MARKO TADIĆ
Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)

Annales scientifiques de l’É.N.S. 4e série, tome 19, n° 3 (1986), p. 335-382

<http://www.numdam.org/item?id=ASENS_1986_4_19_3_335_0>
CLASSIFICATION
OF UNITARY REPRESENTATIONS
IN IRREDUCIBLE REPRESENTATIONS
OF General Linear Group
(non-archimedean case)

By Marko Tadić

Contents

Introduction .. 335
1. Zelevinsky classification ... 340
2. Some general facts about unitarizable representations 345
3. Certain primes in R ... 352
4. On completeness argument .. 356
5. Langlands classification .. 361
6. Technical lemmas .. 364
7. Unitary dual ... 367
8. Bernstein conjecture on complementary series 370
Appendix .. 371
References ... 380

Introduction

A basic problem of the harmonic analysis on a particular group G is to describe the set of all equivalence classes of irreducible unitary representations of G.

Let G be a connected reductive group over a local field F. The set of all equivalence classes of (algebraically) irreducible admissible representations of G is denoted by \tilde{G}. The set of all equivalence classes of topologically irreducible unitary representations (on Hilbert spaces) is denoted by \hat{G}, and called the unitary dual of G. The unitary dual \hat{G} is in a natural bijection with the subset of all unitarizable classes in \tilde{G} ([6], [32]). In this way we shall identify \hat{G} with the subset of all unitarizable classes in \tilde{G}. Thus, a description of the unitary dual can be done in two steps. The first step is to parametrize
The first step is called the problem of non-unitary dual, and the second one is called the unitarizability problem.

The first problem has been studied much more than the second one. It has been completely solved for the case of archimedean \(F \), by Langlands classification. Langlands classification is done also for the nonarchimedean case, but here remains to classify the Langlands parameters.

The second problem is carried out in the case of non-archimedean \(F \) only for the groups \(SL(2) \) and closely related group \(GL(2) \) (possible reference is [10]) (1).

In the case of archimedean \(F \), despite the complete knowledge of the non-unitary dual \(\hat{G} \) the second problem was carried out completely only for a few groups of lower ranks. For a survey of this case one may consult the paper [17] of A. W. Knapp and B. Speh and therefore we are not going into further details (see also [31]).

We shall give one more remark about the problem of unitary dual for groups \(SL(n, \mathbb{C}) \), which are closely related to the groups \(GL(n, \mathbb{C}) \). In 1950, I. M. Gelfand and M. A. Neumark constructed a family of irreducible unitary representations of \(SL(n, \mathbb{C}) \) for which they presumed they exhausted the unitary dual [13]. In 1967 E. M. Stein showed that the constructed family of representations was not complete, by constructing a new complementary series [25]. G. Olshanskii generalized in [20] this result. He constructed some complementary series for \(GL(n) \) over division algebras (archimedean and non-archimedean). In [2] J. N. Bernstein constructed a much wider family of complementary series for \(GL(n) \) over a non-archimedean field. This complementary series will be discussed later. J. N. Bernstein paper contains some very important general results about unitarizability in the case of \(GL(n) \) over non-archimedean fields.

In this paper we give a solution of the unitarizability problem for the groups \(GL(n) \) over a local non-archimedean field \(F \). More precisely, Zelevinsky parameters and Langlands parameters of all unitarizable classes in \(GL(n, F) \) are determined. Moreover, an explicit formula connecting Zelevinsky and Langlands parameters of \(GL(n, F) \) is proved. We prove also the Bernstein conjecture on complementary series from [2].

The results and techniques we need in this paper on non-unitary dual of \(GL(n) \) over non-archimedean field, which are characteristic for this case, belong mainly to I. M. Gelfand, D. A. Kazhdan, J. N. Bernstein and A. V. Zelevinsky ([4], [5], [12], [33]).

Concerning the facts about the unitary representations required for this paper, in the first stage of development of ideas of this paper, the results of D. Miličič from [18] and also results of [27] (obtained using [18]) had an important role. In the second stage, the results of J. N. Bernstein in [2] played an important role. F. Rodier pointed out to me possibility of studying the unitary duals of \(GL(n) \) over non-archimedean fields using these two groups of ideas.

Now we shall describe the main results of this paper.

1 Added in proof: the authors recently learned that H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika carried out the second problem for non-archimedean \(GL(3) \) in “Automorphic forms on \(GL(3) \)”, Ann. of Math., Vol. 109, 1979, 169-212.
Let $\text{Alg GL}(n, F)$ be the category of all smooth representations of finite length of $\text{GL}(n, F)$ where F is a local non-archimedean field. If $\pi \in \text{Alg GL}(n, F)$ then we write $\deg \pi = n$. If $\tau \in \text{Alg GL}(n_1, F)$ and $\sigma \in \text{Alg GL}(n_2, F)$ then $\tau \times \sigma \in \text{Alg GL}(n_1 + n_2, F)$ denotes the representation induced by $\tau \otimes \sigma$.

The set of all equivalence classes of irreducible smooth representations of $\text{GL}(n, F)$ for all $n \geq 0$, is denoted by Irr. The subset of all unitarizable representations in Irr is denoted by Irr^\vee. Let C be the set of all cuspidal representations in Irr. Set $C^\vee = \text{Irr}^\vee \cap C$. Note that C^\vee is just the set of all representations in C with unitary central character. Set

$$\text{GL}(n, F)^\vee = \{ \pi \in \text{Irr}^\vee; \deg \pi = n \}.$$

Let R_n be the Grothendieck group of the category $\text{Alg GL}(n, F)$. The induction functor $(\tau, \sigma) \mapsto \tau \times \sigma$ defines a structure of a graded ring on

$$R = \bigoplus_{n \geq 0} R_n.$$

We consider $\text{Irr} \subset R$ and now Irr is a basis of Z-module R.

