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C---WHITTAKER VECTORS
FOR COMPLEX SEMISIMPLE LIE GROUPS,

WAVE FRONT SETS,
AND GOLDIE RANK POLYNOMIAL

REPRESENTATIONS

BY HISAYOSI MATUMOTO (1)

ABSTRACT. — The existence condition (resp. the dimension of the space) of C~00-Whittaker vectors seems
to be governed by wave front sets (resp. Goldie rank polynomial representations). In this article, I should
like to show this is indeed the case for representations of connected complex semisimple Lie groups with
integral infinitesimal characters.

Dedicated to Professor Bertram Kostant on his sixtieth birthday.

0. Introduction

Let G be a connected (quasi-split) real semisimple linear Lie group and let N be the
nilradical of a minimal parabolic subgroup P of G. We take a "generic" character \|/
on N, namely a one dimensional representation ofN, and consider the induced representa-
tion of G from \|/ on N. If an irreducible representation V of G is realized as a
subrepresentation of such an induced representation, we call V has a Whittaker
model. (This usage of "model" is different from that of Gelfand-Graev.) Such induced
representations are considered first in [GG1,2] and they suggest the possibility of useful-
ness of such induced representations for a classification of irreducible
representations. After the pioneer work of Gelfand-Graev, Whittaker models of repre-
sentations of real semisimple Lie groups have been studied from the viewpoint of number
theory by many authors ([JL], [Ja], [Sc], [Sh], [Ha]), etc. Especially, the multiplicity one
property of the above induced representation for a quadi-split group is established by
[JL], [Sh], [Ko2], etc.

In [Ko2], Kostant proved that if a representation V of a quasi-split group G has a
Whittaker model, then the annihilator of V in the universal enveloping algebra of the
complexified Lie algebra of G is a minimal primitive ideal. [Casselman and Zuckerman
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312 H. MATUMOTO

proved this result for G=SL(/z, R).] This result strongly suggests the possibility of the
description of the singularities of representations in terms of similar kind of
representations. [Ha2], [VI, 2], [How] also support such a possibility. Lynch developed
the theory of Whittaker vectors for non-split case in his thesis at MIT [Ly], and
generalized some of the important results of Kostant.

Before [Ko2], Rodier [R] had pointed out the relation between the existence condition of
Whittaker models and distribution characters for the p-sidic case. Recently, Kawanaka
[Kawl,2,3] and Moeglin-Waldspurger [MW] constructed such an induced representation
from each nilpotent orbit and described the relation to the singularities of irreducible
representations for reductive algebraic groups over finite fields and /?-adic fields,
respectively. It is natural to ask whether a similar phenomenon exists in the case of a
real semisimple Lie group. In [Mat4,5] (also see [Kaw3] 2.5, [Yl], [Mat2]), we proposed
the study of Whittaker models in the general sense.

In this article, we give an affirmative answer in some special case. Namely, we assume
G is a connected complex semisimple Lie group and V has an integral infinitesimal
character. We also put some assumptions on \|/ and P.

We are going into more detail. Hereafter we assume N is the nilradical of a parabolic
subgroup P and consider the induced representation of G from a "generic" character on
N. Unfortunately, apparently, this induced representation is too large. Namely, in
general, we cannot expect that an induced representation of G appears with finite
multiplicity. However, interestingly enough, it is known that some irreducible represen-
tations appear in the induced representation with finite multiplicity. So, we can study
the following problem.

PROBLEM. — Classify an irreducible representation which appears in the induced represen-
tation of G from \[/ with finite multiplicity. What is the multiplicity of such a
representation ?

As a matter of fact, the above problem is quite obscure. In order to clarify the
problem, we should define what is "generic", "representation", "the induced representa-
tion", and "appears with finite multiplicity". First, we choose the definition of the
induced representation from G as follows:

CO O (G/N;^)={/€CO O (G) | / (^)=v| /^)- l / fe)foral l^eG,MeN}.

G acts on the above space by the left translation. We regard C°° (G/N; \|/) as a Frechet
representation in a usual manner.

