover. If v is an interior vertex, then
g» is branched at most at the points € X,, with s(e) = v. The canonical generator of
inertia abovez. (with respect toy) is a., wherea, is as in Lemma2.3. In other words,
Gv: Zy — X, 2 P} is them-cyclic cover of typéz.; a.).
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Fori € I, the covelZ; — X is ramified at the two points; andz, (wheree is the unique edge
with s(e) = 7). The canonical generator of inertia abowg (resp.z.) is a; (resp.a. = m — a;).
Finally, for v € B — I, the coverZ, — X, is totally disconnected, i.e. identifie&, with m
disjoint copies ofX,,.

Proof. —By the definition of admissibility, the covers : Z, — X, are as in the statement of
the proposition, focertainintegersa.. Moreover, the integers. verify condition (i), (ii) and
(i) of Lemma 2.3, at least modula.. Now the statement of Lemma 2.3 says that we may choose
thea.’s such that they verify condition (i), (ii) and (iii) exactly.o

2.2. Thereduction of the p-cycliccover Y — Z

We continue with the notation and assumptions of the previous subsection. Recall from
Section 1.1 that the étafecyclic subcovel” — Z of f is given (birationally) by an equation of
the formy? = u, whereu is a certain rational function o#, unique up to multiplication with a
pth power. We may assume that themodelYx — Z (obtained from the stable model ¢}
is defined by the same equation. By assumptldn,— Zx extends to a finite mapr — Zgr
between semistablB-curves, wherd’, is the stably pointed model dfx andZr = Yr/(Z/p).
Neglecting theZ /m-action onZg, this is precisely the situation studied in [14] (see also [6] and
[8]).

Choose a vertex € V, and writeY,, for the inverse image of, in Y. We distinguish the
following three cases (compare with [14], 81.4 and [8], §5.1):

¢ (multiplicative reductioh Suppose that the may, — Z, is inseparable (therefore,c V'
is an interior vertex, by Assumption 2.2). Suppose, moreover, that the restrictionu| 7,
of u to Z, is not apth power (in the function field of,,). Then the cove¥, — Z, is given
(birationally) by the equatiop” = u, and carries a natural structure p@f-torsor over the
open subset/, := Z, — g ' ({Z. | s(e) = v}). Letw, := du,/u,. The differentiakv,, is
not zero, regular o, and does not depend on the choice of the rational funetidbne
easily checks thaf*w, = x(1)w,. We writew, € HY(Z,,Q')5. Furthermorew, has no
zero onl,,.

e (additive reductioh Suppose that, — Z, is inseparable (hence € V'), and that the
restriction ofu to Z, is apth power. Then, in a neighborhood of any pair¢ Z, on Zr and
after multiplyingu with a suitablepth power, we can write = 1 4+ 7Pw,,, such thatr € R,

0 <wr(m) <wvr(p)/(p— 1) and such thatDU := wy|z, is not apth power. The restriction
of Y, — Z, to the open subséf, := 7, 1({z. | s(e) = v}) carries a natural structure
of ap-torsor, locally given by the equauqﬂ w,. The differentialv, := dw, is not zero,
independent of all the choices we have made, and is reguldy ohgam one easily checks
that 3*w, = Y(1)w,, i.e.w, € HO(UU, Q')y. Furthermorew,, has no zero ol/,,.

e (étale reductiohlf v is a leaf, therY,, — Z,, is generically étale, ramified only af* (Ze),
where e is the unique edge withs(e) = v. Choose a point € Z, abovez. € X,.

In a neighborhood of, the coverY, — Z, is an Artin—Schreier cover, with equation
yP? —y =w ", wherew is some local coordinate fdf, atz andh, is theconductor
We shall say that the vertaxhas multiplicative, additive or étale reduction, according to which
of the three cases occurs.

The data(w,, h,,) which we obtained from the reduction of the étaleyclic coverY — Z
satisfies certain compatibility conditions, see [14]. In our situation, they can be formulated as
follows. Lete be an edge, and let € Z be a point above, € X. Define

 Jords (wy)+1 if vi=s(e) eV,
(12) e = { —hy if v:=s(e) € B.
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Sincew is an eigenvector under tt%/m-action, . is well defined. As a special case of [14],
Cor. 2.8, we obtain
(13) he + hé - O,

for all edgese. (It is also possible to derive (13) from [8], Proposition 5.2.1.)

Using the fact that the datév,;h;) has to be compatible with th&/m-action, we can
express the numbers, in terms of certain (more convenient) numbets This generalizes
Proposition 1.8.

PROPOSITION 2.5. — For each edge, there exists an integer, such that

(14) he = %
The collection(v, ) satisfies

(15) Ve + Ve =—1
and

(16) > (e—1)=-3,

s(e)=v
for all interior verticeswv.