Let ν be the character $g \mapsto |\det g|_F$ of $\text{GL}(n, F)$ where $| \cdot |_F$ is a natural absolute value on F (see 1.3).

For a positive integer d set $\Delta[d] = \{ -(d-1)/2, -(d-3)/2, \ldots, (d-1)/2 \}$. If $\rho \in C$ then we put

$$\Delta[d]^{(\rho)} = \{ \nu^\rho \sigma; \sigma \in \Delta[d] \}.$$

Let d, n be positive integers. Let

$$a(n, d)^{(\rho)} = (\nu^{\rho - n + 1/2} \Delta[d]^{(\rho)}, \nu^{\rho - n + 3/2} \Delta[d]^{(\rho)}, \ldots, \nu^{\rho - 1/2} \Delta[d]^{(\rho)})$$

be a multiset (see the first section) where

$$\nu^\rho \Delta[d]^{(\rho)} = \{ \nu^\rho \sigma; \sigma \in \Delta[d]^{(\rho)} \}.$$

By the Zelevinsky classification we can associate to $a(n, d)^{(\rho)}$ a representation $\langle a(n, d)^{(\rho)} \rangle \in \text{Irr}$.

Fix an integer n. Take a decomposition

$$n = \sum_{i=1}^s a_i p_i u_i + 2 \sum_{j=1}^r b_j q_j v_j$$

where $a_i, p_i, u_i, b_j, q_j, v_j$ are positive integers. The case of $r = 0$ or $s = 0$ is possible. Let $\alpha_1, \ldots, \alpha_s \in (0, 1/2)$. Take $\sigma_i, \tau_j \in C^\vee$ such that $\deg \sigma_i = u_i$ and $\deg \tau_j = v_j$. Set

$$(\ast) \quad \pi((a_1, p_1, \sigma_1), \ldots, (a_s, p_s, \sigma_s), (b_1, q_1, \tau_1, \alpha_1), \ldots, (b_r, q_r, \tau_r, \alpha_s))$$

$$= \langle a(a_1, p_1)^{(\sigma_1)} \rangle \times \ldots \times \langle a(a_s, p_s)^{(\sigma_s)} \rangle$$

$$\times \nu^{\alpha_1} \langle a(b_1, q_1)^{(\tau_1)} \rangle \times \nu^{-\alpha_1} \langle a(b_1, q_1)^{(\tau_1)} \rangle \times \ldots$$

\text{ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPERIEURE}
The main result of this paper is the following:

THEOREM A. — (i) Representations \(\pi((a_1, p_1, \sigma_1), \ldots, (b_n, q_n, \tau_n, \alpha_n)) \) are in \(\text{GL}(n, F) \).

(ii) Each irreducible unitarizable representation of \(\text{GL}(n, F) \) can be obtained in this way.

(iii) Two representations
\[
\pi((a_1', p_1', \sigma_1'), \ldots, (a_i', p_i', \sigma_i'), (b_1', q_1', \tau_1', \alpha_1'), \ldots, (b_i', q_i', \tau_i', \alpha_i')) = (b_1', q_1', \tau_1', \alpha_1'), \ldots, (b_i', q_i', \tau_i', \alpha_i'))
\]
are equal if and only if \(s_1 = s_2, r_1 = r_2 \) and
\[
((a_1', p_1', \sigma_1'), \ldots, (a_i', p_i', \sigma_i')) = ((a_1^2, p_1^2, \sigma_1^2), \ldots, (a_i^2, p_i^2, \sigma_i^2)),
\]
\[
((b_1', q_1', \tau_1', \alpha_1'), \ldots, (b_i', q_i', \tau_i', \alpha_i')) = ((b_1^2, q_1^2, \tau_1^2, \alpha_1^2), \ldots, (b_i^2, q_i^2, \tau_i^2, \alpha_i^2))
\]
as multisets.

By the work of Zelevinsky and Bernstein, we have the involution \(^t: \text{Irr} \rightarrow \text{Irr} \) (see 1.1.4). The importance of the involution \(^t \) lies, among the others, in the fact that \(^t \) connects Zelevinsky and Langlands classification, what was shown by F. Rodier in [21].

THEOREM B. — We have
\[
\pi((a_1, p_1, \sigma_1), \ldots, (a_n, p_n, \sigma_n), (b_1, q_1, \tau_1, \alpha_1), \ldots, (b_n, q_n, \tau_n, \alpha_n)) = \pi((p_1, a_1, \sigma_1), \ldots, (p_n, a_n, \sigma_n), (q_1, b_1, \tau_1, \alpha_1), \ldots, (q_n, b_n, \tau_n, \alpha_n)).
\]

In this paper, we prove the Bernstein conjecture on complementary series from [2]. For \(\pi \in \text{Irr} \) let \(\pi^+ \) be the Hermitian contragredient of \(\pi \). Rigid representations are defined in 4.1.

THEOREM C (Bernstein conjecture on complementary series). — (i) Suppose that \(\nu^a \sigma \times \nu^a \sigma^+ \) is irreducible and unitarizable for all \(a \in (-1/2, 1/2) \). Then \(\sigma \) is a unitarizable rigid representation.

(ii) Suppose that \(\sigma \) is a rigid representation such that \(\nu^a \sigma \times \nu^a \sigma^+ \), is an irreducible unitarizable representation for some \(a \in (0, 1/2) \). Then there exist \(\sigma_1, \sigma_2 \in \text{Irr}^a \) so that
\[
\sigma = \sigma_1 \times \nu^{-1/2} \sigma_2.
\]

Let \(\text{D}^a \) be the set of all square integrable classes in \(\text{Irr}^a \).

