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SOME EXAMPLES OF HYPERBOLIC EQUATIONS
WITHOUT LOCAL SOLVABILITY

BY F. COLOMBINI AND S. SPAGNOLO

1. Introduction

In this paper we illustrate, by means of appropriate examples, various phenomena of
lack of local solvability which occur in certain strictly hyperbolic linear equations of
second order with non-smooth coefficients, and also in certain weakly hyperbolic equa-
tions with smooth coefficients.

As we shall see, the local solvability property may fail for equations of the simple
form

(1) i^-(A(x,0^),=/(x)

with

(2)
A Qc, t) e C°'a (R2) for all a < 1

5i ^ A (x, 0 ̂ -1 for some ^ > 0,

and, in some sense, also for equations of the form

(3) u,,-a{t)u^f(x) (a(0^5i).

When A(x, t) is Lipschitz continuous in r, the local solvability for the equation (1)
(near each point of R2) is a direct consequence of the well-posedness of the corresponding
Cauchy problem. The first result of the paper (Theorem 1) is the construction of a
function a(t) ̂  1/2, Holder continuous of any exponent strictly less than one, and two
functions of class C°° on 1R, UQ (x) and u^ (x), for which the Cauchy problem

u^-a(t)u^=0
u (x, 0) = UQ (x\ u, (x, 0) = Mi (x)(4)

has no distribution-solution u(x, t) near any point of the initial line {t=Q}.

(1) Work partially supported by the G.N.A.F.A. (C.N.R.) and the Ministero P.I.
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110 F. COLOMBINI AND S. SPAGNOLO

Secondly, in Theorem 2 we exhibit a 271-periodic function of class C°°, f(x\ for which
the equation (3) [where a(t) is the same as in Theorem 1] has no distribution-solution
u(x, t), 271-periodic in x, on any strip {(x, t): \ t\ < r}.

Finally, in Theorem 3 we construct a function A (x, t) satisfying (2), for which the
equation (1), with / (x) = x, has no C1 solution near the point (0, 0).

A common starting point for all these examples (as well as for the non-uniqueness
examples of [3]) is a result, the Lemma 1 below, concerning ordinary differential equations
which ensures the existence of smooth functions oCg(T) ^ 1/2 such that

oCg(T) -> 1 for e-»0

and that the initial value problem

f w^+agCOv^O
fw(0)=l , w'(0)=0

has a solution w=Wg(r), which decays exponentially for | T | -> oo. Indeed, the coefficient
a (t) which appears in both Theorems 1 and 2 is constructed by means of the functions
oCg(T); more precisely, it has the form

a(t)=^(h^t-tk)) for ^el,,

where {s^} and {hj are two suitable sequences of positive numbers, converging respec-
tively to zero and to infinity, while {Ij is a suitable sequence of real intervals with
centers at ^ and converging to zero. As regards the coefficient A (x, t) of Theorem 3,
it is simply defined as

A0c,0=^.
a(x)

We conclude the Introduction with some short comments on Theorems 1, 2 and 3 (see
also the Remarks following these Theorems).

Theorem 1 is a refinement of a previous example of [2] (which in turn improves an
earlier result of [1]), where a Cauchy problem of type (4) was constructed for which no
distribution-solution exists on any strip { | t | < p}. To appreciate better the difference
between the result of [2] and Theorem 1 of the present paper, it should be noticed that
problem (4), with Holder continuous coefficient a(t) ̂  0 and C00 initial data, has always
a unique solution u(x, t) in C2^, (^'(RJ) where (2s)' is some space of Gevrey
ultradistributions (s > 1). Now, the result of [2] quoted above consists in an example
of a problem of the form (4) whose solution "blows-up as a distribution" at some
undetermined point of the initial line [t=0], while the solution constructed in Theorem 1
"blows-up as a distribution" everywhere on {t==0}.