Proof. —Recall that /3% is the canonical generator of inertia for the-cyclic cover
gv: 2, — X, abovez., see Proposition 2.4. f. € {0,m} then(a.,m) = m, and the existence
of an integew, as in (14) is trivial. Now assune< a, < m, i.e. Z, — X, is actually branched
at z., of orderm/(a.,m). Then the vertexs(e) is either an interior vertex, or an element
of I. Suppose that := s(e) is an interior vertex. The equality*)*w, = Y(a)w, implies the
congruencerd;, (w,) = a./(ae,m) — 1 mod m/(a.,m). This proves the existence of in this
case. The case= s(e) € I has already been proved in Proposition 1.8. This completes the proof
of the existence of the integers. Now (15) follows from (13), (14) and the equality + az: = m
by a straightforward calculation. Finally, (16) is a direct consequence of Proposition 2.4, Eq. (14)
and the Riemann—Hurwitz formula.o

We shall call an edge terminalif v :=t(e) is a leaf; for such an edge,
hy =he = (Vem + ac)/(ae, m)
is the conductor of the Artin—Schreier cowér — Z,,. In particular,
hy=v. ifv=t(e)e B—1.

If f is special, thed = B; moreover, for each terminal edgdwith i := t(e) € I), the integer
ve = v; is either0 or 1 and takes the valugfor exactly three terminal edges (see Definition 1.9).
In this case, we can also say a lot about the valyesm all edges:.

LEMMA 2.6.— Assume thaf is special. Then
(i) The integers . (defined in Propositio2.5)lie between-2 and1.
(i) There exists a unique interior vertax € V' such thatv, > 0 for all edgese with
sourceuvy.
(iii) If v # vp is an interior vertex, then there exists a unique edgeth sourcev such that
Ve < 0.
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Proof. —Since f is special, we may assume that =0 for s = 1,2,3 andy; = 1 for
it =4,...,r. Furthermore/ = B. For any edge: € F, let I. C I be the set of leavese |
which ‘lie in the direction ofe’. More precisely,i € I. if and only if 7 lies in the connected
component o’ — {e} which contains the verteXe). We claim that

a7) ve=1-|I.N{1,2,3},

for all e € E. Let us check that the lemma follows from this claim. Indeed, (i) is a trivial
consequence of (17), and parts (ii) and (iii) of the lemma follow once we observgtadl has
to be themedianof the three leaves=1, 2, 3.

Recall thatv, = v; if i :=t(e) € I. Usingy; =0 for : = 1,2,3 andy; = 1 for ¢ > 3, we
conclude that (17) holds for all edgessuch thati(e) € I. For a general edge € E, define
v, :=1—1I. N{1,2,3}]. An easy verification shows that the functier- v/, verifies Egs. (15)
and (16). We conclude that = v/ for all edges € F, by induction. This finishes the proof of
the lemma. O

Remark2.7. — Itis shown in [8] that the integehs determine the radii of the formal annuli
corresponding to the singular points¥a$. To be more precise, Igtbe an ordinary double point
of the special fiber of a semistahiecurveYy. Then the complete local ring afz aty is of the
form Oy,, 3 = R|[[u,v | uv = ], with 7 € R. We define thehicknesf Y, at7 as the (positive
rational) numbeg(Yz,y) := vg(r) (recall thatvgr(p) = 1). Supposey € Y is a point above
7. € X, e € E. Suppose, moreover, that= s(e) is a vertex with multiplicative reduction and
v’ :=t(e) has additive reduction. Then

1

18 YR, ) < —————.
On the other hand, if := s(e) has multiplicative an@’ := ¢(e) étale reduction, then

_
(p— 1)he.

This follows immediately from [8], Chap. 5, Proposition 2.1. Moreover, using [13], Proposi-
tion 2.3.2, one shows that

(19) e(Yr,y) =

(20) “(Xne) = s 2 (Vi)

2.3. Theproof of Theorem 2.1

Let vy be the ‘median vertex’ of Lemma 2.6(ii). Theorem 2.1 is equivalent to the statement
thatvg is the unique interior vertex. Therefore, let us assume that there exists another interior
vertexv # vg, and then try to arrive at a contradiction. By Lemma 2.6(iii), there exists a unique
edgee with s(e) = v such that,, < 0. This means that the differential, has a pole in each point
zZ. € 7, abovez, € X,. If the coverY — Z had multiplicative reduction at the componéf,
then the differentialo, would be regular orZ,. Therefore, we have additive reduction/a.

In particular, the differentialv, is a nonzeroexact differential, i.e. of the formw, = du,
for some rational function. on Z,. Moreover, the divisofw,) is completely determined by
the integers/., wheree runs through the set of edges with sourceBy Lemma 2.6(i) and
Proposition 2.5, these numbers satisfy <v. <1and}_,,_,(v. — 1) = —3. The following
lemma gives the desired contradiction, and thus finishes the proof of Theorem 2.1.
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LEMMA 2.8.— Let k£ be an algebraically closed field of characterisfic> 0, m > 1 an
integer dividingp — 1, andr > 3. Let g: Z — P} be anm-cyclic cover given(birationally)
by an equation of the form

T

2" = H(:v —x;)",

=1

with zy, ..., z, € k pairwise distinct, and) < a; < m such thaty_, a, =m. Let¢: Z S Zbea
generator ofAut(Z/P} ), such thap*z = (z, ¢ € k* anmth root of unity. Fori =1,...,m, let
m; :=m/(a;,m), a; :=a;/(a;,;m) and P; := g~ (x;) (considered as a divisor of). Letw be
a meromorphic differential form o# such that

() ¢*w=C¢w,and

(i) (w)=>_,(miv;+a;—1)P;, with integers-2 < v; <1suchthaty ", v; =r—3,11 <0

andy; >0 fori > 1.

