WOLFGANG SOERGEL

The Hochschild cohomology ring of regular maximal primitive quotients of enveloping algebras of semisimple Lie algebras

<http://www.numdam.org/item?id=ASENS_1996_4_29_4_535_0>
THE HOCHSCHILD COHOMOLOGY RING
OF REGULAR MAXIMAL PRIMITIVE QUOTIENTS
OF ENVELOPING ALGEBRAS
OF SEMISIMPLE LIE ALGEBRAS

BY WOLFGANG SOERGEL

ABSTRACT. – Let U be the enveloping algebra of a semisimple complex Lie algebra, χ a regular maximal ideal of its center. We show that the Hochschild cohomology ring of $U/\chi U$ is just the coinvariant algebra of the Weyl group. This turns out to be almost immediate if one uses localization.

Let \mathfrak{g} be a complex semisimple Lie algebra, \mathfrak{h} a Cartan subalgebra, $U = U(\mathfrak{g}) \supset Z$ the enveloping algebra with its center. Let $S = S(\mathfrak{h}^*)$ be the regular functions on \mathfrak{h} and $S^+ \subset S$ the maximal ideal of all functions vanishing at $0 \in \mathfrak{h}$.

The Weyl group W acts on S and we consider the coinvariant algebra $C = S/(S^+)^W S$, the quotient of S by the ideal generated by all W-invariant functions vanishing at zero.

THEOREM 1. – Let $\chi \subset Z$ be a regular maximal ideal, i.e. the kernel of a regular central character. Then the Hochschild cohomology ring of $U/\chi U$ is the coinvariant algebra with its obvious grading doubled,

$$HH^*(U/\chi U) = C^{2\bullet}.$$

Remark. – I thank Patrick Polo for telling me this problem along with the expected answer, and for his helpful comments on a first version.

Proof. – By the Hochschild cohomology ring of an associative k-algebra A we mean just the ring $HH^*(A) = \text{Ext}^*_{A \otimes_k A^{\text{opp}}}(A, A)$ of self-extensions of A considered as an $A \otimes_k A^{\text{opp}}$-module.

I now give an outline of the proof. Let X be the variety of all Borel subalgebras of \mathfrak{g}. Under localization [BB81] the bimodule $U/\chi U$ becomes a D-module \mathcal{M} for some

1991 Mathematics Subject Classification. Primary 17B20; Secondary 22E46.
sheaf of twisted differential operators \mathcal{D} on $X \times X$ such that $X \times X$ is \mathcal{D}-affine, and we just need to compute the selfextensions of this \mathcal{D}-module \mathcal{M}. Now choosing \mathcal{D} correctly we can assume that

1. the restriction of \mathcal{D} to the open orbit $Y \subset X \times X$ for the diagonal action of G is just the standard sheaf of differential operators \mathcal{D}_Y on Y

2. the \mathcal{D}-module \mathcal{M} is just the standard module (with unique simple quotient) $i_!\mathcal{O}_Y$, where i is the inclusion of Y into $X \times X$.

Once we know that, we find quickly

$$\text{Ext}^\bullet_{\mathcal{D}}(\mathcal{M}, \mathcal{M}) = \text{Ext}^\bullet_{\mathcal{D}_Y}(\mathcal{O}_Y, \mathcal{O}_Y) = H^\bullet(Y, \mathbb{C}),$$

the first step since $i_!$ is fully faithful even on derived categories, the last step by the Riemann-Hilbert-correspondence. Since Y is fibered over X with fibers just affine spaces, the cohomology ring of Y coincides with the cohomology ring of the flag manifold X which is known to be the ring C of coinvariants (with its obvious grading doubled).

Certainly 1 and 2 are known in much greater generality, they are just a special case of the correspondence between the classifications of Beilinson-Bernstein and Langlands. However, I want to avoid these heavy arguments and provide a more simple minded approach. So let us now start the work and find the sheaf of twisted differential operators (tdo for short) \mathcal{D}. We fix some notations concerning homogeneous twisted differential operators. I will follow [HMSW87], Appendix A.

For a complex algebraic group G and a closed subgroup $B \subset G$ and a B-invariant linear form A on $\text{Lie}B$ we have a sheaf \mathcal{D}_A of homogeneous twisted differential operators on G/B. Let $\mathfrak{g} \supset \mathfrak{b}$ be the Lie algebras of $G \supset B$. The geometric stalk of \mathcal{D}_A at the point $x = B$ of G/B is given as

$$\mathcal{D}_A \mid_{x = B} = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (\mathbb{C}_\lambda \otimes \Lambda^{\max}(\mathfrak{g}/\mathfrak{b})).$$

The ordinary differential operators are \mathcal{D}_0. Suppose now $H \subset G$ is a closed subgroup and let $f : H/H \cap B \hookrightarrow G/B$ be the inclusion. Pulling back the tdo \mathcal{D}_λ via f we find $\mathcal{D}_\lambda^f = \mathcal{D}_\mu$ where μ is the restriction of f to $\text{Lie}(H \cap B)$.

