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GEOGRAPHY OF THE CUBIC CONNECTEDNESS LOCUS:
INTERTWINING SURGERY

BY ADAM EPSTEIN AND MICHAEL YAMPOLSKY

ABSTRACT. - We exhibit products of Mandelbrot sets in the two-dimensional complex parameter space of cubic
polynomials. Cubic polynomials in such a product may be renormalized to produce a pair of quadratic maps. The
inverse construction intertwining two quadratics is realized by means of quasiconformal surgery. The associated
asymptotic geography of the cubic connectedness locus is discussed in the Appendix. © Elsevier, Paris

RESUME. - Nous trouvons des produits de Fensemble de Mandelbrot dans 1'espace a deux variables complexes
des polynomes cubiques. La renormalisation d'un polyn6me cubique appartenant a un tel produit donne deux
polyn6mes quadratiques. Le precede inverse qui entrelace deux polynomes quadratiques est obtenu par chirurgie
quasiconforme. La geometric asymptotique du lieu de connexite cubique associee est decrit dans Fappendice.
© Elsevier, Paris
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1. Introduction

The prevalence of Mandelbrot sets in one-parameter complex analytic families is a
well-studied phenomenon in conformal dynamics. Its explanation in [DH2] has given rise
to the theory of renormalization, and has inspired many efforts, starting with the seminal
work [BD], to invert this procedure by means of surgery on quadratic polynomials.

In this paper we exhibit products of Mandelbrot sets in the two-dimensional complex
parameter space of cubic polynomials. These products were observed by J. Milnor in
computer experiments which inspired Lavaurs' proof of non local-connectivity for the
cubic connectedness locus [La]. Cubic polynomials in such a product may be renormalized
to produce a pair of quadratic maps. The inverse construction is an intertwining surgery on
two quadratics. The idea of intertwining first appeared in a collection of problems edited
by Bielefeld [Bi2]. Using quasiconformal surgery techniques ofBranner and Douady [BD],
we show that any two quadratics may be intertwined to obtain a cubic polynomial. The
proof of continuity in our two-parameter setting requires further considerations involving
ray combinatorics and a pullback argument.

After this project was finished, we were informed by P. Haissinsky that he is
independently working on related problems [Hai].

2. Preliminaries

In this section we discuss the relevant facts and tools of holomorphic dynamics. We
assume that the reader is familiar with the basic notions and principles of the theory of
quasiconformal maps (see [LV] for a comprehensive account). The knowledgeable reader
is invited to proceed directly to §3.

2.1. Polynomial dynamics. Julia sets, external rays, landing theorems, combinatorial
rotation number, Yoccoz inequality

We recall the basic definitions and results in the theory of polynomial dynamics.
Supporting details may be found in [Mill].

Let P : C —^ C be a complex polynomial of degree d >_ 2. The filled Julia set of
P is defined as

K{P) = [z € C^P071^)} is bounded}

and the Julia set as J ( P ) = QK(P). Both of these are nonempty compact sets which are
connected if and only if all critical points of P have bounded orbits.

Recall that if P is a monic polynomial with connected Julia set then there exists a
unique analytic homeomorphism (the Bottcher map)

Bp:C\ K{P) -^ C \ D
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which is tangent to the identity at infinity, that is B p { z ) / z —> 1 as z —^ oo. The Bottcher
map conjugates P to z ^ zd

Bp{P{z)) = {Bp{z))^

thereby determining a dynamically natural polar coordinate system on C \ K(P). For
p > 1 the equipotential Ep is the inverse image under Bp of the circle {pe2^6^ € R}.
The external ray at angle 0 is similarly defined as the inverse image re of the radial line
^p^^^p > 1} Since P maps re to r^, the ray re is periodic if and only if the angle
0 is periodic (mod 1) under multiplication by d. An external ray re is said to land at
a point C, G J(P) when

\^B-p\pe^iB)=^

We note that if the Julia set of P is locally connected then all rays re land, and their
endpoints depend continuously on the angle 6 (see the discussion in [Mill]). We refer
to [Mill] for the proofs of the following results:

THEOREM 2.1 (Douady and Hubbard, Sullivan). - IfK(P) is connected, then every periodic
external ray lands at a periodic point which is either repelling or parabolic.

THEOREM 2.2 (Douady, Milnor, Yoccoz). - If K(P) is connected, every repelling or
parabolic periodic point is the landing point of at least one external ray which is necessarily
periodic.

The landing points of such rays depend continuously on parameters:

LEMMA 2.3 ([GM]). - Let Pf be a continuous family ofmonic degree-d polynomials with
continuously chosen repelling periodic points Ct. If the ray of angle 6 for P^ lands at (^p,
then for all t close to to the ray of angle 0 for Pf lands at Ct.