Theorem 2 is again concerned with an equation of the form (3), but now, instead of
assigning the initial conditions, we impose to the free term f(x) and to the possible
solution u (x, t) a boundary type condition, namely the 2 Ti-periodicity in x. From an
abstract point of view. Theorem 2 can be read as follows: there exists a Hilbert triplet
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HYPERBOLIC EQUATIONS WITHOUT LOCAL SOLVABILITY 111

(V, H, V), a family of symmetric and coercive operators A (Q: V -> V. Holder continu-
ous in r, and an element fo e V, in such a way that the "hyperbolic" equation

u//-{-A(t)u=fo

has no local solution at t=0. In our example, V is the space of 2 Tt-periodic H^
functions on H^, H is L2 (0, 2 n) and A (Q = - a (Q ̂ .

Theorem 3 is a genuine example of non local solvability (we emphasize that, in order
to construct this kind of counter-example, we are forced to go out of the class of
equations with coefficients depending only on time, such as (3), cf. Remark 1 after
Theorem 3). Indeed, Theorem 3 says that for a suitable Holder continuous and strictly
positive function a (y, the equation

(5) a(t) \
utt-{——ux) =^\a(x) A

has no C1 solution u(x, t) near the origine (0, 0).
We observe that, by putting

u=v^ or i^=a(x)w,

we can transform (5) into

/r\ a (t) x2

(6) i^-—-^-n=—
a(x) 2

or into

(7) ^OOw«-a(OH^=L

Hence, also the equations (6) and (7) have not the local solvability near the origine.
We also observe that the theory of local solvability of Hormander, Nirenberg and

Treves (see [5], [6], [7]) does not apply to equations (5)-(7), owing to the non regularity
of the coefficients of such equations.

Finally, we remark that, after some technical modifications, it is possible to prove a
version of Theorems 1 and 2 concerning weakly hyperbolic equations with smooth coeffi-
cients; that is to say, there exists an equation like (3), with a(t) of class C°° and ^ 0,
which presents the same phenomena where the local solvability fails, as illustrated by
Theorems 1, 2. It would be interesting to prove an analogous version of Theorem 3,
i. e. to construct a C°° function A (x, t) ̂  0 such that equation (1) is not locally solvable.

NOTATIONS. - Given a real number s > 1, we denote by (T(IR) the space of the Gevrey
functions of order s and by ^(R) the subspace of the Gevrey functions having compact
support. The dual space (^(IR) is the space of the Gevrey ultradistributions.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE



112 F. COLOMBINI AND S. SPAGNOLO

2. Two O.D.E. lemmas

LEMMA 1 (cf. also [3]). — For all se]0, e[, it is possible to find t\vo even real functions,
ag(r) and Wg(T), of class C°° on (R, satisfying

(8)
w^+a.COw^O

w,(0)=l, w,(0)=0

fn SMC/I a \vay that

(9) ajr) is In-periodic on {r > 0} and on {r < 0}
(10) ag(T) = 1 in a neighbourhood O/T=O

(11) |a,(T)-l |^Me, |a , (T) |^Ms

^ f WJT)^^)^-8'-'

[ for some p^ (r) 2 n-periodic on {r > 0} and on {r < 0}

(i3) |wj+K|+K|^c
pn

(14) w^T^ye (y>0)
Jo

w/i^r^ M, C and y ar^ constants independent on e.
N.B.: As a consequence of (12) and (8), we have in particular, for all integers v ^ 0,

(15) w^T)^"61'', <(T)=O, w^C^-^"6 '^ f o r T = ± 2 7 i v

pyoq^ — Fixed a 271-periodic function p(x) ^ 0, of class C°°, vanishing in a neighbour-
hood of T = 0 and satisfying the conditions

r2"
(16) p(T)cOS2TdT=7l

Jo

r2"(17) p (r) cos2 T sin T dr > 0,
Jo

we define, for T ^ 0

^(T)=l-4£p(T)sin2T+2ep /(T)cos2T-4e2p2(T)cos4T

r r" 1w^(T)=cosT.exp — 2 e p(5)cos2sd5
L Jo J

and, for T < 0,

ae(^)=ae(-^ WeCO=We(-T).