ThenC(w) # 0, i.e.w is not exact.

Proof. —Assume thatv is a meromorphic differential o4 such that (i) and (ii) hold. After a
change of coordinate, we may assume that 0. By (i), we can writew = fzdx, wheref is a
rational function inz. Expandingf as a Taylor series at= z; = 0, we obtain

(22) w= < i cjxj>zdx,
Jj=-3

with ¢; € k. Note thatz (resp.z) has a zero of order.; (resp. of ordefi;) at each point € P;.
In particular, the coefficients_s andc_, contribute to the poles af in Py, which are of order
(—m1V1 + a1 — 1), by (ll)

CLAIM 1. - There exist elements, b, € k such that

(22) w':=w — du is regular onZ, whereu := (byz~> + boz ') 2.

Sincew andu are regular away fron®;, we only have to pay attention to the pointsfin We
compute ‘Taylor series’ as in (21):

(23) dz = (ﬂx1+do+d1x+--.>zdx
m

and

du = (—2b1:c_3 — ng_g)zdx + (blzc_2 + b, 17_1) dz

@4) - ((% - 2)”1“ + (dObl + (% = 1)1)2)302 +---)zd:v.

Hence, to prove Claim 1, we have to fihd b, such that

(25) (ﬂ — 2) bl =C-3, dobl + (ﬂ — 1) bQ =C_2.
m

m

Usingm|p — 1 anda; < m — 2 one shows that does not divid€m — a; andm — a4 ; therefore,
ai1/m—2,a1/m—1%#0in k, and we can solve (25) in andb,. This proves Claim 1.
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CLAIM 2. — w #du.
Assuming the contrary, we would have

T

(26) (du) = (w) =Y _(mv; +d; — 1) P,

i=1

by condition (ii). Assume for the moment that the orderuoét all the ramification points is
prime-tos. Then (26) implies

But the divisor on the right has degrg€, mv; + a; = m(r — 2) > 0, contradiction! Thus, in
order to prove Claim 2, it suffices to show thahas no zero or pole in one of the ramification
points of order divisible by. Let z; € P, be a ramification point above;, for somei. Since
¢*u = Cu, ord,, (u) = m;k + a;, for some integek. If p dividesord,, (u) = m;k + a; then
eitherk > 1 or k < 0. In the first case, we would haved., (du) = m,v; + a; > m; + a;, hence
v; > 1, which contradicts our assumptions. The second case can occur orly-for But for
i=1,k € {—2,—1}, and in this case we have already shown that + a; is prime top (see the
end of the proof of Claim 1). We conclude that~ du, as asserted by Claim 2.

Setw’ := w —du, and note thap*w’ = (w’, by condition (i) and the definition af. Following
our previous notation, we can writ € H%(Z,Q )y, wherex:Z/m — k* is the character
with x(1) = ¢. By Lemma 1.4(iv), we havé(w) = C(w’) # 0. This proves the lemma, and also
Theorem 2.1. O

2.4. The monodromy group of a special cover

The analysis of the stable reduction of a special cover shows somewhat more than what is
stated in Theorem 2.1. We use the same notation as in Theorem 2.1. In parficilar; Plis
a special cover of typér;; a;), with stable reductiorf : Y — X. Define

(28) D; = {z € P'(K) | = specializes to a point o; — Xo =~ A },

the closed rigid disk containing all points Bf which specialize toX;. In particular,z; € D;.

PrROPOSITION 2.9. — We have

D;= {xe]P’l(]_(HvR(:v—xi) > ﬁ}

(Recall thatm; = m/(a;, m) andh; = (mv; + a;)/(a;,m).)
Proof. —This follows immediately from Remark 2.7, Eqgs. (19) and (20)n

For the rest of this section, we assume that the absolute ramification ind&xisfone. Thus,
we can identifyR, with the ringW (k) of Witt vectors over the residue field (in view of the
results of Section 3, this is not a serious restriction). By Proposition 1.3, the field of moduli of
is K" = KO(CZ()W)). Let K = K*' be the minimal extension oK™ over which f has stable
reduction. It follows from [13] that the extensidki/ K™ is Galois, of degree prime-to- The
Galois groupl := Gal(K/K™) acts faithfully andk-linearly onY (wheref:Y — X is the
stable reduction off), and this action commutes with the action 8f Therefore, we get an
induced action of* on X . The groud is called thenonodromy groupf f.
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THEOREM 2.10.—Let f: Y — P! be a special cover of type;; a;). Assume that the branch
pointsz; are rational overK), the fraction field ofi¥’ (k). Then the order of the monodromy
groupI of f is

IT|=[K:K™ =m-lem(hy,...,h.).
Furthermore, the action of" is trivial on X, and cyclic of order;(p — 1)/m; on X;.