Kiwi has proved the following useful separation principle which directly illustrates why
a degree-d polynomial admits at most d — 1 non-repelling periodic orbits; the latter result
was earlier shown by Douady and Hubbard and appropriately generalized to rational maps
by Shishikura.

THEOREM 2.4. - Let P be a polynomial with connected Julia set, n a common multiple
of the periods of non-repelling periodic points, Ti the union of all external rays fixed under
P071 together with their landing points, and £ / i , . . . , Um be the connected components of
CMJ^O^W Then:

• Each component Ui contains at most one non-repelling periodic point;
• Given any non-repelling periodic orbit < j , . . . , ̂  passing through U^,..., (7^, at least

one of the components E/^ also contains some critical point.

We assume henceforth that K{P) is connected. Let r = re be a periodic external ray
landing at the periodic point ^ G K[P\ whose orbit we enumerate

C = Co 1-̂  Cl 1-̂  • • • 1-̂  Cn = C-

Denote by Ai C Q/Z the set of angles of the rays in the orbit of r landing at ^.
The iterate P0" fixes each point <^ permuting the various rays landing there while
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154 A. EPSTEIN AND M. YAMPOLSKY

preserving their cyclic order. Equivalently, multiplication by d" carries the set Az onto
itself by an order-preserving bijection. For each % we may label the angles in Ai as
0 < 01 < 02 < ... < 0^ < 1; then

^nQi ̂  gi-^p ^^ ̂

for some integer p, and we refer to the ratio p / q as the combinatorial rotation number of
r. The following theorem of Yoccoz (see [Hub]) relates the combinatorial rotation number
of a ray landing at a period n point C to the multiplier A = (-P0")'^)'

Yoccoz INEQUALITY. - Let P be a monic polynomial with connected Julia set, and
^ 6 K(P) a repelling fixed point with multiplier A. If ̂  is the landing point of m distinct
cycles of external rays with combinatorial rotation number p / q then

(21} Rep > mq
\ M ' ± ) T~————o ... / 1 9 ^ TTl—————7-\p — 27rip/q\2 2 log d '

where p is the suitable choice of log A.

More geometrically, the inequality asserts that p lies in the closed disc of radius
logd/(mq) tangent to the imaginary axis at 27rip/q.

2.2. Polynomial-like maps. Hybrid equivalence, Straightening Theorem, continuity
of straightening

Polynomial-like mappings, introduced by Douady and Hubbard in [DH2], are a key tool
in holomorphic dynamics. A polynomial-like mapping of degree d is a proper degree-d
holomorphic map f : U —> V between topological discs, where U is compactly contained
in V. One defines the filled Julia set

K(f) ={z€ U\fQn{z) G V, Vn > 1}

and the Julia set J(f) = 9K(f). We say that the map / is quadratic-like if of d = 2,
and cubic-like if d = 3.

Polynomial-like maps f : U —> V and / : U —^ V are hybrid equivalent

'-f
hb

if there exists a quasiconformal homeomorphism h from a neighborhood of K{f) to a
neighborhood of K{f), such that ho f = foh near K{f) and 9h = 0 almost everywhere
on K(f). We remark that h can be chosen to be a conjugacy between f\u and f\^.
Notice that h is conformal on the interior of K(f) and therefore preserves the multipliers
of attracting periodic orbits. In view of the well-known quasiconformal invariance of
indifferent multipliers, we observe:

REMARK 2.5. -A hybrid equivalence between polynomial-like maps sends repelling orbits
to repelling orbits, and preserves the multipliers of attracting and indifferent orbits.

The following is fundamental:
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THEOREM 2.6 (Straightening Theorem, [DH2]). - Every polynomial-like mapping
f : U —> V of degree d is hybrid equivalent to a polynomial P of degree d. If K{f)
is connected then P is unique up to conjugation by an affine map.

For a quadratic-like / with connected Julia set, we write ^(/) = c where

f^z) = z2 + c

is the unique hybrid equivalent polynomial. The following theorem is due to Douady and
Hubbard; we employ the formulation of [McM2, Prop. 4.7]:

THEOREM 2.7. - Let fk '' Uk —^ Vk be a sequence of quadratic-like maps with connected
Julia sets, "which converges uniformly to a quadratic-like map f : U —> V on a neighborhood
ofK{f). ThenxUk) - x(A

The proof of the uniqueness assertion in Theorem 2.6 relies essentially on the following
general lemma due to Bers [LV]:

LEMMA 2.8. - Let U C C be open, K C U be compact, and (f) and <I> be two mappings
U —^ C which are homeomorphisms onto their images. Suppose that (j) is quasiconformal,
that <1> is quasiconformal onU \K, and that (f) = $ on K. Then $ is quasiconformal, and
Q(f) = 9$ almost everywhere on K.