Clearly ajr) = 1 and Wg(r) = COST near the origine, hence Og and w^are of class C00

on R. Moreover, it is easily to check that (8), (11) and (13) are fulfilled, while the

4s SERIE - TOME 22 - 1989 - N° 1



HYPERBOLIC EQUATIONS WITHOUT LOCAL SOLVABILITY 113

periodicity properties (9) and (12) are an easy consequence of (16). As to the lower
estimate (14), this follows from (17); indeed

r d r2" ~i r2"
— w,d-c = pCOcos^sinrrfT > 0. D

L^JO Je=0 Jo

LEMMA 2. — Let (p (t) be a solution of the equation

(p//+/I2a(0(p=0 (reR)

where heZ and a(t) is a strictly positive function of class C1, and let us consider the
"energy functions"

E^O^Icp^+lcp^)!2

E<p(0=^^(0|(p(0|2+|(p/(0[2.

Then, for all t^ and t^ the following estimates hold

O8) E^)^E^).exp h^l-a^dt
Jri

(19) E,(r^E^).exp| P^IA.
I Jti a(t)

Proof. - It is sufficient to differentiate the energy functions and then apply the
GronwalFs lemma. D

3. The main results

THEOREM 1. — There exists a function a(t) such that

^^(O^3

2- " - 2(20)
a^eC^^R) forall a< 1

and two C00 functions UQ (x), u^ (x) for which the Cauchy problem

(21) J ^-a(t)u^=Q
[ u (x, 0) = UQ (x), u, (x, 0) = Mi (x)

/zas no sotofon u(x, t) in C^t-r, r], ^(]x-r, x-^-r[)\for any xeR and r > 0.

Proof. - We firstly define, by the aid of Lemma 1, the function a(t). To this purpose,
let us consider the sequences

(22) ^=471.2-^ ^=2^ ^/^.(log^)3

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE



114 F. COLOMBINI AND S. SPAGNOLO

where N is a fixed integer > 1 so large [with respect to the constant M of (11)] that the
following inequalities hold for every integer k ^ 1:

(23) £fc < -1-
v / - —— ^ X *-2M

fc-i
(24) 4M. ^ e^.p^e^pfc

j= i
00

(25) 2M. ^ £,P^£fcPfc
j'=fc+i

(in order to make clear that such inequalities are true for large N, we observe that
{ejj is a decreasing sequence for N ^ 2 and s^ tends to zero for N -^ oo, moreover
Kjhjpj(KkhkPk)~l=Wi^k wlt^ ^N converging to oo for N-»oo; finally we have
e, p .̂ (£fc pfe)~1 ^ 8^-k for some 8N converging to zero).

Then, we put
oo

(26) ^=£k+ Z P.
^ j = k + l

and

(27) I^-l,^],

so that the intervals 1̂  and 1^+1 are contiguous and {Ij -^ {0} for k -> oo, and we define

^(^(t-tk)) for ^^
a(t)= ( 00 \

1 for teR\ U I,
Vj-i /

where a^r) are the functions introduced in Lemma 1.
Let us notice that hj, s^Ti)"1 is an integer, so that, by (9)-(10), we have

(28) a(t) = 1 in a neighbourhood of ^± -fc.

On the other hand, (11) implies that

(29) | l - a ( 0 | ^ M E f e in 1̂

thus, by (23), we see that 1/2 ^ a(t) ̂  3/2.
Finally, from the estimate

KIco-w^Me^Ti)1-01 ( 0 < a ^ l ) ,

4e SERIE - TOME 22 - 1989 - N° 1



HYPERBOLIC EQUATIONS WITHOUT LOCAL SOLVABILITY 115

which follows from (9) and the second of (11), we derive that

HcO.a^Me^)1-01^ ( 0 < a ^ l )

(where [ . [ denotes here the Holder semi-norm). Now, by (22), we have

sup e^h^ < oo for all a < 1,
k

hence, taking (28) into account, we conclude that ^(OeC0'01^) for all a < 1.
Let us now define the initial data u,(x) of problem (21), by setting

(30) Mo (x) = u(x, 0), Ui (x) = u, (x, 0),

where

00

(31) u(x, 0= ^ (pfc(0e1^,
f c = i

cpfc (r) being the solution of

(32)

with

q^+^a^cp^O

(Pfc(^)='nfc» <Pfc(^)=0

(33) n^10^2.