Proof. —The proof of Theorem 2.1 shows that there exists an open stbsef i such that
U®grkC Zyis nonempty and/ :=U xz, Yp — U is a w,-torsor. But the generic fiber
Vk — Uk is aZ/p-cover. Therefore, the extensidd/K, contains thepth roots of unity.
Moreover, the subgroup := Gal(K/K(¢,)) C I is precisely the stabilizer df, Y (where
Y, denotes the inverse image 8§). It follows from Proposition 1.3(ii) thal‘/f >~ 7/m. Recall
thatY” is the union oft; andY;, the (possibly disconnected) inverse imag&effori =1,...,r.
Lety be a point wher#; intersectdy, and letY; be the connected componentigfcontainingy.
Sincel acts trivially onYy, it fixes Y/ andy. By Remark 2.7, Eq. (20),(Yz, ) = 1/(p — 1)h.
This means that the complete local ringY$ at 4 is of the form R[[u, v | uv = A'/"]], with
A:=(, — 1€ Ky(¢p). Applying an element of to the equationiw = A/ one shows thalf
induces a cyclic action oi/, of orderh,. More precisely, the image af in Aut(Y]) is the
quotientGal(Ko (¢, A/4)/Ko((,)) = Z/h;. Note that the action of on Y, commutes with
the action of the decomposition grotiy C H of Y/, which is of ordepm;. Now the statement
of Theorem 2.10 on the order Bffollows from the fact that the action &fonY  is faithful. The
statement about the action Bfon X; follows as well, using the fact thai; is relatively prime
to pm; (it can also be deduced directly from Proposition 2.9

3. Construction of special covers

This section is concerned with the construction of special covers by lifting certain objects from
characteristig to characteristi®). We start by definingpecial degeneration datavhich are
essentially given by am-cyclic coverZ, — P}, of the projective line in characteristic together
with a logarithmic differential fornug on Z,, with certain prescribed zeros. It is immediate from
the results of the previous section that the reducfioil — X of a special covef corresponds
essentially to a special degeneration datum. The main result of this section (Theorem 3.2) states
that, conversely, every special degeneration datum arises as the reduction of a special cover
Moreover, the covef is essentially unique, once we have chosen the branch pgints

The proof of Theorem 3.2 is divided into two steps. In the first step, we liftheorsor
Yy — Z, corresponding to the differentialy to characteristi®, in a Z/m-equivariant way.

This construction yields a metacyclic coverY — P!, which is essentially unique because the
x-eigenspace of the-torsion of the Jacobian dof, is étale (Proposition 1.3). In the second step
we show that the coveff we have constructed is special provided that we have chosen the branch
pointsz; inside certain closed rigid disk3; c P'. The proof uses thmonodromy actioon the
stable reduction of Galois covers, and a deformation argument.

In Section 3.5 we determine all special degeneration data in the-cade

3.1. Special degeneration data

Let f: ¥V — P! pe a special cover of typér;;a;), with s_table modelfr:Yr — Xgr and
reductionf:Y — X (see Definition 1.9). By Theorem 2.KX consists ofr + 1 components

Xo,..., X, such that, fori > 1, X; is the tail containing the specializatian of the branch
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point z;. The componentX,, which intersects all of the componens;, i > 1, is called
the original componentof X. We have a canonical isomorphisii, = P} arising from
the contraction morphismg: X — PL. This isomorphism identifies the intersection point
7; € Xo N X; with the specialization of;, regarded as point oRk. We may assume, without
loss of generality, that; # oco.

We have seen in Section 2.1 that the mapy” — X is the composition of amn-cyclic
admissible cover: Z — X with a finite mapY — Z of degreep which is the reduction of
the étalep-cyclic coverY — Z. By Proposition 2.4, the restrictiog : Zo — Xo = PL of g to
the original component can be identified with thecyclic cover of type(r;;a;). Moreover,
the p-cyclic coverY — Z has multiplicative reduction &,. This means that the induced cover
Y, — Z, carries the structure ofga,-torsor. This structure gives rise to a regular differential form
wo such that3*wy = y(1)wo. As before, we writevy € H?(Zo, 1)5. Let m; := m/(a;, m),

a; :=a;/(a;,m) andP; := go‘l(n) (we regardP; as a divisor orZ,). By Proposition 2.5, there
exist integers; € {0,1} with . v; = r — 3 such that

Furthermoreywy is logarithmic. In terms of the Cartier operatbrthis means that
(30) C(wo) = wo.