2.3. Quadratic polynomials. Mandelbrot set, renormalizable maps and tuning

Basic facts on the structure of the Mandelbrot set are found in [DH1]. Our account of
renormalization and the Yoccoz construction follows [Lyu3] (see also [Mil5] and [McMl]).

The connectedness locus of the quadratic family fc(z) = z2 + c is the ever-popular
Mandelbrot set

A4 = {c G C[ J(fc) is connected}

depicted in Fig. 1. The following results are shown in [DH1].

THEOREM 2.9 (Douady and Hubbard). - The Mandelbrot set is compact and connected,
with connected complement.

0

By definition, the hyperbolic components of M are the connected components H of M
such that fc has an attracting periodic orbit for c € H. Recalling that there can be at most
one such orbit, we denote its multiplier A^(c).

THEOREM 2.10 (Douady and Hubbard). - Let H be a hyperbolic component. The multiplier
map

\H : H -^D

is a conformal isomorphism. This map extends to a homeomorphism between H and the
closed disc D.

Let fc be a quadratic polynomial with connected Julia set. By Theorem 2.1 the external
ray of external argument 0 lands at a fixed point of /c, necessarily repelling or parabolic
with multiplier 1, henceforth denoted /3^. The main hyperbolic component Ho is the set
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Fig. 1. - The Mandelbrot set M

of all c for which the other fixed point a^ is attracting; the boundary point c = 1/4 is
hereafter referred to as the root of M..

For nonzero p / q e Q/Z with (p, q) = 1, we define the p/q-limb £p/q to be the connected
component of M. \ HQ whose boundary contains

^^ _ \-1( 27rip/q\rooip/g — ^n^\e ;,

and denote H p / q the hyperbolic component attached to Ho at this point; by convention,
£0/1 = M and ffo/i •= Ho.ln view of the following, we may refer to a^ as the dividing
fixed point.

LEMMA 2.11. - For q > 2, a parameter value c € M lies in Cp/q if and only ifa^ is the
landing point of an external ray with combinatorial rotation number p / q .

Consider a polynomial fc with connected Julia set. Let Co ̂  Ci h^ • • • 1-̂  Cm = Co be a
repelling cycle of fc, such that each Ci is the landing point of at least two external rays.
Let % be the collection of all external rays landing at these points, and let "R! = -% be
the symmetric collection. Let us also choose an arbitrary equipotential E. Denote by 0 the
component of C \ (% U TV U E) containing 0. This region is bounded by four pieces of
external rays and two pieces of E. Let n be the period of these rays, C = Ci Ae element
of the cycle contained in 90, and 0' C 0 the component of /^(O) attached to C. If
0 G n' then f^ : 0.' -^ 0 is a branched cover of degree 2.

Following Douady and Hubbard, we say that a polynomial fc is renormali^able if there
exists a repelling cycle {Cz} as above, such that 0 e 0' and 0 does not escape ^/ under
iteration of f^. In this case f^\^ can be extended to a quadratic-like map f^ : U -^ V
with connected Julia set by a thickening procedure (a version of this procedure is employed
in §5). To emphasize the dependence of this construction on the choice of periodic orbit,
we shall say that this renormalkation of fc is associated to C-
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Recall that the uj-limit set of a point z under a map / is denned as

iJf(z) = {w\fo'^'k{z) —> w for some n^ —^ co}.

When / = fc we simply write o;c(^) and pay special attention to the c^-limit set of the
critical point 0. The following observation will be useful along the way:

REMARK 2.12. - For a renormaliwble quadratic polynomial fc ^ith n as above,

n-l

^c(o) c (J ̂ W n J(/c).

In particular, /3^ ^ ^c(O)'

THEOREM 2.13 (Douady and Hubbard, [DH2]). - Let fco be a renormaliz.able quadratic
polynomial "with associated periodic point C. Then there exists a canonical embedding of the
Mandelbrot set M. onto a subset M.' 3 Co such that every map fc with c G J^A' \ { one point}
is renormalizable with associated repelling periodic point C,c, where c i—> Cc is continuous
and Cco = C-

These subsets J^A' are customarily referred to as the small copies of the Mandelbrot set.
The inverse homeomorphism K : M' —» M. is defined in terms of the straightening map \:

M'3c ^ JT'-Vc^Vc ^ /<c)G.M.

The periodic point (^ becomes parabolic with multiplier 1 at the excluded parameter value,
hereafter referred to as the root of .M'. We write M.p/q for the small copy "growing" from
the hyperbolic component H p / q , its root being the point rootp/g.

2.4. Cubic polynomials. Connectedness locus, types of hyperbolic components,
Per^(A)-curves, real cubic family

We now turn our attention to cubic polynomials. Our presentation follows the detailed
discussion in [Mil2].