Second, we fix a maximal compact subgroup K of G and we consider Harish-Chandra
modules (cf. [Vo3], [W2]) in stead of "representations of G".

Third, let n be the complexified Lie algebra of N and we denote the complexified
differential character of v|/ on n by the same letter. v|/ is regarded as an element of the
complexified Lie algebra of G by the Killing form. We say \|/ is admissible if v|/ is
contained in the Richardson orbit (9p with respect to P. We replace "generic" in the
above problem by "admissible".
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Last, we should give the definition of "multiplicity". Let 9 be the complexified Lie
algebra of G and let U (9) be its universal enveloping algebra. The most naive definition
is the fallowings. For an irreducible Harish-Chandra module V, we define the multiplic-
ity of V in C°° (G/N; \|/) by the dimension of the space of U (9)-homomorphisms of V to
C°°(G/N;v|/).

In order to define "appears" in another way, for a Harish-Chandra module V, we
consider an admissible Hilbert G-representation H whose K-fmite part coincides with
V. H is not uniquely determined by V, but the space of C°°-vectors V00 is unique as a
Frechet G-representation [Ca3]. If we take notice of the topology of C°° (G/N; v[/), then
we can give another definition of "multiplicity". Namely, we define the multiplicity of
V in C°°(G/N; \[/) the dimension of the space of continuous G-homomorphisms from
V^toC^G/N;^).

It is known that the above two definitions of the multiplicity actually different
[GW]. The problem in the first definition was studied in [GW], [atl,2,4,5] (also see
[Ko2], [Ha2], [Ly]).

In this article, we consider the second definition and assume G is a complex semisimple
Lie group. We define the space of C'^-Whittaker vectors of an irreducible Harish-
Chandra module V as follows.

Wh^(V)= {^eVjVXenXz^vKX)^}.

Here, V^ denotes the continuous dual space of V^. Then, the space of continuous
G-homomorphisms of V^ to C°° (G/N; \|/~1) can be identified with Wh^ (V) as a usual
manner. So we can rephrase the above problem in terms of Whx^ (V).

For an irreducible Harish-Chandra module V, we denote by WF(V) the wave front
set of V (cf. [How], [BV1,2,3,4]). Let X= G/P be the generalized Hag variety and let \|/
be an admissible character on N. We assume the moment map n: T* X -> S)p (cf. [BoBr],
[BoBrM]) is birational.

Let (9 be a nilpotent orbit of the Lie algebra of G. For example, we assume that
G= SL(^, C) or that (9 is even. Then, there exists some P such that:

(1) (9 coincides with the Richardson orbit corresponding to P.
(2) The moment map \i: T* X -> 0 is birational.
(3) There exists an admissible character on N.
One of the main results of this article is:

THEOREM A (Theorem 3.4.1). — We assume the moment map p. is birational and ^ is
admissible. Then, for any irreducible Harish-Chandra module V with an integral infinitesi-
mal character, the followings are equivalent.

(1) Wh^ (V) + 0 and dim Wh^ (V) < oo.
(2) WF(V)=^p.
Remark. - It is known that Wh^ (V)^0 implies i0p ̂  WF(V) ([Mat2], also see 3.4).
Let g be the Lie algebra of G (So, the complexified Lie algebra is 9 x 9.) We fix a

Cartan subalgebra I) of 9. We denote by P (resp. W) the integral weight lattice (resp.
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314 H. MATUMOTO

the Weyl group) of (9, t)). We remark that W x W acts on the polynomial ring on
t)*xl)*. We assume ^, [i is regular and denote by F^ the set of irreducible Harish-
Chandra modules V with the infinitesimal character (X, a) such that WF (V) =;' £>p. For
the dimension of Wh^ (V), we have a result. Since it requires further terminologies to
state the whole statement, I do not present our second main result precisely here (see
Theorem 3.3.6). However, at least, it contains the following result.