DErFINITION 3.1.— Letk be an algebraically closed field of characterigtic 0. A special

degeneration daturaverk is given by

e pairwise distinct;-rational pointsry, ..., 7. € ]P’,lc, with r > 3,

e an integerm > 1 dividing p — 1, and integersuy,...,a, such that0 < a; < m and
>, a; =m, (we letgy: Z, — P} be them-cyclic cover of type(r;; a;); furthermore, we
setm,; := m/(ai, m), a; = ai/(ai, m) andPi = gal(Ti)),

e integersvy, ..., v, € {0,1} suchthad , v; =r — 3, and

e adifferential formwy € H°(Zy, Q')y, such that (29) and (30) hold.

As explained in the paragraph preceding Definition 3.1, we can attach to (the reduction
of) a special coverf:Y — P! of type (z;;a;) a special degeneration datufm; a;; v;;wo).
Theorem 3.2 below states that, conversely, every special degeneration datum arises in this way.

For the rest of this section, we fix a special degeneration détitm;; v;; wy) overk. Let K
denote the fraction field oR, := W (k), the ring of Witt vectors ovek. Choose an algebraic
closureK of K. Fori € I, choose & ,-rational pointi; € P*(Ky) which lifts 7; € P! (k). Let

(31) D; = {xepl(f{)m(x—ji»%}

(compare to the statement of Theorem 2.10). We claim that the collection of(@skdoes not
depend, up to an automorphism]B}(O, on the choice of the points;. To show that this is so,
we may assume that = v, = v3 = 0. Furthermore, we can always normalize our choice such
thatz, =0, Z; =1 andZs = oo. Fori=4,...,r, we have) < pm;/(p — 1)h; < 1. Using the
triangle inequality and the fact that the valuatigntakes integral values oy, one shows that

D; does not depend on the choiceigf fori=4,...,r.

THEOREM 3.2.— Let (7;;ai;v5;w0) be a special degeneration datum overand let
x1,...,, be K-rational points onP!, such thatz; € D,. Then there exists a special cover
f:Y — P! of type(x;; a;), unique up to isomorphism, which gives risgg a;; v;; wo).
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This theorem implies Theorem B in the introduction. The proof is given in the next three
subsections. We will prove in [21] that the conditiene D; is also necessary fgito be special.
Unfortunately, the method of proof we use here does not give such an ‘if and only if’ result.

3.2. Definition of thelift

Let (7;; as; vi; wo) be a special degeneration datum ovandgo : Zo — ]P’1 them-cyclic cover
of type (7;; a;). Choosek -rational pointse; € P'(K) lifting the pointsr; (for the moment, we
do not assume that; € D;). Choose a finite extensiali /K, such thatz; is K -rational; letR
be the ring of integers ok .

The m-cyclic coverg, lifts uniquely to anm-cyclic covergl, : Zj, — P}, of smooth curves,
tamely ramified along the closure §%4,...,z,.} C ]P’}{ inside]P’}%. Letgx: Zx — ]P’}{ be the
generic fiber of/, andg: Z — P! its base change t&. Note thaly is them-cyclic cover of type
(x;;a,). Let Jr be the Néron-model of 7, overR. SinceZ%, is smooth overR, Jr represents
the functorPic®(Z},/R), see [1], 89, Proposition 4. The universal property of the Néron model
defines a surjective specialization map, (K) — Jz (k). By Proposition 1.3, the specialization
map induces an isomorphism

(32) Jz[plx — Jz,[plx

of F,-modules (of rank — 2).

The logarithmic differentials, corresponds to a line bundle on Z,, in the following way
(see e.qg. [10], Ill, 84). Leti be a rational function oﬂo such thatvy = dii /4. Then(@) = p- D,
for a divisor D of degreed on Zy; we setL := Oz (D). By definition, L¥? = O . Moreover,
B*wo = x(1)wo implies 3* L = L®X() (note that this makes sense becayse € ]F;) In other
Wo[ds,f; corresponds to an element 8§ _[p],. Let L be the line bundle ot corresponding
to L under the isomorphism (32). By the definition of the specialization map (3B)actually
the pullback of a line bundlé z on Z},, and Ly = OZ/ (D), whereD is a horizontal divisor
on Zy such thap - D = (u) for some rational function. By construction, we havey = du/a,
with @ := u|z . We letY — Z be thep,,-torsor corresponding té (birationally given by the
equationy? = u). After choosing ath root of unity(, € K, we can regard” — Z as an étale
p-cyclic cover. Now the compositiofi: Y — Z — P! is a metacyclic cover of typer;; a;) (see
Section 1.1).

The coverf we have constructed will not be special, in general. Howevgrjsfspecial then,
by construction, it gives rise to the special degeneration détya;; v;; wo) we started with. It
is also clear that any special cover which gives risértoa;; v;; wo) is isomorphic tof. Thus,
in order to prove Theorem 3.2, we have to show that special provided that; € D;, for all
1 € I. Before we can give a proof of this claim (in Section 3.4), we need to analyze the stable
reduction off. For this step, it is not yet necessary to assume D;.