Let \(n \) be a positive integer, and let \(\delta \in \text{D}^a \). The representation
\[
\nu^{(n-1)/2} \delta \times \nu^{(n-1)/2} \delta \times \ldots \times \nu^{-(n-1)/2} \delta
\]
has a unique irreducible quotient which is denoted by \(u(\delta, n) \).

THEOREM D. — Let \(B \) be the set of all
\[
u^a u(\delta, n) \times \nu^{-a} u(\delta, n)
\]
where \(n \) is a positive integer, \(\delta \in \text{D}^a \) and \(0 < a < 1/2 \).
(i) If $\pi_1, \ldots, \pi_r \in B$, then $\pi_1 \times \ldots \times \pi_r \in \text{Irr}^n$.

(ii) If $\sigma \in \text{Irr}^n$, then there exist $\pi_1, \ldots, \pi_r \in B$ so that $\sigma = \pi_1 \times \ldots \times \pi_r$. The elements π_1, \ldots, π_r are unique up to a permutation.

This theorem describes the Langlands parameters of Irr^n.

Note that the statement of Theorem D. makes sense also if the field F is archimedean. In fact, Theorem D. holds also over archimedean F and the ideas of sections 3 and 4 of this paper can be applied as well in the case of archimedean F (see [30]).

Note that for $\text{GL}(n)$ over archimedean fields, irreducible square integrable representations exist only for $\text{GL}(1, C^\times)$, $\text{GL}(1, R) = \mathbb{R}^\times$ and $\text{GL}(2, R)$. If δ is an irreducible square integrable representation of $\text{GL}(1, \mathbb{R})$ or $\text{GL}(1, C)$, i.e. a unitary character of \mathbb{R}^\times or C^\times, then

$$u(\delta, n): g \rightarrow \delta(\det g)$$

is an one-dimensional unitary representation of $\text{GL}(n, \mathbb{R})$ or $\text{GL}(n, C)$. If δ is an irreducible square integrable representation of $\text{GL}(2, \mathbb{R})$ than $u(\delta, n)$ were studied by B. Speh [24]. In the non-archimedean case we have much more square integrable representations. Therefore we have much more representations $u(\delta, n)$.

The involution $'$ on R was defined in [33]. A. V. Zelevinsky conjectured in [33] that $'$ carries the irreducible representations into irreducible ones, i.e. that $(\text{Irr})' = \text{Irr}$. Proof of this was announced. The fact $(\text{Irr})' = \text{Irr}$ was used in this paper. As up to this date there is no written proof of this fact in the full generality, known to this author, we shall write a few words about the role of this fact for this paper.

In [35], J.-L. Waldspurger proved that $\pi' \in \text{Irr}$ for $\pi \in \text{Irr}$ in a great number of cases.

In the sections 1-6 of this paper we are using neither $(\text{Irr})' = \text{Irr}$ nor the results depending on this fact. We use $(\text{Irr})' = \text{Irr}$ in sections 7 and 8 where Theorems A, B, C and D are proved.

As there is no reference for the written proof of $(\text{Irr})' = \text{Irr}$ in the full generality, we added Appendix in which the main results are proved without assuming $(\text{Irr})' = \text{Irr}$, when char $F = 0$. Therefore we are not using the result of [28] in that section. Using the idea of B. Speh in [24], we prove the unitarizability of representations $u(\delta, n)$ by global methods.

Now we introduce some basic notation. The field of real numbers is denoted by \mathbb{R}, the subring of integers is denoted by \mathbb{Z}, the subset of non-negative integers is denoted by \mathbb{Z}_+ and the subset of positive integers is denoted by \mathbb{N}. If $\alpha, \beta \in \mathbb{R}$ then $(\alpha, \beta) = \{\gamma \in \mathbb{R}; \alpha < \gamma < \beta\}$.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPERIEURE
A part of the results of the present paper was announced in [29].

I would like to thank F. Rodier for the information about G. Olshanskii paper [20] and the J. N. Bernstein paper [2], and for some useful suggestions. I would also like to thank the members of the « Séminaire sur les groupes réductifs et les formes automorphes », Université Paris-VII, for their hospitality during my visit of Paris in November 1983, when the main ideas of this paper arose, and for providing me with a copy of the Bernstein paper [2]. I am grateful to M. Duflo for his advice concerning this paper. I would like to express my appreciation to D. Milićić for the interest he arose in me concerning the topology of the dual spaces and explaining me the basic facts, and to H. Kraljević for encouragements and discussions during my work on the topic of this paper.

Finally, I want to thank the Max-Planck-Institut für Mathematik for their hospitality during the academic year 1984/1985 which enabled me to finish this paper. In particular, I am grateful to the director F. Hirzebruch as well as G. Harder and J. Schwermer who helped a lot to make my stay at the MPI useful.

1. Zelevinsky classification

For more detailed informations and proofs of the results presented in this section one needs to use [33].

1.1. Let F be a locally compact nonarchimedean field. The group $GL(n, F)$ is denoted by G_n. Sometimes we shall identify $GL(1, F)$ with F^\times, the multiplicative group of F.

A representation π of G_n on a complex vector space V is called a smooth G_n-module if every vector in V has an open stabilizer in G_n. If for each open compact subgroup K in G_n the vector space of all K-fixed vectors in V is finite dimensional, then V is called an admissible G_n-module. The Grothendieck group of the category $\text{Alg } G_n$ of all smooth G_n-modules of finite length is denoted by R_n. The induction functor $(\pi_1, \pi_2) \rightarrow \pi_1 \times \pi_2$ induces a bilinear morphism $R_n \times R_m \rightarrow R_{n+m}$. Set

$$R = \bigoplus_{n=0}^{\infty} R_n.$$

We have a structure of commutative graded ring on R. If $\pi \in R_n$ put $\deg \pi = n$.

