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DESSINS D’ENFANTS AND HUBBARD TREES

BY KEVIN M. PILGRIM *

ABSTRACT. — We show that the absolute Galois group acts faithfully on the set of Hubbard trees. Hubbard
trees are finite planar trees, equipped with self-maps, which classify postcritically finite polynomials as
holomorphic dynamical systems on the complex plane. We establish an explicit relationship between certain
Hubbard trees and the trees known as “dessins d’enfants” introduced by Grothendieck. © 2000 Editions
scientifiques et médicales Elsevier SAS
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RESUME. — Nous montrons que le groupe de Galois absolu opere fidelement sur 1’ensemble des arbres
de Hubbard. Ce sont des arbres finis, munis chacun d’une application préservant 1’arbre. Ces arbres
classifient les polyndmes a ensemble postcritique fini en tant que systemes dynamiques holomorphes
du plan complexe. Nous établissons une relation explicite entre les arbres de Hubbard et des arbres
combinatoires statiques introduits par Grothendieck sous le nom de «dessins d’enfants ». © 2000 Editions
scientifiques et médicales Elsevier SAS

1. Introduction

Recently there has been an attempt to gain an understanding of the structure of the absolute
Galois group I' = Gal(Q/Q) by exploiting the remarkable fact that there is a faithful action of
I' on a certain infinite set of finite, planar trees, called dessins. These dessins are combinatorial

objects which classify planar covering spaces X J,c- {0,1} given by polynomial maps f
unramified above {0, 1}. The action of I" on the set of dessins is obtained by letting I" act on the
coefficients of f, which one may take to be algebraic.

The main result of this paper (Theorem 3.8) is that there is also a faithful action of I" on the
infinite set of Hubbard trees, which are finite planar trees equipped with self-maps, and which
arise in the study of holomorphic dynamical systems. These Hubbard trees are combinatorial
objects which classify postcritically finite polynomials f:C — C as dynamical systems (a
polynomial f is postcritically finite if the postcritical set Py =, f°"(Cy) is finite, where
Cjy is the set of critical points in C). Again, one may take the coefficients of such a map to be
algebraic, and the action of I" is obtained by letting I" act on the coefficients of f. In fact, we
prove that I" acts faithfully on a highly restricted subset DBP (“dynamical Belyi polynomials™)
consisting of postcritically finite polynomials f whose iterates are all unramified over {0, 1} and
whose Hubbard tree is uniquely determined by the dessin associated to f as a covering space,
plus a small amount of additional data (see Definition 3.3).
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672 K.M. PILGRIM

There are several intriguing aspects to this dynamical point of view. First, it turns out that
the natural class of objects with which to work consists of actual polynomials as opposed to
equivalence classes of polynomials. Second, the dynamical theory is richer. In particular, we
will introduce a special class of dynamical Belyi polynomials which we call extra-clean and
which is closed under composition, hence under iteration. This will allow us to associate a tower
of invariants to a single given polynomial f, namely the monodromy groups Mon(f°") of its
iterates. Finally, the dynamical theory here embeds into the non-dynamical one in the following
sense: there is a ["-equivariant injection of the set of extra-clean dynamical Belyi polynomials
into the set of non-dynamical isomorphism classes of Belyi polynomials given by f +— f°2
(Theorem 3.4). From the point of view of dynamics, this is remarkable: the dynamics of such
an f, which involves an identification of domain and range, is completely determined by the
isomorphism class of f°2 as a covering space, which does not require such an identification.

Organization of this paper

In Section 2 we recall the Grothendieck correspondence giving the combinatorial classification
of algebraic curves defined over Q; throughout, we concentrate on the case of polynomials
and planar tree dessins. In Section 3, we introduce dynamical Belyi polynomials, relate them
with non-dynamical ones via the notion of a normalization, and prove a preliminary variant
(Theorem 3.7) of our main result in terms of normalized dessins. In Section 4 we discuss the
use of towers of monodromy groups to distinguish Galois orbits, give some examples, and derive
recursive formulae for monodromy generators of iterates of maps (Theorem 4.2). In Section 5 we
discuss various algebraic invariants, e.g., fields of moduli and definition, attached to dynamical
Belyi polynomials. We prove (Theorem 5.2) that the field K coefr(f) generated by the coefficients
of a dynamical Belyi polynomial f coincides with the field of moduli of the conjugacy class of f
introduced by Silverman [10]. Section 6 is essentially independent, consisting of a translation of
our preliminary main theorem into the language of Hubbard trees.