Thus, u(x, t) is a (formal) solution of the equation (21), i. e.

(34) ^-a(0^=0.

The rest of the proof will consist in showing that u satisfies, in addition to (34), the
following properties:

(35) ueC2^,^5)^)), V 5 > 1
(36) u(., 0) and u^(., 0) are C°° functions on ̂
(37) u(x, t) is a C°° function on R^^O}
(38) ut 3' (Q (x, r)), V xe R, V r > 0

where we put

Q(x, r)=]x-r, x+r[x]-r, r[.

The conclusion of Theorem 1 is a direct consequence of the previous properties, more
exactly of (35), (36) and (38) ((37) will only be used to prove the Remark subsequent
this Theorem). Indeed, if problem (21) had a solution u which belongs to
C^t—r, r], Qi'Qx—r, x-}-r[)) for some x and r > 0, then by an uniqueness result of [1]

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



116 F. COLOMBINI AND S. SPAGNOLO

(Theorem 6) such a solution should coincide with u on a neighbourhood of (x, 0), in
contradiction with (38).

Proof of (35). — In view of the Paley-Wiener's theorem for the Fourier series, we'll
estimate the growth of ^(t) [see (32)] for k -> oo, by the aid of Lemma 2.

Firstly, we estimate, for t ^ ^, the energy function

E„(0=^|^(0|2+|<Pfc(0|2

and we get, by (18), (29), (25), (33) and (22),

E„(O^^.T^,2 .exp^M^LP f c+ ^ £,p,V|
L \ 2 j=k+l /J

^^.r|j.exp(C^£fcpfc)
^ hi. exp [2 (log hfc)2 + C (log ̂ )3]

^exp^/i^)

for all s ^ 1 and r ^ ^.
Then, we estimate the second energy function

E„(0=^a(0|(p,(0|2+|(p,(0|2,

using (19), (28), (24) and the inequalities \a/(t)\ ̂  M£^ on 1̂ , a(t) ̂  1/2, and we obtain

r / fc- i \-i
E^(0^^.^.exp 2 M ( ^ h.e.p.+^e^)

L \ j=i 2 /J
^exptCA^)

for all s ̂  1 and t ^ ^.
In conclusion we have, for all t€ R and all s ^ 1,

|^(0|+|^(0|^exp(C^^)

thus, taking (32) into account, we find (35).
Proof of (36) anrf (37). — By (8) and the definition of a(t), we can explicitely write the

Fourier coefficients (pfc(0 of u(x, t) [see (31) and (32)] as

<Pfc(0=Wsfc(^-^)) (^Ifc)

where Wg(T) are the functions defined in Lemma 1. Therefore, noticing that h^ p^ (47i;)~1

are integers, we get by (15) and (28) the equalities

E^± ^=E,A± ^)=Mexp(-^e,p,).

4s SERIE - TOME 22 - 1989 - N° 1



HYPERBOLIC EQUATIONS WITHOUT LOCAL SOLVABILITY 117

Proceeding as above, we then find, for t ^ ^ — p^/2,

/ °° \E^O^.r^.exp^^p^.exp M^ ^ e,p,
\ j = k + l /

while for r ^ ^+(pfc/2),

/ fc- l \
£^(0^^.r|^.exp(-^£fcpfc).exp 2M ^ ^£jPj ,

\ 7=1 /

and hence, by (24), (25), (33) and (22),

| ^ ( 0 | + | ( P k ( 0 | ^ ^ - ^ - e x p ( - _ ^ € f c p f c )

^.expPQog^^T^-^log^)3]

L .̂

(39) | (p, (r) | +1 (p, (01 ̂  C, ̂ -^ V^ > 0, V r G R\I,.

The last estimate ensure that

ue C2 (]0, + oo[; C00 (R,)) U C2 (] - oo, 0[; C00 (R,))

and hence (36). To obtain (37), we must only observe, in addition, that u^=a(t)u^
with a(t) of class C°° outside {r=0}.