1.2. Denote by \hat{G}_n the set of all equivalence classes of irreducible smooth representations of G_n. Note that representations in \hat{G}_n are admissible. Suppose that G_n-module V possesses a G_n-invariant inner product. Then we say that V is unitarizable. For an irreducible G_n-module, a G_n-invariant inner product is unique up to a scalar, if it exists. Denote by \check{G}_n the set of all classes of unitarizable representations in \hat{G}_n. Let $C(G_n)$ be the subset of all cuspidal representations in \hat{G}_n, i.e. the subset of all representations in \hat{G}_n whose matrix coefficients are compactly supported functions on G_n modulo the center of G_n. Let $C''(G_n) \subseteq C(C_n)$ be the subset of all unitarizable representations. We
consider
\[\mathcal{G}_n \subseteq \mathbb{R}_n. \]
Then \(\mathcal{G}_n \) is a \(\mathbb{Z} \)-basis of \(\mathbb{R}_n \).

Put
\[
\text{Irr} = \bigcup_{n=0}^{\infty} \mathcal{G}_n,
\]
\[
\text{Irr}^\pi = \bigcup_{n=0}^{\infty} \mathcal{G}_n^\pi,
\]
\[
C = \bigcup_{n=1}^{\infty} C(G_n),
\]
\[
C^\pi = \bigcup_{n=1}^{\infty} C^\pi(G_n).
\]

1. 3. We shall denote by \(v \in \mathcal{G}_n \) the one-dimensional representation \(g \to |\det g|_F \). Here \(|\cdot|_F \) is an absolute value on \(F \) which defines topology of \(F \) such that if \(\omega_F \) generates the maximal ideal \(p_F \) in the ring of integers \(0_F \) of \(F \) then
\[|\omega_F|_F = [\text{card } (0_F/p_F)]^{-1}. \]
For \(\alpha \in \mathbb{C} \) put \(v^\alpha(\pi) = v^\alpha \pi, \pi \in \mathbb{R}_n \). Now we can extend \(v^\alpha \) to the whole \(\mathbb{R} \) and \(v^\alpha \) is an automorphism of the ring \(\mathbb{R} \).

1. 4. For a set \(X \), \(M(X) \) will denote the set of all finite multisets in \(X \). They are functions \(a : X \to \mathbb{Z}_+ \) with finite support. We shall write \(a \) in the following way. Let \(\{x_1, \ldots, x_n\} \) be the set of all \(x \in X \) such that \(a(x) \neq 0 \). Then we write \(a \) as
\[
(a(x_1) \text{ times}) (x_1, \ldots, x_1, x_2, \ldots, x_2, \ldots, x_m, \ldots, x_m).
\]
We shall consider \(X \subseteq M(X) \). Clearly, \(M(X) \) has a structure of a commutative semigroup with identity.

For \(a \in M(X) \), the number \(\sum_{x \in X} a(x) \) is called the cardinal number of \(a \) and denoted by \(|a| \).

1. 5. For \(i, j \in \mathbb{Z} \), \(i \leq j \) set
\[
[i, j] = \{ k \in \mathbb{Z}; i \leq k \leq j \},
\]
and call \([i, j] \) a segment in \(\mathbb{Z} \). The set of all segments in \(\mathbb{Z} \) is denoted by \(S(\mathbb{Z}) \).

Let \(\Delta = [i, j] \in S(\mathbb{Z}) \) and \(\alpha \in \mathbb{R} \). Then we call
\[
[i + \alpha, j + \alpha] = \{ \alpha + k; k \in \Delta \}
\]
a segment in \mathbb{R} and denote it by Δ_x. The set of all segments in \mathbb{R} is denoted by $S(\mathbb{R})$. We consider $S(\mathbb{Z}) \subseteq S(\mathbb{R})$. Now for $\Delta \in S(\mathbb{R})$ and $\alpha \in \mathbb{R}$ we define Δ_α analogously. In this way we get action of \mathbb{R} on $S(\mathbb{R})$.

1.6. For $\Delta \in S(\mathbb{R})$ and $\rho \in \mathbb{R}$ set

$$\Delta^{(\rho)} = \{ \nu^\rho \rho ; \nu \in \Delta \}.$$

Let $\rho \in \mathbb{C}$. Then we call $\Delta^{(\rho)}$ a segment in \mathbb{C}. The set of all segments in \mathbb{C} is denoted by $S(\mathbb{C})$. If $\alpha \in \mathbb{R}$ and $\Delta \in S(\mathbb{R})$ then

$$(\Delta_\alpha)^{(\rho)} = \nu^\alpha (\Delta^{(\rho)}).$$

For $\Delta \in S(\mathbb{C})$ set $\Delta_\alpha = \nu^\alpha \Delta$. Now for $\Delta \in S(\mathbb{R})$ and $\alpha \in \mathbb{R}$ we have

$$(\Delta_\alpha)^{(\rho)} = (\Delta^{(\rho)})_\alpha.$$

This is an action of \mathbb{R} on $S(\mathbb{C})$.