2. Dessins d’enfants

In 1979, Belyi proved a remarkable theorem: an algebraic curve X defined over C is defined
over Q only if there is a holomorphic function f:X — PC, called a Belyi morphism, all of
whose critical values lie in {0, 1, 00}, i.e., X is a branched covering of PLC ramified only over
{0,1, 00} [1]. This in turn led Grothendieck to the observation that there is a faithful action of the
absolute Galois group I = Gal(Q/Q) on a set of simple, concrete, combinatorial objects, called
dessins, which in fact one may take to be certain finite planar trees. The structure of the orbits
of I' under this action remains quite mysterious, and the development of effective combinatorial
invariants for distinguishing them has been the subject of recent work (see, e.g., [7]).

Combinatorial classification of algebraic curves

We begin by outlining the combinatorial classification of algebraic curves X defined over Q.
For a good introduction to the subject, see, e.g., the article by Schneps in [9]. The statements
are cleanest provided one first introduces a minor, commonly adopted technical notion. A Belyi
morphism f: X — P!C is called clean if the ramification at each point lying over 1 is exactly
equal to two. Let g(z) =4z(1 — z). If f is a Belyi morphism, then go f =4f(1 — f) is a clean
Belyi morphism, and so X is defined over Q if and only if there is a clean Belyi morphism from
X to PIC. If f is clean we call the pair (X, f) a clean Belyi pair. Two such pairs (X1, f1),
(X2, f2) are called isomorphic if there is an isomorphism ¢: X; — X5 with f; = f 0 ¢. We will
be mainly interested in the case when X = P*C and f is a polynomial.
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DESSINS D’ENFANTS AND HUBBARD TREES 673

On the combinatorial side, a Grothendieck dessin is an abstract simplicial 2-complex with 0-
cells, 1-cells, and 2-cells denoted respectively Xy, X3, X2 such that the underlying space is
homeomorphic to a closed, connected, oriented surface, and such that the vertices X are given
a bipartite structure, i.e., are colored black and white such that each edge of X; has exactly one
black and one white vertex. Two such dessins are called isomorphic if there is an orientation-
and color-preserving isomorphism of complexes. A dessin is called clean if each white vertex is
the endpoint of exactly two edges. The genus of a dessin is the genus of the underlying surface.
We will be mainly interested in the case when the genus is zero and the union of edges and
vertices forms a tree, i.e., there is a single two-cell in X5. In this case we shall specify a dessin
by specifying a planar tree with a bicoloring of vertices.

A clean Belyi pair (X, f) determines a clean dessin Dy whose white vertices are preimages
of 1, whose black vertices are preimages of 0, whose edges are preimages of the segment [0, 1],
and whose 2-cells are preimages of P*C — [0, 1]. The classification may now be formulated as
follows ([9], Theorem 1.5):

THEOREM 2.1 (Grothendieck correspondence).— The map (X, f) — Dy descends to a
bijection between isomorphism classes of clean Belyi pairs and clean dessins.

Convention

We are mainly concerned with the case when X = P1C = C=Cu {oo} and f is a polynomial.
A clean Belyi pair (X, f) is determined by a clean Belyi polynomial f € Q[z]. Two clean Belyi
polynomials are then isomorphic if and only if there is an affine map A € Aut(C) with f = go A.
Note that if f = g o A, with f, g € Q[z] of degree at least one, then necessarily A € Q[z] since
A must send the set f~1({0,1}) onto the set g~ ({0, 1}) and both sets consist of a collection of
at least two algebraic numbers.

Throughout the remainder of this work, we will deal exclusively with clean Belyi polynomials
and clean dessins of genus 0, i.e., planar tree dessins. We therefore now adopt the convention
that the term “dessin” means clean planar tree dessin, and that “Belyi polynomial” means clean
Belyi polynomial, unless otherwise specified.

Notation

« Aut(C), the group of affine maps az + b, a # 0;

. A, B, elements of Aut(C);

« f, 9, f1, fa2, clean Belyi polynomials;

. BP, the set of clean Belyi polynomials;

« [BP], the set of isomorphism classes of clean Belyi polynomials;
« [f], the isomorphism class of f as a Belyi polynomial,

« Dy, the dessin of f;

« [Dy], the isomorphism class of D;

. T, the absolute Galois group Gal(Q/Q).

Action of Gal(Q/Q) on the set of dessins

The group I' acts on clean Belyi polynomials by twisting coefficients, i.e., if ¢ € I' and
f(z) =aqz®+ - + ao, then

fo=0(ag)z%+---+ o(ag).