Proof of (38). — It is immediate at this point to conclude that

i^CaO.rL^R,)), V r > 0 ;

indeed, for k -> oo, we have [by (31), (32) and (33)]

whereas

-^0 in C°°([0, In]).

It would also be easy to show that

(40) u^ ̂  (I (x, n) x I (0, p)), V x, V p (2).

(2) Here and in the following, we shall briefly denote by I(^, p) the open real interval with center ^ and
radius p.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



118 F. COLOMBINI AND S. SPAGNOLO

Actually (38) is stronger than (40), and we shall prove it by a duality argument.
Let us fix XG Ry r > 0 and a 2 Ti-periodic Gevrey function % (x) such that

(41) [2\(x)dx=l
Jo

(42) supp(x)ni(x,7i)gl(x;r/4),

and let us consider the "dual problem"

/43) f (^-^(O^Lc-O
1 Vk (x, Q = 0, (Vk\ (x, ^) = ̂  (x)

where k = 1, 2, 3, . . . and

(44) ^W^We-1^.

We observe that the function ^ belongs to ^(^x) ^or some s, while a(t) belongs to
C0'01 for all a < 1; thus, by an existence theorem of [1] (Theorem 4,ii), problem (43) is
uniquely solvable in C2^, ^(IR^)). Moreover, by the finite speed of propagation
property, we have, for k ^ ^(r),

(45) supper, .)) ni(x, n) ̂  l(x, r ) for tel^

Let us now take, for each fe, a C00 function 6^(1) such that

0 for r^-^

1 for t ^ tfc
(46) 9^(0=

(47) |9^(0|^Cpp^ for a l l />G^,

and let us multiply each term of the equation (34) by Qk(t) i^(x, 0 and each term of the
equation (43) by Qk(t)u(x, t). By integrating on the square Q(x, r)=I(x, r)xl(0, r)
and taking into account the initial conditions in (43), we then find (after some computa-
tion), for k ^ k (r),

(48) f f u. (2 (i;,), 9, + v, 9,') dx dt = f u(x, Q ̂  (x) dx.
J J Q ( x , r ) Jl(x,n)

We shall see that, if u(x, t) is a distribution on Q(x, r), (48) is impossible for k
large. To this end, we estimate the right hand term of (48), using (31), (32), (44) and

4° SfiRIE - TOME 22 - 1989 - N° 1



HYPERBOLIC EQUATIONS WITHOUT LOCAL SOLVABILITY 119

(39) (for p= I):

u(x,Q^Wdx= ^ (p )̂ I xW^-'^'Ac
JI^") J ^ l Jl(x;ji)

=T^fc+ E <pA) f xW^-^Ac
J ^ l JlOc.n)J ^ l •/I(x.n)
J ^ f c

^-S C,A71 f \^x)\dx
J ^ l Jl(x,n)

^^-Cl.

Hence, going back to (48), we conclude that

where we have put, for brevity,

(50) ^^(^e^^.
Now, we estimate the growth of w^ as k -> oo by using the inequalities

(51) \8qc9pv,(x, 0| ̂ C^^r4"1 (P, qeN)

which follow from the fact that ^ is the solution of a problem like (43), in which

\a(p)(t)\^CphS for tel^

\^\x)\^C,hl.

Introducing (51) and (47) [we remark that p^-1 ^ ̂  by (22)] in (50), noticing that the
functions w^(x, t) have equi-compact supports in Q(x, r) [by (45) and (46)] and remem-
bering that Ttfc=exp [(log ̂ )2], we then find

(52) \ —r== Wfe^ 0 in ^(Q(x, r)) (as k -^ oo).
I ^/'Hk J

Clearly, (49) and (52) excludejhat u(x, t) can be a distribution on the square Q(x, r),
so that, by the arbitrariness of x and r, (38) is proved.

This completes the proof of Theorem 1. D

Remark. - In point of fact, we have proved a stronger result than the one claimed in
Theorem J, namely that there exists a function a(t) satisfying (20) such that there is a
solution u(x, t) of the equation (21), belonging to C2^ W^)) for all s > 1, which
is a C00 function outside the line {r=0} but not a distribution near any point of this
line.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



120 F. COLOMBINI AND S. SPAGNOLO

Thus, in particular, we have

^'-sing supp (u) = {t = 0}.