For a multiset $a = (\Delta_1, \ldots, \Delta_m) \in M(S(\mathbb{R}))$, $\alpha \in \mathbb{R}$ and $\rho \in \mathbb{C}$ we put

$$a^{(\rho)} = (\Delta_1)^{(\rho)}, \ldots, (\Delta_m)^{(\rho)} \in M(S(\mathbb{R})), \quad d^{(\rho)} = (\Delta_1^{(\rho)}, \ldots, \Delta_m^{(\rho)}) \in M(S(\mathbb{C})).$$

For $b = (\Delta_1, \ldots, \Delta_m) \in M(S(\mathbb{C}))$ set $b = (\nu^\alpha \Delta_1, \ldots, \nu^\alpha \Delta_m)$. This is an action of \mathbb{R} on $M(S(\mathbb{C}))$.

Let $\pi \in \text{Alg} \text{G}_\alpha$ and $\alpha \in \mathbb{R}$. Then π_α denotes the representation $\nu^\alpha \pi$. In this way \mathbb{R} acts on $\text{Alg} \text{G}_\alpha$.

1.7. For $\Delta_1, \Delta_2 \in S(\mathbb{C})$ we shall say that Δ_1 and Δ_2 are linked if $\Delta_1 \cup \Delta_2$ is a segment and

$$\Delta_1 \cap \Delta_2 \neq \{ \Delta_1, \Delta_2 \}.$$

Let $\Delta_1 = [\nu^i \rho, \nu^j \rho], \Delta_2 = [\nu^k \rho, \nu^l \rho]$ be two linked segments. If $i < k$ then we say that Δ_1 precedes Δ_2 and write $\Delta_1 \rightarrow \Delta_2$.

1.8. For $\Delta \in S(\mathbb{C}), \Delta = [\rho, \nu^i \rho], i \in \mathbb{Z}_+$, the representation

$$\rho \times \nu \rho \times \ldots \times \nu^i \rho$$

has a unique irreducible subrepresentation which we denote by $\langle \Delta \rangle$. Let

$$a = (\Delta_1, \ldots, \Delta_m) \in M(S(\mathbb{C})).$$

Choose an ordering on a such that:

$$\Delta_i \text{ precedes } \Delta_j \Rightarrow i > j.$$

Set

$$\pi(a) = \langle \Delta_1 \rangle \times \langle \Delta_2 \rangle \times \ldots \times \langle \Delta_m \rangle.$$
Now \(\pi(a) \) has a unique irreducible subrepresentation which is denoted by \(\langle a \rangle \). The mapping

\[
a \rightarrow \langle a \rangle,
\]

\[
M(S(C)) \rightarrow Irr
\]

is a bijection. This is Zelevinsky classification.

For \(x \in \mathbb{R}, a \in M(S(\mathbb{R})), \rho \in C \) and \(b \in M(S(C)) \) we have

\[
\langle (a^\rho)_x \rangle = \langle (a^\rho)_y \rangle = \langle a^\rho \rangle_x
\]

and

\[
\langle b_x \rangle = \langle b \rangle_x
\]

since the representations \(\pi(b_x) \) and \(\pi(b)_x \) are isomorphic.

1.9. For \(a = (\Delta_1, \ldots, \Delta_n) \in M(S(C)) \) denote \(\text{supp} \ a \in M(C), \)

\[
(\text{supp} \ a)(\rho) = \text{card} \{ i; \rho \in \Delta_i \}.
\]

This is called the support of the multisegment \(a \). In the same way define the support of \(a \in M(S(\mathbb{R})). \)

Now we have

\[
\text{supp} \langle a \rangle = \text{supp} a, a \in M(S(C)).
\]

The support of a representation is defined in 1.10 of [33].

For \(\omega \in M(C) \) set

\[
\text{Irr}_\omega = \{ \pi \in \text{Irr}; \text{supp} \pi = \omega \},
\]

\[
R_\omega = \sum_{\pi \in \text{Irr}_\omega} Z \pi.
\]

Now \(\{ R_\omega; \omega \in M(C) \} \) is a graduation of the ring \(R \).

1.10. Let \(\rho \in C \). We denote by \(\rho_\mathbb{Z} \) (resp. \(\rho_\mathbb{R} \)) the orbit of \(\rho \) under the action of \(\mathbb{Z} \) (resp. \(\mathbb{R} \)).

For \(X \subseteq C \) set

\[
\text{Irr}(X) = \bigcup_{\omega \in M(X)} \text{Irr}_\omega,
\]

\[
\text{Irr}^*(X) = \text{Irr}(X) \cap \text{Irr}^*.
\]

Let \(\rho^1, \ldots, \rho^n \in C \) belong to different \(\mathbb{Z} \)-orbits. We know from Proposition 1.5.2 of [34] that the multiplication in the Grotendieck group

\[
\text{Irr}(\rho^1_\mathbb{Z}) \times \ldots \times \text{Irr}(\rho^n_\mathbb{Z}) \rightarrow \text{Irr}(\rho^1_\mathbb{Z} \cup \ldots \cup \rho^n_\mathbb{Z})
\]

gives us a bijection.
In the same way one obtains: if \(\rho^1, \ldots, \rho^n \) belong to different \(\mathbb{R} \)-orbits then we have a bijection

\[
\operatorname{Irr}(\rho^1_\mathbb{R}) \times \ldots \times \operatorname{Irr}(\rho^n_\mathbb{R}) \to \operatorname{Irr}(\rho^1_\mathbb{R} \cup \ldots \cup \rho^n_\mathbb{R}).
\]

1.11. For a smooth representation \(\pi \) of finite length we associate a multiset \(\operatorname{JH}(\pi) \in \mathbb{M}(\operatorname{Irr}) \) as follows: \(\operatorname{JH}(\pi)(\sigma) \) is the multiplicity of \(\sigma \) in a composition series of \(\pi \). This multiset is called the Jordan-Hölder series of \(\pi \).