This action descends to an action on the set [BP] of isomorphism classes of Belyi polynomials,
since if f1 = fa 0 A, then f7 = (f2 0 A)? = f§ o A°. By the Grothendieck correspondence, we
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674 K.M. PILGRIM

get an action of I" on isomorphism classes of dessins. Lenstra and Schneps ([9], Theorem 11.4)
have shown:

THEOREM 2.2.— The action of I' on the set [BP] of isomorphism classes of Belyi
polynomials, hence on the set of dessins, is faithful.

In fact, their argument is constructive: given any o € I" and o, 3 € Q with o() = 8 # a, they
produce, by using the arguments in the proof of Belyi’s theorem and an elementary, technical,
algebraic lemma (Lemma 3.1 below), a pair f,, f3 of nonisomorphic Belyi polynomials with
fa =Tl

Since the notion of isomorphism between Belyi polynomials involves a coordinate change in
the domain, but not in the range, they cannot be considered as dynamical objects. In the next
section, we replace the notion of isomorphism with that of affine conjugacy, and show that the
action of I" on a suitable set of affine conjugacy classes is faithful.

3. Dynamical Belyi polynomials

Let f:C — C be a polynomial of degree d > 2. Complex dynamics is concerned with the
behavior of points under iteration of such a function, i.e., with the behavior of orbits

{z,f(z),f°2(z),f°3(z), e }’

where f°" denotes the n-fold composition of f with itself. It turns out that understanding the
orbits of the critical points (i.e., those ¢ € C for which f’(c) = 0) is crucial to understanding the
global dynamics of f. Let C; denote the set of critical points of f and V§ = f(Cy) the set of
critical values. We define the postcritical set of f by

Py =J fom(Cy).

n>0

Then V¢ C Py, f(Pf) C Py, and Pfon =Py forall n > 0.

Definition 3.1. — A dynamical Belyi polynomial is a Belyi polynomial f for which Vy =P =
{0,1}. We denote by DBP the set of all dynamical Belyi polynomials.

Recall that, by convention, f is assumed clean.

PROPOSITION 3.1.— Let f be a dynamical Belyi polynomial. Then f~*({0,1}) D {0,1} and
hence 0 and 1 are vertices of the dessin D .

Proof. — The statement follows since f({0,1}) c {0,1}. O

PROPOSITION 3.2.— Let f, g € DBP, and suppose g = B o f o A, where A, B € Aut(C).
Then B =id.

Proof. — We have
{0,1}=Vy=Vpofos = B(Vsou) = B(Vy) = B({0,1}),

where the first equality follows from the preceding definition. So B =id or B(z) =1 — z. To
rule out the latter case, choose z € f~1(0) mapping to 0 with local degree one. Then

g(A™(2)) =(Bo foA)(A™'(z)) =B(0) =1
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mapping by local degree one, which violates the cleanness of g. O

Two polynomials f, g:C — C for which there is an affine map A:C — C satisfying g =
A~1fA are called conjugate. As dynamical systems, they are the same, just viewed in different
coordinates. A conjugacy from f to itself is called an automorphism of f. As a corollary to the
previous proposition, upon setting B = A~! we obtain:

THEOREM 3.1.— No two distinct elements f, g of DBP are conjugate, and no element of
DBP has a nontrivial automorphism.

THEOREM 3.2.— Let f € DBP, and let

Zp={z2|f(z)=0}, O;={z|f(x)=1}, Fix(f)={z]f(2) =2}

Then f is uniquely determined by any one of the three sets Zg, Oy, Fix(f), counted with
multiplicity.

Proof. - If f, g € DBP and either Zy = Z, or Oy = Oy, then f = B o g where B € Aut(C),
and so by Theorem 3.1 f = g. If Fix(f) = Fix(g) then since f({0,1}), g({0,1}) C {0,1} we
must have f|{0,1} = g|{0,1}. Since Fix(f) = Fix(g),

1 f(z) —z=MAg(z) — z), forsome\eC.

If either f(0) = g(0) =1 or f(1) = g(1) = 0 then substituting into (1) implies A=1and f = g.
Otherwise, f(0) = g(0) =0 and f(1) = g(1) = 1. Differentiating Eq. (1) we obtain

(2) fl(z)=1=X(g'(z) - 1).