Observe that every cubic polynomial is affine conjugate to a map of the form

(2.2) Fa,b(^)=^3-3a2^+&,

with critical points a and —a. This normal form is unique up to conjugation by z h-> —z,
which interchanges Fa,& and Fa,-b- The pair of complex numbers A = a2 and B = b2

parametrizes the space of cubic polynomials modulo affine conjugacy.
The cubic connectedness locus is the set W C C2 of all pairs (A, B) for which the

corresponding polynomial Fa,b has connected Julia set. As in the quadratic case, the
connectedness locus is compact and connected with connected complement. These results
were obtained by Branner and Hubbard [BH] who showed moreover that this set is
cellular, the intersection of a sequence of strictly nested closed discs. On the other hand,
Lavaurs [La] proved that W is not locally connected (compare with Appendix B).

Milnor distinguishes four different types of hyperbolic components, according to the
behavior of the critical points: adjacent, bitransitive, capture, and disjoint [Mil2].
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o
We are exclusively interested in the last possibility: a component H C W is of disjoint

type Dm,n if Fa,b has distinct attracting periodic orbits with periods m and n for every
(a2,??2) G ?^. By definition, the Pern(A)-curve consists of all parameter values for which
the cubic polynomial Fa,b has a periodic point of period n and multiplier A. The geography
of Peri(O) was studied in [Mil3] and [Fa].

Notice that any cubic polynomial with real coefficients is affine conjugate to a map of
the form 2,2 with A, B € R, that is a, b € R U%R. Thus we may consider the connectedness
locus of real cubic maps, the set of pairs (A, B) e R2 such that J(^a,&) is connected. This
locus ^R is also compact, connected and cellular [Mil2]. We refer the reader to Fig. 2 which
was generated by a computer program of Milnor. The real slices of various hyperbolic
components are rendered in different shades of gray. Certain disjoint type components are
indicated, as are the curves Peri(l) Ft ^R and Per2(l) H ^R.

Pig. 2. - Connectedness locus ^R in the real cubic family

To avoid ambiguities arising from the choice of normalization, we will actually work
in the family of cubics

PA^D == A(w3 - 3w) -h D, A / 0

with marked critical points —1 and 4-1. The reparametrization

C* x C 3 (A, D) ̂  (A, AD2) = (A, B) e C* x C

is branched over the symmetry locus B = 0 consisting of normalized cubics which
commute with z ^ — z (see Fig. 3). In particular,

^ = {(A, D) C C* x C| J(PA,D) is connected}

is a branched double cover of W H (C* x C). The marking of critical points allows
us to label the attracting cycles of maps in disjoint type components T-i C ^#, and
we denote the corresponding multipliers A^(A,£>). It is shown in [Mil4] that the maps
A^ : T-L -^ D x D given by

A^(A^)=(A^(A,D),A^(A,P))
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Fig. 3. - Symmetry locus in the family PA,D

are biholomorphisms. The omitted curve A == 0, consisting of maps with a single degenerate
critical point, is irrelevant to the discussion of disjoint type components.

This useful change of variable has the unfortunate side-effect that the values
(A, D) € R* x R only account for the first and third quadrants of the real (A,B)-
plane, the second and fourth quadrants being parametrized by R* x %R. We are therefore
unable to furnish a faithful illustration of the entire locus

^{(A^KA^AP2)^}.

2.5. Surgical tools

For the reader's convenience let us review the notion of an almost complex structure.
Let cr=={I^}^G;bea measurable field of ellipses on a planar domain G with the ratio of
major to minor axes at the point z denoted by K{z). The complex dilatation is a complex
valued function ^ : G —^ D, where |^(^)| = {K(z) - l ) / { K ( z ) + 1), and the argument of
li{z) is twice the argument of the major axis of Ez. A bounded measurable almost complex
structure is a field of ellipses a with ||/^||oo < 1- The standard almost complex structure
O-Q is a field of circles, thus having identically vanishing complex dilatation.

Given an ellipse field a on G and an almost everywhere differentiable homeomorphism
h : W —» G the pullback of a is an ellipse field h* a on W obtained as follows. For almost
every z E W, there is a linear tangent map

T^h : T^W -. T^)G.

Let a = [E^ C T^G}^G', then /i*a is given by {T^h-1^^) C T^W}^w We note
that when the map h is quasiconformal the pullback of the standard structure a = h*ao
is a bounded almost complex structure.

The proofs of the following general principles can be found in [LV]:

THEOREM 2.14. - Let h be a quasiconformal map such that h*aQ = (TO. Then h is
conformal.

THEOREM 2.15 (Measurable Riemann Mapping Theorem). - If a is a bounded almost
complex structure on a domain G C C, then there exists a quasiconformal homeomorphism
h : G —» h(G), such that

(j = h *(TQ.
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