3.3. Analyzingthe stablereduction of f

We may assume that the coveconstructed above has stable reduction over the fieltlet
fr:Yr — Xy be the stable model gf, andf: Y — X its reduction. Foi = 1,...,r, letz; € X
be the specialization of the branch point and letX; be the component ok containingz;.
Sincex; # x; mod vg, fori # j (as points oﬂP’l) it follows from [13], §3, that the components
X, are pairwise distinct tails ok and thatf: Y — X is separable exactly over the tails. In other
words, Assumption 2.2 holds. Note that the stronger Assumption 1.6 may not hdldpaght
have new tails.

However, Assumption 2.2 being valid, we may use the notation set up in Sections 2.1 and 2.2,
concerning the structure of:Y — X as the composition of the:-cyclic admissible cover
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g:Z — X and the ‘mixed torsorY — Z. Recall that we described this structure using certain
combinatorial dataT’;a.;v.). Here T is the dual graph of components of the semistable
curve X. The integers:. (wheree is an edge ofl’) describe the admissible:-cyclic cover

g: Z — X. Finally, the integers, (together with the:,.) determine the order of the zeros and the
poles of the differentials, attached to the torsod§, — Z,,, wherewv is an interior vertex of".

By construction off, Y — Z has multiplicative reduction above the original componggtand

the resultinwp-torsorYo — Z, corresponds to the differential,. Therefore, (29) implies that

(33) ve, =v; € {0,1},

wherey; is given by the special degeneration datum and the edge corresponding to the point
7; € Xy (in particular,r; is a singular point of{'). Note that we do not know (unlegss special)
whetherh; = v;m; + a, is the conductor of the Artin—Schreier codér— Z; over the tailX;.

Let vy € V be the vertex of the tre€ corresponding to the original componeXi. For any
edgee of T, we letT, be the connected componentBf— {e} which containg(e). We shall
call an edge: positiveif vy ¢ T, i.e. if e is directed away from the vertex.

LEMMA 3.3.— (i)Lete be a positive edge. Then > 0. If, moreovera. = 0 mod m, then
Ve > 1.

(i) The pointsry, ..., 7, are precisely the points of, which are singular points oX .

(iii) Fixi e I ={1,...,r}, and lete; be the edge with sourag corresponding ta. If v; =0,
thenT,, = {i}. On the other hand, if; = 1, then eitherT,, = {i} or we are in the following
case. The vertex:=t(e;) is the source of exactly three edgese’,e”. Also,t(e’) =i € I and
t(e") € B—Iis aleaf. See Figl.

Proof. —Suppose we have a positive edgauch thati. = 0 mod m andv, < 1. Note that this
implies a.» = 0 mod m for all edges contained in the subtrée (otherwise, T, would contain
exactly one leai € I, and themu, = a; # 0 mod m). Assume first that := ¢(e) is not a leaf.
From (15) and (16) we deduce the inequality

(34) > (e —1)=-1+r<0.

s(e’)=v, e'#e

Thus, we have. < 1 anda., = 0 mod m for at least one positive edgéwith sourcev. Hence,
after a finite number of steps, we find an edgsuch that := t(e) is a leaf,a. =0 mod m
andv, < 1. This means thak(,, is a new tail ofX and that the conductor of the Artin—Schreier

i Xy
X !
o
T X
Ti
Xo
Fig. 1.
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coverY, — Z, is h, = v. < 1. It follows that each connected componenfyfis a tail of Y
of genusD; furthermore, no ramification point specializesyfa This contradicts the minimality
of the stable modeYx, and proves the second assertion of (i). The proof of the first assertion is
similar, and uses the fact that the conductor of an Artin—Schreier coget is

Statement (i) of the lemma follows immediately from (i). Indeed, a singular poinkgn
which is not one of the; would correspond to a positive edgeavith a. = 0 mod m such that
ve = 1 (by the assumption (29)).

To prove (iii), fix: € I and let us assume that= t(e;) is not a leaf. Let; be the set of edges
with sourcev which are distinct fromg;. There is a unique edg€ € E; such thata, = a;,
anda. =0 mod m for all e € E; — {¢’}. In other words, then-cyclic coverZ, — X, = P} is
ramified at two points, so each componen£gthas genus. SinceY, — Z, is inseparable, each
component ofY,, has genu$ as well, andY,, intersects with as many componentsiofas Z,,
intersect with components &f. Thus, the minimality of the stable model implies thag| > 2.
Sincev,, = v; € {0,1} (Eq. (33)) we have

(35) > (ve—1)=—1+v;€{-1,0}.

eck;

It follows from (i) thatv,, > 0 andv, > 1 for all e € E; — {e’}. We conclude thaE; contains
exactly two edges;’ ande”. Furthermore, we find; =1, v, = 0 andv,» = 2. The remaining
assertion that(e’) = ¢ and that(¢”) is a leaf is left to the reader (we will not use them in what
follows). O

Here is an immediate consequence of Lemma 3.3:

COROLLARY 3.4.— Suppose thaf is not special. Then there exists an index I such that
the following holds. LeX, be the component which meets the original compoXgrih ;. Then
X, has nontrivial intersection with exactly three components ¢fncluding X,). Furthermore,
the torsorY — Z has additive reduction ovek,,.