THEOREM 2. — There exists a function a (t) satisfying (20) and a 2 K-periodic function
f(x) of class C°°, for -which the equation

(53) ^-a(t)u^=f{x)

has no solution u(x, t) in C2([—r, r], ^^(R^)), for any r > 0 (y^here ^^ is the space of
2 n-periodic distributions).

Proof. — Let us take the parameters p^, h^ e^ and the function a(t) just as in the
beginning of the proof of Theorem 1 [see (22)], hence in particular

a(t)=^(hk(t-Q) for telk

where a^r) are the functions of Lemma 1 and lk=[tk~Pk/^ ^k+Pk/2]'
Then, let us define the function / (x) as

+ 00

/(x)= S c,,̂
h= — oo

with

(54) c^e-^09^2

(we observe that/(x) is a C°°, but not a Gevrey function).
Assume, by contradiction, that equation (53) has a solution u(x, Q belonging to

C2^—?-, r], ^^(^x)) ^or some y* > 0. Therefore, we can write
+00

u(x,t)= ^ ^(t)^
h= — oo

for some (p/, satisfying

(55) (p.'+a^^cp^c,

and

(56) | (()„ (01 +1 (p, (01 ̂  Co ̂ w for some Co and m.

Let us now introduce the functions

(57) vK(0=^(^-^

where the Wg(r)'s are the functions appearing in Lemma 1, and let us observe that [by (8)]

(58) ^+a(0^^=0 in I,.

4° SfiRIE - TOME 22 - 1989 - N° 1



HYPERBOLIC EQUATIONS WITHOUT LOCAL SOLVABILITY 121

Noticing that

hj, -k = 2 7iv ,̂ for some v^ e F^,

we see that

(59) ^L ± ̂ \=e-^l\ ^L ± ̂ =0.

Moreover, by (14), we have the estimate

(60) f ^(t)dt^2^h,1 (y>0).
Jik

Such an estimate can be derived as follows:

STIVfc

f ^(t)dt=h,1 [2nvk H^(T)rfT
J Ifc J — 2 nvfc

p^
=2^-1 W,̂ T

Jo
vfc-l F 2 » i ( j + l )

=2^-1 E W,̂ T
J=0 J i n j

^n vfc - l

=2^-1. w,,dT. ^ ^-efc2^•
Jo j=o

^2^- ly8„

where we have used the eveness of H^ (r) and the equality
p2n(j+l) p2n

W^(T)dT=^-^2^' V^(T)rfT,
J27ij JO

which is a consequence of (12).
Putting in duality equation (55) with (58), we then find the equality

[^<-^(PJ;:^^=% f ̂
Jifc

and hence, by (56), (59), (54) and (60), the inequality

Co h^e~^ ̂  ̂ l2 ̂  e-^09 h^ 2 y^ h^ \

which becomes false for fe -> oo, by our definition of e^, h^ and pj^ [see (22)].
This completes the proof of Theorem 2. D

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



122 F. COLOMBINI AND S. SPAGNOLO

THEOREM 3. — There exists a function A (x, t) such that

(61) A (x, t) e C°' "(R^ x R,), for all a < 1,
1 ^ A (x, 0 ̂  3

for "which the equation

(62) i^-(A(x, OM^=X

/zas no C1-solution u(x, t) on an^ neighbourhood o/(0, 0).
Proo/. — Fixed pj^, h^, e^, 1̂  and a(f) as in the proof of Theorem 1, let us define

(63) AOc,^^.
a(x)

Then, let us introduce the functions

(64) v,(x, 0=vK(x)^(0

where the vl/^s are defined as in the proof of Theorem 2 [see (57)]. As a direct conse-
quence of (58), we see that v^(x, t) solves the equation

(65) (^)»-(A(x,0(^),=0 in Q,

where

(66) %=I fcXl fc

(f. e. Qk is the square of R^ x R( with center at the point (x, t) = (t^ ^) and side equal
to pfc).