THEOREM B (cf. Theorem 3.3.6). — Let V be an irreducible Harish-Chandra module
with a regular integral infinitesimal character such that WF(V)=;^p and let
©y(^, n), (k, |LieP) be the coherent family in which V is embedded. Then
P x (9 (X, \\) ̂  dim Whxj? (Qy) (^-, \\) is well-defined and extend uniquely to a harmonic
polynomial (say pvy[V]) on t)*xt)*. Fix regular X,, ^ieP. If we consider the C-linear
space E which is spanned by

{^[V]|VGF,,,}
then E is closed under the W x W action. Moreover E is irreducible as a W x W-
representation and written by a (g) a. Here, a is the Goldie rank polynomial representation
(the Springer representation) associated with (Pp.

The classical multiplicity one theorem can be related to the fact the Springer representa-
tion associated with the regular nilpotent orbit is a trivial representation C. I .

The points of our proof are as follows:
(1) The exactness of V -^ Wh^ (V) (for precise statement, see Proposition 3.2.1).
(2) Yamashita's multiplicity theorem on induced representations [Yl].
(3) Vogan's construction of harmonic polynomials from coherent families [Vol].
(4) Deep analysis on double cell representations due to Joseph, Lusztig, and, especially,

Barbasch-Vogan [BV2,3,4].
Using the above facts and applying a similar method to [D3], we prove Theorem B

above. Theorem A is a corollary of Theorem B and results in [Mat2,5] (cf.
Lemma 3.4.2 below).

The most crucial part is (1) above. It was W. Casselman who proved the correspond-
ing result for the nilradical of a minimal parabolic subgroup of a general real semisimple
Lie group. The main ingredients of his proof are:

(1) The vanishing of higher twisted cohomology groups of principal series.
(2) Casselman's subrepresentation theorem.
Casselman proved the above (1) by a very ingenious method "the Bruhat

filtration". (He sketched the proof in [Cal].) We show that his method is also appli-
cable to a proof of a generalization of his result, which we need, under some minor
modifications. We also use an idea from [Yl].

To generalize the above (2) is much more difficult, I think. Casselman's subrepresenta-
tion theorem itself is a fairly deep result. However, if we consider Harish-Chandra
modules with integral infinitesimal character for complex semisimple Lie groups, we get
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an embedding theorem (Theorem 2.4.1) using the deep results of Joseph [Jol2], Lusztig
[Lu7], and Lusztig-Xi Nanhua [LuN].
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1. Notations and preliminaries

1.1. GENERAL NOTATIONS. — In this article, we use the following notations and
conventions.

As usual we denote the complex number field, the real number field, the rational
number field, the ring of (rational) integers, and the set of non-negative integers by C,
[R, Q, Z, and ^ respectively. We denote by 0 the empty set. For each set A, we denote
by card A the cardinality of A. Sometimes " i " denotes the imaginary unit /--I.

For any (non commutative) C-algebra R, "ideal" means "2-sided ideal", "R-module"
means "left R-module", and sometimes we denote by 0 (resp. 1) the trivial R-module
{ 0 } (resp. C). For In R-module M of finite length, we denote by JH(M) the set of
irreducible constituents of M including multiplicities and denote by /(M) the length
ofM.

For an abelian category ja^, we denote by K(j^) the Grothendieck group of ^ ' . We
denote by [A] the canonical image of an object A of ^ in K(^). If ^ is a full
subcategory of the category of R-modules of finite length, then [A] = [B] if and only if
JH (A) == JH (B) for all objects A and B of ^.
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316 H. MATUMOTO

Often, we identify a (small) category and the set of its objects.
Hereafter "dim" means the dimension as a complex vector space, and "®" (resp.

Horn) means the tensor product over C (resp. the space of C-linear mappings), unless we
specify.

For a complex vector space V, we denote by V* the dual vector space and we denote
by S (V) the symmetric algebra of V. Sometimes, we identify S (V) and the polynomial
ring over V*, if V is finite-dimensional. For any subspace W of V, put
Wl•= { / eV* | / |W=0} .

For real analytic manifold X, we denote by C°° (X) the space of C°°-functions on
X. For a subset U of X, we denote by U the closure of U.