The cleanness criterion implies that /(1) = ¢’(1) = 0, and substituting this into Eq. (2) implies
A=land f=g. O

DBPs and normalized Belyi polynomials

We next relate dynamical Belyi polynomials and non-dynamical ones via the notion of a
normalization.

Definition 3.2.— A normalized Belyi polynomial is a pair (f,(z,w)) where f is a Belyi
polynomial and (z,w) is an ordered pair of distinct (algebraic) numbers with {z,w} C
f71({0,1}). Two normalized Belyi polynomials (f1,(21,w1)) and (f2,(22,w2)) are called
isomorphic if there is an A € Aut(C) for which f; = fy 0 A, 20 = A(21), and we = A(wn).
We denote the set of isomorphism classes of normalized Belyi polynomials by [BP*].

Note that we do not require that z € f~1(0) and w € f~1(1).

Definition 3.3. — A normalized dessin D* is a dessin D together with an ordered pair (z, w) of
vertices of D. Two normalized dessins D7, D3 are called isomorphic if there is an isomorphism
D; — D> of dessins carrying one ordered pair of vertices to the other.

An immediate consequence of the definitions and the Grothendieck correspondence is
that the natural map sending a normalized Belyi polynomial (f,(z,w)) to the normalized
dessins (Dy, (z,w)) descends to a bijection between isomorphism classes of geometric objects
(normalized Belyi polynomials) and combinatorial ones (normalized abstract dessins).
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Recall that if f € DBP then 0 and 1 are vertices of D . There are natural maps

DBP — [BP*] givenby  f [
DBP — [BP]  given by F—1fl
[BP*] — [BP] induced by (f,(z,w))+— [f],

where [f] is the isomorphism class of f as a Belyi polynomial. The following diagram then
commutes:

DBP\ [BP*]
[BP]

THEOREM 3.3. — The map DBP — [BP*| given by

fr—=[(£.(0,1))]
is a bijection.

Proof. — The map is clearly injective, since if (fi,(0,1)) is isomorphic to (f2,(0,1)), then
the affine map A giving the isomorphism must send zero to zero and one to one. Hence A
is the identity and f; = fo. The map is surjective as well. First, any isomorphism class of
normalized clean Belyi polynomial contains a representative where z = 0 and w = 1, which
can be constructed as follows. Choose any representative (f, (z,w)), and let A be the unique
affine map which sends 0 to z and 1 to w. Then (f o A,(0,1)) is equivalent to (f,(z,w)).
We now claim that f o A € DBP. First, Vyo4 = Vy = {0,1} since f is assumed clean and
precomposing f by an affine map does not change the set of critical values. On the other hand,
by construction, f o A({0,1}) C {0,1}. Hence Pso4 C {0,1} and so f o A € DBP. By the
definition of isomorphism in BP*, [f o A, (0,1)] = [f, (2, w)] and so the map is surjective. O

Thus, a normalized Belyi polynomial (f, (z,w)) determines a holomorphic dynamical system
g = f o A € DBP by identifying range and domain via an affine map A sending 0 to z and 1
to w. The above theorem implies that DBP is in bijective correspondence with [BP*], which in
turn is in bijective correspondence with the set of normalized clean dessins.

The fibers of the map DBP — [BP]

The fiber of the forgetful map DBP — [BP] over a given element [f] € [BP] is a disjoint
union of four nonempty subsets, which we describe in terms of the identification of DBP with
[BP*] given above. In our normalization of f, we may freely and independently choose z or w
to be a black vertex (a preimage of 0) or a white vertex (a preimage of 1) of Dy, giving us four
possibilities, all of which can occur. In terms of dynamics, suppose g is the element of DBP
corresponding to [(f, (z,w))] € [BP*] in Theorem 3.3. Then

zisblack <= g¢(0) =0,
zis white <= g¢(0) =1,
wisblack <= ¢(1)=0,
w is white <= ¢(1)=1.
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Within each of these classes, one can further classify points g in the fiber over [f] by recording
the local degrees of g near 0 and 1.

Extra-clean dynamical Belyi polynomials

Dynamics is concerned with iteration, and although an iterate of a dynamical Belyi polynomial
is again a Belyi polynomial, the property of cleanness may be lost. For example, if we choose w
to be a white vertex, then g(1) = 1 by local degree two, and so g°2(1) = 1 but now mapping by
local degree four, violating cleanness. To remedy this, we formulate

Definition 3.4.— An element g € DBP is called extra-clean if g(1) = g(0) = 0, and the local
degrees of g near 0 and 1 are both equal to one. The set of all extra-clean dynamical Belyi
polynomials we denote by XDBP.