1.12. Let \(a = (\Delta_1, \ldots, \Delta_m) \in \mathbb{M}(\mathbb{S}(\mathbb{C})) \). If \(\Delta_i \) and \(\Delta_j \) are linked and \(i < j \) then

\[
b = (\Delta_1, \ldots, \Delta_{i-1}, \Delta_i \cap \Delta_j, \Delta_{i+1}, \ldots, \Delta_{j-1}, \Delta_j \cup \Delta_i, \Delta_{j+1}, \ldots, \Delta_m)
\]

is again a multiset in \(\mathbb{S}(\mathbb{C}) \). Set \(b < a \). For \(a, b \in \mathbb{M}(\mathbb{S}(\mathbb{C})) \) we shall write \(b \leq a \) if there exist \(a_1, \ldots, a_m \in \mathbb{M}(\mathbb{S}(\mathbb{C})) \) such that

\[
b = a_1 < a_2 < \ldots < a_m = a.
\]

Now \(\leq \) is a partial ordering on \(\mathbb{M}(\mathbb{S}(\mathbb{C})) \).

1.13. Let \(a \in \mathbb{M}(\mathbb{S}(\mathbb{C})) \). Then we know from [33] that

\[
\operatorname{JH}(\pi(a))(\langle b \rangle) \neq 0 \iff b \leq a,
\]

and

\[
\operatorname{JH}(\pi(a))(\langle a \rangle) = 1.
\]

1.14. For \(\Delta = [\rho, \nu^i \rho] \in \mathbb{S}(\mathbb{C}) \) denote by

\[
\Delta' = (\{ \rho \}, \{ \nu^i \rho \}, \ldots, \{ \nu^i \rho \}) \in \mathbb{M}(\mathbb{S}(\mathbb{C})).
\]

The ring \(\mathbb{R} \) is polynomial over \(\{ \langle \Delta \rangle; \Delta \in \mathbb{S}(\mathbb{C}) \} \) and

\[
\langle \Delta \rangle \to \langle \Delta' \rangle
\]

extends to an involutive automorphism \(^t: \mathbb{R} \to \mathbb{R} \) of the graded ring \(\mathbb{R} \). It is announced in [33], [34] and [2] that \(\operatorname{Irr}' \subseteq \operatorname{Irr} \).

1.15. If \(\pi \) is a smooth representation of \(\mathbb{G}_a \) then \(\pi \) denotes the contragredient representation of \(\pi \). For \(\Delta \in \mathbb{S}(\mathbb{C}) \) the set \(\{ \tilde{\rho}; \rho \in \Delta \} \) is again a segment in \(\mathbb{C} \) which we denote by \(\Delta^- \). For \(a = (\Delta_1, \ldots, \Delta_m) \in \mathbb{M}(\mathbb{S}(\mathbb{C})) \) let \(\tilde{a} = (\Delta_1^-, \ldots, \Delta_m^-) \in \mathbb{M}(\mathbb{S}(\mathbb{C})) \). Then

\[
\langle a \rangle^- = \langle \tilde{a} \rangle.
\]

1.16. Let \(\Delta = [\rho, \nu^i \rho] \in \mathbb{S}(\mathbb{C}) \). Set

\[
\Delta^- = \begin{cases} [\rho, \nu^{i-1} \rho] & \text{if } i \geq 1 \\
\varnothing & \text{if } i = 0
\end{cases}
\]

\[
\Delta' = \nu^{i/2} \Delta^-.
\]

For \(a = (\Delta_1, \ldots, \Delta_m) \in \mathbb{M}(\mathbb{S}(\mathbb{C})) \) let

\[
a^- = (\Delta_1^-, \ldots, \Delta_m^-),
\]

\[4^e \text{ série — tome 19 — 1986 — n° 3}\]
Now \(\langle a^- \rangle \) is called the highest derivative of \(\langle a \rangle \). Set \(\pi = \langle a \rangle \). Then \(\langle a' \rangle \) is called the highest shifted derivative of \(\pi \). We put \(\pi' = \langle a' \rangle \).

2. Some general facts about unitarizable representations

2.1. Let \((\pi, V) \in \text{Alg} G_n\). We define on \(V \) a new multiplication by scalars

\[(\lambda, v) \rightarrow \lambda v. \]

This vector space is denoted by \(V \). On \(V \) we have action of \(G_n \) and this representation is denoted by \((\bar{\pi}, \bar{V})\). We say that \(\bar{\pi} \) is conjugated to \(\pi \).

For \(\pi \in \text{Alg} G_n \) set

\[\pi^* = \overline{\pi}. \]

We say that \(\pi^* \) is Hermitian contragredient of \(\pi \). Now \(+ : R \rightarrow R \) is a homomorphism of the ring. If \(\pi \cong \pi^* \) we say that \(\pi \) is a Hermitian representation. It is well known that each unitarizable admissible representation is Hermitian.

2.2. For \(a = (\Delta_1, \ldots, \Delta_m) \in M(S(C)) \) set

\[a^* = (\Delta_1^+, \ldots, \Delta_m^+) \in M(S(C)) \]

where

\[\Delta_i^+ = \{ \rho^+; \rho \in \Delta_i \}. \]

By Statement 7.8 of [2] we have

\[\langle a \rangle^* = \langle a^* \rangle. \]

2.3. If \(\rho \in C(G_n) \) then there exists \(\alpha \in \mathbb{R} \) such that

\[\rho = v^\alpha \rho_0 \]

where \(\rho_0 \) is unitarizable. Now

\[\rho^* = v^{-\alpha} \rho_0. \]

This means that an irreducible cuspidal representation is unitarizable if and only if it is Hermitian. Also, an irreducible cuspidal representation is unitarizable if and only if it has unitary central character.