1.2. NOTATIONS FOR SEMISIMPLE LIE ALGEBRAS. — In this article, we fix the following
notations. Let g be a complex semisimple Lie algebra, U(g) the universal enveloping
algebra of 9, I) a Cartan subalgebra of 9, I) a Cartan subalgebra of 9, and A the root
system with respect to (g, t)). We fix some positive root system ^+ and let II be the set
of simple roots. Let W be the Weyl group of the pair (9, t)) and let <(, ) be the Killing
form of 9. We also denote the inner product on t)* which is induced from the Killing
form by the same symbols <( , ). For aeA, we denote by ^ the reflection in W with
respect to a. We denote by l(w) the length of weW and denote by WQ the longest
element of W.

For aeA, we define the coroot a by a=2a/( a, a ), as usual.
We call ^-el)* is dominant (resp. anti-dominant), if ( K, a ) is not a negative (resp.

positive) integer, for each aeA4 ' . We call ?iet)* regular, if < \, a ) ^0, for each
aeA. We denote by P the integral weight lattice, namely

p = ^ e l ) * | < X , a > e Z f o r a l l a e A } .

If Xet)* is contained in P, we call ^ an integral weight. We denote by P~ ~ (resp. P+ +)
the set of anti-dominant (resp. dominant) regular integral weights in t)*. We also denote
by P~ (resp. P4') the set of anti-dominant (resp. dominant) integral weights in t)*. We
define peP by p= 1/2 ^ a.

a e A '

Put

^={Xe9 |VHel ) [H,X]=a(H)X},

^= Z 9a.
aeA 4 '

H= Z 9a-
-aeA'^

Put

6=l)+u,

b=t)+u.
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Then b and b are Borel subalgebras of 9.
Nest, we fix notations for a parabolic subalgebra (which contains b). Hereafter,

through this article we fix an arbitrary subset S of II. Let S be the set of the elements
of A which are written by linear combinations of elements of S over Z. Put

ds= {HeI ) |VaeSoc(H)=0} ,

I s= t )+E^
o c e S

^S= Z ^
aeA 4 ' -S

^S= Z _9a.
-aeA '^ -S

m s = { X e I s | V H G a s < X , H > = 0 } ,

Ps = ̂  + ̂  + ̂ s = 4 + ̂

Ps=ms+as+ns=Is+ns•

Then ps (resp. ps)ls a parabolic subalgebra of g which contains b (resp. b). Conversely,
for an arbitrary parabolic subalgebra p =? b, there exists some S i= II such that
p=Ps. We denote by Wg the Weyl group for (Is, t)). W§ is identified with a subgroup
of W generated by {^ | a e S}. We denote by w§ the longest element of Wg.

It is known that there is a unique nilpotent (adjoint) orbit (say ^5) whose intersection
with Hg is Zariski dense in Hg. (9^ is called the Richardson orbit with respect to
ps. Using the Killing form, we sometimes identify 9 with g*. So, sometimes we regard
(9^ as a coadjoint orbit.

We denote by B, B, A§, Lg, N5, . . . the analytic subgroup of G corresponding to b, b,
ds, lg. Us, . . . respectively. We denote by Ad the adjoint actions on Lie algebras.

We denote the anti-automorphism of U(g) generated by X ̂  —X(Xeg) as follows.

u^u, (MeU(g)).

For an ideal I in U (g), we define ^= { ^ M e l } . Then Iv is also an ideal.
Next we fix the notations for highest weight modules.
Define

Ps^^^eI^IVaeS^oQep,^ . . . } } .

If S = n (resp. S = 0), then P^+=P++ (resp. Ps"+ = t)*).
For ^iet)* such that ^i+pePg^, we denote by cjs(^) the irreducible finite-dimensional

Ig-representation whose highest weight is n. Let Es(n) be the representation space of
cjs(n).

We assume \i + p e Pg"+. We define a left action -of Us (n) by X. v = 0 for all X e Hg
and veE^([i). Then we can regard £5(^1) as a U (pg)-module.
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318 H. MATUMOTO

For ^lePs^, we define the generalized Verma module (Lepowski [Le]) as follows.

MS^U^)®^)^-?)'

For all aet)*, we define the Verma module by M(T)==M(p(T).