Let us return now to our situation. We fix a semisimple connected complex algebraic group G with $\text{Lie}G = \mathfrak{g}$, let $T \subset G$ be the maximal torus with $\text{Lie}T = \mathfrak{t}$ and fix two Borel subgroups $B^+, B^- \subset G$ containing T which are opposite, i.e. $B^+ \cap B^- = T$. Their Lie algebras will be denoted \mathfrak{b}^+ and \mathfrak{b}^- respectively. Any $\lambda \in \mathfrak{h}^*$ determines a homogeneous tdo \mathcal{D}_λ^+ on $X = G/B^+$ whose stalk at B^+ is the Verma module $M^+(\lambda) = U \otimes_{U(\mathfrak{b}^+)} (\mathbb{C}_\lambda \otimes \Lambda^{\max}(\mathfrak{g}/\mathfrak{b}^+))$. If we put $\xi^+(\lambda) = \Lambda_{\mathfrak{h}^+} M^+(\lambda)$, then $\Gamma(\mathcal{D}_\lambda^+) = U/\xi^+(\lambda)U$. The same statements hold with + replaced by −, and since the \mathfrak{h}-finite vectors in the (ordinary) dual of $M^+(\lambda)$ have the same \mathfrak{h}-weights as $M^-(-\lambda)$, we see directly that the principal antiautomorphism of \mathfrak{g} induces an isomorphism $U/\xi^+(\lambda)U \to (U/\xi^-(-\lambda)U)^{op}$. This way we associate to $\lambda \in \mathfrak{h}^*$ a tdo $\mathcal{D}(\lambda) = \mathcal{D}_\lambda^+ \boxtimes \mathcal{D}_\lambda^-$ on $X \times X$ with global sections $\Gamma(\mathcal{D}(\lambda)) = U/\xi^+(\lambda)U \otimes (U/\xi^+(\lambda)U)^{op}$. We leave it to the interested reader to verify that $\mathcal{D}(\lambda)$ and this identification of the global sections depend only on the linear form λ on the "abstract Cartan subgroup".
The localization theorem [BB81] says that for a homogeneous tdo D on X the functor of global sections is an equivalence of categories

$$\Gamma : \mathcal{D}\text{-mod} \to \Gamma(\mathcal{D})\text{-mod}$$

if and only if for one (equivalently any) point $x \in X$ the geometric stalk $D/\mathcal{D}m_x$ at x is a simple g-module with regular central character. In this case X is called D-affine. It is clear that for any regular maximal ideal $\chi \subset Z$ we can find $\lambda \in h^*$ such that $\xi^+(\lambda) = \chi$ and that $X \times X$ is $\mathcal{D}(\lambda)$-affine. This homogeneous tdo $\mathcal{D}(\lambda)$ is the D we were looking for.

To see this, remark first that by definition of λ the functor

$$\Gamma : \mathcal{D}(\lambda)\text{-mod} \to U/\chi U\text{-mod}-U/\chi U$$

is an equivalence of categories. Furthermore, if $i : Y \hookrightarrow X \times X$ denotes the inclusion of the open G-orbit $Y = G(B^+, B^-) = G/T$, it is plain that $\mathcal{D}(\lambda)$ pulls back to the ordinary differential operators $\mathcal{D}^i(\lambda) = \mathcal{D}_Y$ on Y.

We have to check that $\Gamma(i_*\mathcal{O}_Y) = U/\chi U$. Remark first that since i is an open embedding, the direct and inverse images in the category of sheaves, \mathcal{O}-modules and \mathcal{D}-modules coincide. We thus have an adjoint pair of functors (i^*, i_*) between sheaves, \mathcal{O}-modules and \mathcal{D}-modules for any tdo \mathcal{D} on $X \times X$. Certainly i^* is exact, and since i is affine i_* is exact, too. Now $\Gamma(i_*\mathcal{O}_Y)$ coincides with $\Gamma(\mathcal{O}_Y)$ and it is clear that every nonzero $\mathcal{D}(\lambda)$-submodule of $i_*\mathcal{O}_Y$ contains the global section 1_Y on Y. Thus $i_*\mathcal{O}_Y$ has a simple socle. Let us define the adjoint g-action on a U-bimodule by the formula

$$(\text{ad}A)(m) = Am - mA.$$

It is then clear that the socle of the U-bimodule $\Gamma(i_*\mathcal{O}_Y)$ is simple and generated by an $(\text{ad}g)$-invariant line.

Now we study $i_*\mathcal{O}_Y$. Recall its definition from [Bei83]. If \mathcal{D} is a tdo on a smooth variety of dimension n and \mathcal{M} a holonomic \mathcal{D}-module, one defines its dual $*\mathcal{M} = R\text{Hom}_{\mathcal{D}}(\mathcal{M}, \mathcal{D})$. This is a holonomic \mathcal{D}^{opp}-module, and $**\mathcal{M} = \mathcal{M}$ naturally. By definition $i_*\mathcal{O}_Y = *i_* * \mathcal{O}_Y$. It is clear that in our case (i an open immersion) the duality commutes with i^*, whence an adjoint pair $(i^!, i^*)$ of functors between holonomic modules. It is known in general (and clear in our case) that $i_*\mathcal{O}_Y$ has as its unique simple quotient the socle of $i_*\mathcal{O}_Y$. Passing to global sections we see that $\Gamma(i_*\mathcal{O}_Y)$ is generated by an $(\text{ad}g)$-invariant line. From this we already find a surjection of bimodules

$$U/\chi U \twoheadrightarrow \Gamma(i_*\mathcal{O}_Y).$$

Now let us go to the category $\chi\mathcal{H}_\chi$ of all locally $(\text{ad}g)$-finite $U/\chi U$-bimodules. Under localization this corresponds to the category of all G-equivariant $\mathcal{D}(\lambda)$-modules. All objects of this category are mapped under i^* to a finite direct sum of some copies of \mathcal{O}_Y. Hence $i_*\mathcal{O}_Y$ is a projective object in our category, whence $\Gamma(i_*\mathcal{O}_Y)$ is a projective object of $\chi\mathcal{H}_\chi$. But this means that the surjection $U/\chi U \twoheadrightarrow \Gamma(i_*\mathcal{O}_Y)$ is split, and since $U/\chi U$ is indecomposable it has to be an isomorphism. \hfill \Box
REFERENCES

(Manuscript received September 11, 1995.)