This implies that it is easy to characterize the subset \(C^u \) of all unitarizable representations in \(C \).

2.4. Let \(a = (\Delta_1, \ldots, \Delta_n) \in M(S(R)) \). Set

\[-a = (-\Delta_1, \ldots, -\Delta_n) \]
where
\[-\Delta_i = \{-x; x \in \Delta_i\}.

Note that \(-\Delta_i\) are segments again.

Let \(\rho \in C^\sigma\). Then
\[(a^{(\sigma)})^+ = (-a)^{(\sigma)}\]
and
\[\langle a^{(\sigma)} \rangle^+ = \langle -a \rangle^{(\sigma)}\].

This implies that
\[(\text{Irr}(\rho_2))^+ = \text{Irr}(\rho_2) \text{ for } \rho \in C^\sigma \text{ or } \rho_{1/2} \in C^\sigma, \]
\[(\text{Irr}(\rho_\emptyset))^+ = \text{Irr}(\rho_\emptyset) \text{ for } \rho \in C.\]

2.5. Theorem (J. N. Bernstein, [2]). — (i) If \(\pi_1, \pi_2 \in \text{Irr}^\sigma\) then \(\pi_1 \times \pi_2 \in \text{Irr}^\sigma\).
(ii) If \(\pi_1, \pi_2 \in \text{Irr}^\sigma\) are Hermitian and \(\pi_1 \times \pi_2\) is unitarizable, then \(\pi_1\) and \(\pi_2\) are unitarizable.
(iii) If \(\pi \in \text{Irr}^\sigma\) then \(\pi' \in \text{Irr}^\sigma\).

In this paper we are using only the following form of (ii): If \(\pi_1, \pi_2 \in \text{Irr}^\sigma\) are Hermitian and \(\pi_1 \times \pi_2\) is irreducible unitarizable, then \(\pi_1\) and \(\pi_2\) are unitarizable. This fact can be proved in a much more simple manner then (ii) is proved in [2].

The last fact can be generalized to any reductive group. The form of generalization was suggested by F. Rodier (3).

2.6. Let \(G\) be the group of F-rational points of a connected reductive linear algebraic group defined over \(F\).

Let \(H(G)\) be the Hecke algebra \(G\). If \(K\) is an open compact subgroup then \(H(G, K)\) will denote the subalgebra of all \(K\)-biinvariant functions in \(H(G)\).

The definition of \(\hat{G}\) and \(\hat{G}\) is analogous to the definition of \(\hat{G}_\sigma\) and \(\hat{G}_\emptyset\).

The character of a representation \(\pi\) is denoted by \(ch_\pi\).

2.7. Theorem. — (i) Let \((\pi_n)\) be a sequence in \(\hat{G}\) such that for each \(f \in H(G)\) there exists a finite limit \(\lim_n ch_{\pi_n}(f)\) in the complex numbers. Then there exist \(n_\sigma \in \mathbb{Z}_+\), \(\sigma \in \hat{G}\),

such that
\[
\lim_n ch_{\pi_n}(f) = \sum_{\sigma \in \hat{G}} n_\sigma ch_\sigma(f)
\]
for each fixed \(f \in H(G)\). The set \(\{\sigma; n_\sigma ch_\sigma(f) \neq 0\}\) for a given \(f\), is always finite.

(3) Added in proof: this generalization has been obtained earlier by B. Speh.
If we have numbers \(m_\sigma \in \mathbb{Z}_+ \), \(\sigma \in \hat{G} \), such that
\[
\sum_{\sigma \in \hat{G}} m_\sigma \text{ch}_\sigma(f) = \sum_{\sigma \in \hat{G}} n_\sigma \text{ch}_\sigma(f)
\]
for all \(f \in H(G) \) then \(m_\sigma = 0 \) for \(\sigma \in \hat{G} \setminus \hat{G} \), and \(n_\sigma = m_\sigma \) for \(\sigma \in \hat{G} \).

(ii) If \((\pi_\sigma) \) is a sequence in \(\hat{G} \) then there exists a subsequence \((\pi_{n_\sigma}) \) of \((\pi_\sigma) \) such that \((\text{ch}_{n_{\pi_\sigma}}(f)) \) is convergent for each fixed \(f \in H(G) \).

(iii) In the situation of (i), the set
\[
\{ \sigma ; n_\sigma \neq 0 \}
\]
is finite.

Remark that in the situation of (i) the sequence \((\pi_\sigma) \) in the topology of the dual \(\hat{G} \) converges to \(\sigma \) if and only if \(n_\sigma \neq 0 \). The first two statements of the above theorem are consequences of [18] and [1]. All three statements may be obtained directly from [27] (see particulary Remark 5.8 of [27]) where the topology of the unitary dual of reductive \(p \)-adic groups was studied. In this paper we shall use only the statement (i). Here we shall give another proof of (i) and (ii) which is not using the general facts about dual spaces. We shall prove (i) and (ii) simultaneously. In the cases where we shall apply (i) of this theorem, it will be obvious that the finiteness property of (iii) holds. The property (iii) is expressed in the terms of the topology of unitary dual in the following way: a sequence in \(\hat{G} \) can have only a finite set of limits. The statement (iii) can be proved using [3].