Let L(a) be the unique highest weight U(g)-module with the highest a-p. Namely,
L(a) is a unique irreducible quotient of M(a). For aePs^, the canonical projection
of M (?i) to L (k) is factored by Mg (k).

For aeP^ we denote by E^ the irreducible finite-dimensional U(9)-module with the
highest weight u. Clearly E^ = L (a + p) for all a e P +.

We denote by Z(g) the center of U(g). It is well-known that Z(g) acts on M(X) by
the Harish-Chandra homomorphism ^: Z (9) -> C for all 'k. ^ = ̂  if and only if there
exists some w e W such that X, = w a.

1.3. ASSOCIATED VARIETY, GELFAND-KIRILLOV DIMENSIONS, AND MULTIPLICITIES. — We

recall some important invariants for finitely generated U (g)-modules. For details, see
[Vol], [Vo4].

For a positive integer n, we denote by U« (9) the subspace of U (9) spanned by products
of at most n elements of 9. We also put Uo (9) = C q^ U (9) and LL i (9) == 0. Then the
associated graded algebra 91 U (9)= © Un(g)/U^_i(9) is naturally isomorphic to the

n^O

symmetric algebra S (9) of 9. Let M be a finitely generated U (9)-module and z^, . . ., v^
its generators. Put M^= ^ Un(9)^i and consider the associated graded module over

1 ̂ i^h

S(9):grM= ® M^/M^,i. Since we can identify 8(9) and the polynomial ring over 9*,
n^O

we can define the associated variety of M as follows.

Ass(M)={z;e9* | / (zO=Oforal l /eAnns^(grM)}.

Ass (M) is a Zariski closed set of 9* and its definition does not depend on the choice of
generators v^, . . .,^. Using the Killing form, we regard often Ass(M) as a closed
subvariety of 9. We call the dimension of Ass (M) the Gelfand-Kirillov dimension and
we write Dim(M). We define Dim(0)= - oo, where 0 is the trivial module.

Next we introduce another important invariant, the multiplicity. A classical theorem
of Hilbert-Serre implies that there exists some polynomial ^ (x) in one variable over Q
such that dimcM^=/(^) for sufficiently large n. We can also see the Gelfand-Kirillov
dimension of M is the degree of 50 (x). For de N, we define Q(M) by

c,(M)=
the coefficient of x^(M) in d! / (x) if d-= Dim (M)

0 if^>Dim(M).
oo if d<Dim(M).

If rf=Dim(M), we call c^(M) the multiplicity of M. The multiplicity is always a non-
negative integer and its definition does not depends on the choice of generator z^, . . ., v^.
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1.4. NOTATIONS PRELIMINARIES FOR COMPLEX SEMISIMPLE LIE GROUPS. — Here, we intro-
duce some notations on representations of complex semisimple Lie groups and review
some fundamental results. First, we introduce some notations. For details, see [Dl].

Hereafter G will denote a connected simply-connected complex semisimple linear Lie
group whose Lie algebra is 9. Indeed, for our purpose, there is no harm in supposing
G is simply-connected.

We can regard 9 as a real Lie algebra as well as a complex Lie algebra. So, we want
to consider its complexification.

First, we fix a (complex) Cartan subalgebra t) and a triangle decomposition 9 == u +1) + u
as above. We denote by Qo tne normal real form of 9 which is compatible with the
above decomposition and denote by X-^X the complex conjugaison with respect to
9o. Then there is an anti-automorphism X -> ^X of 9 which satisfies the following (1)-
(3).

(1) ^o-So.
(2) ^=11, tu=vi.
(3) ^^(Xel)).
We extend X ̂  ^X to an anti-automorphism on U(g).
We define a homomorphism of real Lie algebra 9 - ^ 9 x 9 by X ̂  (X, X) for

X€9. Then the image of this homomorphism is a real form of 9 x 9. Hence, we can
regard gx 9 as the complexification 9,, of 9.^= {(X, -^[Xeg } is identified with the
complexification of a compact form of 9. i^ is also identified with 9 by an isomorphism
X -> (X, -^X) as complex Lie algebras. So, sometimes we regard B^eP^ as a U(y-
module.