See Fig. 1 for an illustration of the relevant part of the ffeand the curveX, in the situation
of Corollary 3.4.

3.4. Theproof of Theorem 3.2

In Section 3.2 we have constructed, for any tupleibfational points(z;) lifting (), a
metacyclic covey : Y — P! of type(z;; a;). In Section 3.3 we have analyzed the stable reduction
of f. In this section we show that is special provided that; € D;, with D; as in (31), thus
proving Theorem 3.2. We do this in two steps. First, we prove thet special if thex; are
Ky-rational. Note that this is a special case of Theorem 3.2, agsgnrsational point lifting;
is automatically a center of the digk;. Then, we show that the covgmremains special under a
deformation which moves the branch paintinto an arbitrary point € D;.

PROPOSITION 3.5. — Letz1,...,z, be Ky-rational points ofP' which lift 7,...,7.. Then
the metacyclic covef : Y — P! of type(z;; a;) defined in SectioB.2is special.

Proof. —By Proposition 1.3, the field of moduli of is K™ = K( (m)) C Ko(¢p). We may
assume that the fiel&k we have been working with in Sections 3.2 and 3.3 is the minimal
extension of K™ over which f has stable reduction. It is proved in [13] that the extension
K /K™ is Galois, of degree prime-tp-The Galois group := Gal(K/K™) acts faithfully and
k-linearly onY (wheref:Y — X is the stable reduction gf), and this action commutes with
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the action offf. We obtain an induced action 6fon Z and X. The action ofl* on the original
componeniX, is trivial. Compare with Section 2.4.

In our setup, they-cyclic coverY — Z reduces to eyp-torsorYO — Zy over the original
componeniX,. Therefore, the field{ contains theth roots of unity. Let

T :=Gal(K/Ko((p)) C T

One shows easily that acts trivially onY; (see also the proof of Theorem 2.10).

Now suppose thaf is not special. LetX,, be a component as in Corollary 3.4. In particular,
X, meets the rest ok in exactly three points. One of these points;iswhere X, meetsXy.
Let 7" and7” be the two other points, corresponding to the eddgesde” of Lemma 3.3(iii).
Note thatr; andr” are the two branch points of the-cyclic coverZ, — X,. Since the action
of T is trivial on X, and commutes with th&/m-action onZ, it fixes the point’ and the set
{7, 7"}. But the value o at the pointr; andr” is different, sor; and7r” are fixed individually.
Therefore[ acts trivially onX,.

Choose a poingj € Y abover; and letz be the image of; in Z. Note thaty and z are
ordinary double points of and Z, respectively. LeIYR be the completion ol at 4 and
ZR the completion ofZy at z. SinceYy is sem|stabIeYR is aformal annulus of the form
Yr 2 Spec R[[u, v | uv = «]], with = € R. Corollary 3.4 states that we have additive reduction
over the componerf,. By Remark 2.7, this implies

1

(36) 0<wvp(m) < TR

Let A := (, — 1. Note thatvg(X) = 1/(p — 1) and thatX is a uniformizer ofK((,). We
conclude from (36) thafy(¢,, \'/V) € K andvg(r) = ¢/(p — 1)N, with N > h; >m and
¢ prime-to-N. Moreover,N is prime-top becausek/ K| is of degree prime-t@- Let {x be a
primitive Nth root of unity ands € I such thatr(\/Y) = ¢y A/, Theno () = (5. Up to
permutation, the parameter(resp.v) of the formal annulug’z reduces to a local parameter
of Yy (resp.Y,) aty. Applying o to the equationiv = 7 and using the fact thdt acts trivially
on Yy, we find thats induces an automorphism &f, of order N which fixesy. We conclude
thato induces an automorphism o&f, of order at leastV/(N,m) > 1. But this contradicts the
fact (proved earlier) that acts trivially onX,. The proposition follows. O

Let f: Y — P! be as in Proposition 3.5. In particulgris special. Proposition 3.6 below states
that, given points:, € D;, we can deforny into a coverf’ of type (z;; a;). By construction, the
coverf’ is special and gives rise {0;; a;; v;;wp). This completes the proof of Theorem 3.2.

PROPOSITION 3.6. — For i € I, chooser, € D;. There exists a special covéf: Y’ — P! of
type(a; a;) which gives rise to the special degeneration datama;; v;; wo).

Proof. —By Theorem 2.10, the disR; (as defined by (31), with cente; = ;) corresponds
to the tail X}, i.e.
(37) , = {2z € P'(K) | z specializes to a point o; — {r;} = A} }.

In particular,z’, specializes to a point, € X; — {7;}.

We define a finite, H-invariant map f':Y’ — X between semistablé-curves. It is
determined, up to unique isomorphism, by the following requirements (compare with [13], §3.2).
Over the original componeti,, the mapsf: Y — X andf’:Y’ — X are the same. Even more,
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there exists an étale mé&p— X whose image containk, such that the pullbackg|;; andf’|;
are isomorphic, as:-cyclic covers ofU. Finally, for eachi € I, the restriction off’ to the open
subsetX; — {r;} ¢ X is a (possibly disconnectedj-cover which is at most tamely ramified
atz;.