Let us now assume, by contradiction, that there exists a C^-solution u(x, t) of the
equation (62) on some neighbourhood W of (0, 0); by pairing equation (62) with (65),
we then find that, for k large with respect to W,

(67) [(u, v^-u (Vk\) Vf - A (x, 0 (̂  Vk - u (v^) vj da = xv^ dx dt
J8Qk ^Qfc

where (Vp vj is the exterior normal to 9Qj,.
We shall prove that (67) becomes false for k -> oo. In fact, from the definition of ^f^

[see (57)] and the properties (13) and (15) of Wg, we derive that

^ f 1^1 ̂ chi i n l k O'-O 1 2)(68) [W^h{e-^2 on 81, 0-0? 19 2)

and hence, by (64),

1 ^ 1 + 1 ( ^ 1 + 1 ( ^ 1 ^ C,.hle-^l2 on 3Q,.
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If we introduce the last estimate in the left hand term of (67) and we take into account
that ueC1 (W) and W => Qj, (for k large), we get

(69) || xv^dxdt ^C^e-^^l2.
JJpfe

On the other hand, by (64) we have

xvk dx dt = - \|/fc (x) \|/fe (r) dx dt + x ̂  (x) ̂  (r) rfa,
k ^Qfc JaQfc

and, by (60) and (68) respectively,

ff ^(x)^(t)dxdt=([ ^(O^Y^y2^-2

jJQk VJift /

| x\|/,(x)^(r)da ̂  C3^-e^^/2.
J^Qk^Qk

Thus, going back to (69), we find the inequality

72£^-2^C4^-£^^/2

which is false for k large, after our choice of the parameters [see (22), where N > 1].
This concludes the proof of Theorem 3. D

Remark 1. — The coefficient A(x, t) in equation (62) is a Holder continuous function
of any exponent a < 1; this is, in some sense, the best regularity allowed in order to
have an example of non-local solvability for an equation such as

(70) M»~(A(X,O^),=/(X,O,

under the hyperbolicity condition A (x, t) ̂  v > 0.
In fact, if A (x, t) is Lipschitz continuous near the origine with respect to one of its

variables, then (70) is locally solvable at (0, 0). This is obvious if A is Lipschitz
continuous in t, since in such a case we can solve the Cauchy problem for (70) assigning
the initial data at t=0. On the other side, if A is Lipschitz continuous in x, we can
solve the Cauchy problem

'°-(i0-(i)(71) \ A A \A/ ,
u=ro(0, v^=v^(t) sit {x=0}

where g(x, t) is any function such that ^=/and VQ^I), v^(t) are arbitrarily taken in
C°°(R() (we notice that (71) is uniquely solvable, since I/A is Lipschitz continuous in x
while g / A and (g/A)^ are bounded near the origine). Now, a simple computation shows

ANNALES SCIENTIFIQUES DE L'feCOLE NORMALE SUPERIEURE



124 F. COLOMBINI AND S. SPAGNOLO

that the function

u(x,o=r^(x,y^+vi/(x)
Jo

is a solution of (70), provided that

^^
t=0

Remark 2. — By modifying the coefficient A (x, t) of equation (62) outside of the set
00

U Qfc, where Q^ are the squares introduced in the proof of Theorem 3 [see (66)], we
f c = i
can construct another equation like (62), say

(73) u,,-(K(x, t)u^=x,

where A (x, t) is a function of class C°° on (^^^{(O, 0)} which satisfies again (61), in
such a way that, given an arbitrary neighbourhood W of the origine, there is no
distribution u(x, t) in W which solves (73) in W\{(0, 0)} (3).

Clearly, such a result improves (slightly) Theorem 3.

Erratum. — In some preliminary announcements of the present paper (Pitman Research
Notes in Math., 158, 1987, pp. 202-219, and Proceedings of the "Saint Jean de Monts
journees", 1987, n° VIII), we stated Theorem 3 in a more general form, by claiming the
existence of a positive function A(x, t) of the form (63) for which the equation (70) is
not locally solvable near the origin, not only for/==x (as proved in theorem 3) but also
for every/for which/^(O, 0)^0. Unfortunately, this result is false in this generality.
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