In terms of normalizations, suppose g € DBP corresponds to the class of normalized dessins
[(D, (z,w))]. Then g € XDBP if and only if z,w are both ends of the dessin D, which are
necessarily black since, by cleanness, white vertices are always incident to two edges. We denote
by [XBP*] the subset of [BP*] corresponding to XDBP, and refer to the associated normalized
dessins as extra-clean normalized dessins. We obtain the following commutative diagram:

XDBP [XBP”]

N7

[BP]

where the map XDBP — [BP] is surjective.

Remark. — We emphasize here that DBP is a set of maps, not a set of maps modulo an
equivalence relation. Composition does not descend from BP to a well-defined operation on
isomorphism classes of non-dynamical Belyi polynomials; see the example in Section 4 for two
polynomials f, g with D isomorphic to D, but with D402 and D fo2 non-isomorphic.

Indeed, if f, g € XDBP, this is always the case:
THEOREM 3.4.- If f, g € XDBP, then f o g € XDBP. Moreover,

Dfo2 ZDgoz < f:g

Thus the map
XDBP — [BP],
given by
fr—1f,
is injective and I'-equivariant.

This is perhaps remarkable, since it implies that the dynamical system generated by f is
completely determined by the topology of f°2 as a covering space. This property fails even for
the highly restricted set of postcritically finite quadratic polynomials p. Apart from p(z) = 22,
p°? will have two finite critical values, and as covering spaces of the twice-punctured plane the
second iterates of any two such p are isomorphic.

The proof relies on the following lemma of Lenstra and Schneps used in their proof of
Theorem 2.2, and a fact from holomorphic dynamics:
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LEMMA 3.1([9], LemmaIL.3). — Suppose G, H, é, H are polynomials with G o H = GoH

and deg(H ) = deg(H). Then there exist constants c, d for which H =cH +d, i.e., H=Bo H
for some B € Aut(C).

Proof of Theorem 3.4. — For a polynomial f, set Fix(f) = {p| f(p) — p = 0}. From dynamics,
one knows that if there is a p € Fix(f) which is a multiple root of f(z) — z (i.e., the multiplier
of f at p is equal to one), then there is a critical point of f whose forward orbit is infinite and
accumulates at p ([2], Theorem 9.3.2). For dynamical Belyi polynomials this cannot occur, since
P;={0,1}. Hence, for any dynamical Belyi polynomial, the fixed points are all simple. Thus

f@)=z=c I] G-»)

peFix(f)

for a nonzero constant c. By Theorem 3.2 it suffices to show Fix(f) = Fix(g).

The hypothesis and the Grothendieck correspondence imply that there is an A € Aut(C) with
f°2 = g°?20 A. We write thisas fo f = go(go A). The polynomials f and g have the same degree,
since their second iterates have the same degree. Applying Lemma 3.1 with G =g, H = go A,
G = H = f we obtain an affine map B for which f = B o (g o A). By Proposition 3.2, B = id
andso f =go A.

Now let p € Fix(f). Then by the previous paragraph

fp)=goAlp)=p
and by hypothesis

F2(p)=g°* 0 Alp) =p.

Applying g to both sides of the last equality in the first equation, and comparing with the second
we get

9(p) =g°* 0 A(p) =p.

Hence Fix(f) C Fix(g). Equality follows, either by appealing to the symmetry of the roles of f
and g, or the fact that Fix(f), Fix(g) have the same size. O

Galois action on DBP

The group I" acts on polynomials f € Q[z] by acting on its coefficients. Note that this is a left
action, i.e., f°7 = (f7)7 since, e.g., if z is algebraic,

fe(z)=0o0foo 1(2).

Hence the action of I" on polynomials in Q[z] by twisting coefficients is natural with respect to
the dynamics in the following sense: if f is defined over Q and z € Q, then o(f(2)) = f?(0(2)).

Using this, and the fact that the property of being a critical point is algebraic, it is easy to
show that the group action of I on Q[z] preserves the set DBP. Similarly, the action of I" must
preserve local degrees, i.e., if f maps z to y by local degree k, then f° maps o(z) to o(y) by
local degree k. Hence I acts on the set XDBP as well.

Recall that [XBP*] corresponds to the set XDBP under the bijection given in Fig. 2 and
Theorem 3.3. The group I” also acts on [XBP*| in the obvious way:

o-[(f,zw)] = [f7: (o(2), 0(w))].

4¢ SERIE — TOME 33 — 2000 - N° 5