Arguing as in [13], §3.2, one shows th#t: Y’ — X lifts to a finite, H-invariant morphism
fr: Y\ — Xr between semistablg-curves such that the following holds. Firgf, is the stable
model of anH-cover f': Y’ — P! of type (z};a;). Second, the restrictions of;, and fx
to the formal completionY;, of Xy along X, are isomorphic (as finite-invariant maps
to Xp). It follows immediately that theff-cover f’ is special and gives rise to the special
degeneration datufir;; a;; v;; wo ). This proves Proposition 3.6 and therefore completes the proof
of Theorem 3.2. O

3.5. Thecaser =14

Let us call two special degeneration data;a;;vi;wo) and (7/;a;;v;;wp) equivalentif

there exists & /m-equivariant isomorphisnp: Z, = Z} (whereZ, — P; and Z{, — P} are
the correspondingn-cyclic covers) such thap*wj = cwo, for some constant € 5. In this
section we determine all special degeneration data;; v;; wo) with four branch points, up to
equivalence.

Fix p, m and(a;), as in the beginning of Section 1.1. Itis clear that for given printhere is
only a finite number of possibilities for. and(a;), which are easy to describe. After reordering
the indices, we may assume that=1 andwv, = v3 = vy = 0. Furthermore, after a projective
linear transformation, we may assume that= 0, » = 1, 74 = oco. We write ) instead ofrs;
note that\ € k — {0,1}. Let Z, — P! be them-cyclic cover given by the equation

(38) ZM=a (xz— 1) (x — A\)*.

By an easy calculation, involving the divisorsgfz anddz, one shows that any differential,
on Z, satisfying Eq. (29) is of the form

zdx zdx

for some constant € k<. Here we have set := 2~ 'z(z — 1)(z — \). Note that
w™ = 2% (z — 1)% (z — \)%,
with a} :=m — a;.

Recall that the Cartier operator is defined as the unique additiveChoapdifferentials such
that

(40) C(vPw) = uC(w),
(41) C(du)=0, and
(42) C(du/u) = du/u,

for all rational functions: and differentialsv on Z,. We want to find all\ and p such that
C(wo) = wo. We seta := (p — 1)/m and andf () := w™ = 21 (x — 1) (x — A)?. Following
[22] and using (40)—(42), we compute
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1/p xf(r)*de 1/p,,,—1 e 1/p k+1
C(wo) = u'’'?C ) = Z ¢,/ PC (2" da)
k=aa)

1 1 dx
(43) = /’Ll/p (Cp/_p2 + 021/71121') E,
wherecy, is the coefficient ofe” in f(z)*. We see that (wg) = wo implies cp—2 = 0. On the
other hand, ifc,_o = 0, thency,_2 # 0, becaus&€(wy) # 0, by Lemma 1.4(iv). Therefore, if

cp—2 =0, we can sef, := céz/)(_”z_l), to obtainC(wy) = wy. We conclude: if\ is a zero of

(44) (N = XN: < ]3‘“_12 z> <O‘?/3> Al

=0

(with N :=p — aa} — 2 = aa; — 1), then there exists a differential, on Z, satisfying (29)
and (30), unique up to a constant factofij.

LEMMA 3.7.— The zeros of the polynomidlin (44) are simple and# 0, 1.

Proof. —It is shown in [19] that the zeros ¢b other than0 and 1 are simple (the reason
is that® satisfies a certain hypergeometric differential equation). Hence we have to show that
®(0),®(1) # 0. Recall thata; = m — a; and)_, a; = m. Sincea), = a1 + 2m — a — a}y > a1,
we haveaa), > aa; — 1= N, s0®(0) = (O‘J‘\?) # 0. On the other hand, we have

lA i
(45) ®(1) = coeff. of 2 in (x — 1)*(@+ad) — (a(%];r ag)).

Buta(ah +ab) — N =a(a) +ay+as—m)+1=a(m+as)+1>1,50P(1) #£0aswell. O
We can summarize the discussion as follows:

PROPOSITION 3.8. — Let r := 4. Givenp, m, (a;) and (v;) (satisfying the usual condi-
tions, and withy; = 1), there are exactlyra; — 1 nonequivalent special degeneration data
(145 a45vi;w0). In particular, for givenp, there exist only a finite number of nonequivalent special
degeneration data, and they are all defined over some finiteFigldTherefore, we may assume
k =T, throughout.

Remark3.9. — Forr > 4, it is still true that there exist only a finite number of equivalence
classes of special degeneration data, for figedhis is less obvious than for= 4, because
the polynomial® is replaced by a system of— 3 equations inr — 3 variables. However, a
deformation argument shows that this system has only finitely many solutions, see [21]. It would
be interesting to obtain a formula for the number of solutions, as in thercase
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