Put f= {(X, Y)efJX=Y }. Hence I is a compact real form of
9= { (X, X) |Xe9 } . We denote by K the analytic subgroup of G with respect to I.

Next, we consider the complexification of parabolic subalgebras. Under the identifica-
tion: 9 == { (X, X) | X e 9 }, ps is identified with { (X, X) | X e pg }. So, the complexifica-
tion (ps)c [resp. (rts)J o/pg (resp. Us) is identified with pg x ps (resp. Ug x Hg).

We put U=U(9,)= U(Q) (x) £7(9).
Let V be a U-module. If the center Z (9^) of U acts on V by scalar, we say that V

has an infinitesimal character. An infinitesimal character is written by the Harish-
Chandra homomorphisms. Namely, if we identify Z (9^) with Z (9) 00 Z (9), the it is
written of the form ̂  00 ̂  for some X, [i e t)*. In this case, we say V has an infinitesimal
character (k, u). We say that V has an integral (resp. a regular) infinitesimal character,
if ^, ^ieP (resp. X, and [i are regular). An arbitrary irreducible U-module has an
infinitesimal character.

If V is a U-module, put

LAnn(V)= { M e U ( 9 ) | u ® 1 eAnnu(V)} ,

RAnn(V)= [uEV(^)\ 1 ®MeAnnu(V)}.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



320 H. MATUMOTO

For a U-module V and ^eP4 '+ , we define as follows.

V^) = {v E V | U (y v is isomorphic to the direct sum of some copies ofE^}.

For a U-module V, we call z?eV is Infinite, if dimU(fc)^ is finite. A U-module V is
called (g^, IJ-module, if all the element of V is Infinite. A (c^, y-module V is called
admissible, if Y^) is finite-dimensional (or trivial) for all ueP"^. An admissible (9^, y-
module of finite length is called a Harish-Chandra (c .̂, f^-module. The category of
Harish-Chandra (( .̂, ^-modules is defined as a full subcategory of the category of
U-modules.

For U (g)-modules M and N, the dual space of the tensor product (M x N)* can be
regarded as a U-module in the obvious way. We denote by L* (M ® N) the termite
part of (M ® N)*. Namely,

L*(M®N)= {t ;e(M®N)*|dimU(f,)^<oo}.

Hence, L* (M ® N) is a (c .̂, (^-module.
Next, we construct another ((^, ^-module L(M,N) from U(g)-modules M and

N.Hom(M, N) has natural structure of a U (g)-bimodule. We introduce a U-module
structure on Hom(M, N) by

(u ® v) (p = ^u (p v (u, v e U (9), (p e Horn (M, N)).

We denote the ^-finite part of Hom(M, N) by L(M, N).
We easily have:

LEMMA 1.4.1 ([Jo2] 4 .3) .—Let ^et)* and let M be a subquotient of a Verma
module. Then, we have an isomorphism of U-modules:

L (M, L (k)) ̂  L* (L (k) ® M).

Next we define the principal series representations. For X, nel)*, we define

L (?i, u) = L* (M (- ?i)®M (- a)).

The relation with the usual definition of principal series is found in [Dl]. It is known
that L(^, u)=0 unless ^-p-eP.

Let ^, H satisfy X-^eP. We denote by V(^, u) the unique irreducible subquotient
of L(k, a) containing a l^-subrepresentation isomorphic to E^_^. V(X, a) and L(^, a)
have an infinitesimal character (X,, u).

The irreducible Harish-Chandra (9^, y-modules are parametrized as follows.

THEOREM 1.4.2 (Zhelobenko, see [Dl] 4, [BV4], Proposition 1.8). — (1) Any irreduci-
ble Harish-Chandra Harish-Chandra ((^, t ̂ -module-module is isomorphic to V(X, a) for
some A,, ^et)* such that ^-neP.

(2) Z^ ^, u, ^, H'et)* fl^ assume ^-a, ^-^eP. T/z^, V(X, H)^V(T, u') ;/^J
o^/y ;y there exists some w e W 5'McA ^Aa/ X = w \1 and a = w a7.
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