Proof. — Let \((\pi_\sigma, V_\sigma) \) be a sequence in \(\hat{G} \). Let \(\{ K_m, m \in \mathbb{N} \} \) be a descending basis of neighbourhoods of identity in \(G \) as in [1], consisting of open compact subgroups of \(G \). Let \(\pi^K_n \) be the representation of the Hecke algebra \(H(G, K_m) \) on the space of all \(K_m \)-fixed vectors \(V^K_n \) in \(V_n \). Now \(V^K_n \) are irreducible \(H(G, K_m) \)-modules ([7], Proposition 2.2.4) and there exist \(c_m \geq 0 \) such that
\[
(\ast) \quad \dim_C V^K_n \leq c_m
\]
for all \(n \in \mathbb{N} \). The last inequality is a simple consequence of the Statement (A) of [1] and the fact that every irreducible smooth representation of \(G \) is admissible.

Let \(V \) be a countable dimensional complex vector space with an inner product.

Passing to a subsequence we may suppose that \(\dim_C V^K_n = d_1 \) for all \(n \in \mathbb{N} \). Then choose a \(d_1 \)-dimensional subspace \(V^1 \) of \(V \). Let
\[
(\ast\ast) \quad \tilde{\phi}^1_n : V^K_n \rightarrow V^1
\]
be an isomorphism of unitary spaces. Now we have a unique representation \((\pi^K_{n,1})^1 \) on \(V^1 \) such that \(\tilde{\phi}^1_n \) is an isomorphism of \(H(G, K_{1}) \)-modules.
Let \(dg \) be a Haar measure on \(G \). For \(f \in H(G, K^1) \), \(v_1, v_2 \in V_n^1 \) unit vectors we have

\[
| (\pi_n^{K_1}(f) v_1, v_2) | = \int_G f(g) (\pi_n(g) v_1, v_2) \, dg \leq \int_G | f(g) | \, dg.
\]

Thus, the operator norm \(| \pi_n^{K_1}(f) | \) on \(V_n^1 \) is bounded by \(\int_G | f(g) | \, dg \), so \(\{(\pi_n^{K_1})^f(f) ; n \in \mathbb{N}\} \) is a bounded family of operators on \(V^1 \) for each fixed \(f \in H(G) \).

The algebra \(H(G, K^1) \) is finitely generated (in fact the proof can be done without this fact but then it would be a little longer). Let \(f_1, \ldots, f_k \in H(G, K^1) \) be generators. Passing to a subsequence of \((\pi_{n_p}) \) we may suppose that \(((\pi_{n_p})^{f_i}(f_j))_{p,n} \) is a convergent sequence for \(1 \leq i \leq k \). Now each \(((\pi_{n_p})^{f_i}(f_j))_{p,n} \) converges to some \(\pi^1(f) \) and clearly \(\pi^1 \) is a representation of \(H(G, K_1) \). We have

\[(***) \quad \lim_{n} \text{trace} (\pi_{n_p}^{K_1}(f)) = \text{trace} \pi^1(f), \quad f \in H(G, K_1).\]

Denote by \((^1\pi_p, ^1V_p) \) the sequence \((\pi_{n_p}, V_{n_p}) \) and denote \(\tilde{\phi}_{n_p}^1 \) by \(\phi_p^1 \).

Passing to a subsequence of \((^1\pi_n) \) we may suppose that \(\dim ^1V_{n^2} = d_2 \) for all \(n \). Now \(d_2 \geq d_1 \) and we can find in \(V \) a \(d_2 \)-dimensional subspace \(V^2 \) containing \(V^1 \). Let \(\tilde{\phi}_{n_p}^2 : ^1V_{n^2} \rightarrow V^2 \) be an isomorphism of unitary spaces such that \(\tilde{\phi}_{n_p}^2 \) restricted to \(^1V_{n^1} \) is \((**))\). We have a unique representation \((^1\pi_{n^2})^f \) of \(H(G, K_2) \) on \(V^2 \) such that \(\tilde{\phi}_{n_p}^2 \) is an isomorphism of \(H(G, K_2) \)-modules. Passing to a subsequence \((^2\pi_n, ^2V_n) \) we may suppose that \(((^2\pi_n)^f(f)) \) converges for all \(f \in H(G, K_2) \) to some \(\pi^2(f) \). Now \((^2\pi_{n^2})^f(\chi_{K_1}) \) is an orthogonal projection on \(V^1 \). Here \(\chi_{K_1} \) denotes the characteristic function of \(K_1 \). The restriction of the representation \(\pi^2 \) to the subalgebra \(H(G, K_1) \) and the subspace \(V^1 \) is \(\pi^1 \). Corresponding isomorphism \(\tilde{\phi}_{m}^2 : ^2V_{m^2} \rightarrow V^2 \), with suitable \(m \), is denoted by \(\phi_{m}^2 \).

Now we define recursively sequences \(((^m\pi_n, ^mV_n))_n \), \(d_m \in \mathbb{Z}_+ \), subspaces \(V^m \) of \(V \), unitary space isomorphisms \(\phi_{n}^m : ^mV_n^m \rightarrow V^m \), representations \((^m\pi_{n^m})^f \) and \(\pi^m \) of \(H(G, K_m) \) on \(V^m \) in the following way.

We have defined these objects for \(m=2 \). Suppose that \(m \geq 2 \) and that we have defined the above objects for that \(m \). Passing to a subsequence of \(((^m\pi_n, ^mV_n))_n \) we may suppose that \(\dim ^mV_{n^{m+1}} = d_{m+1} \) for all \(n \). Since \(d_{m+1} \geq d_m \), we may find a \(d_{m+1} \)-dimensional subspace \(V^{m+1} \) containing \(V^m \). Let \(\tilde{\phi}_{n_p}^{m+1} : ^mV_{n^{m+1}} \rightarrow V^{m+1} \) be an isomorphism of unitary spaces such that \(\tilde{\phi}_{n_p}^{m+1} \) restricted to \(^mV_{n^m} \) is just \(\phi_{n_p}^m : ^mV_n^m \rightarrow V^m \). We denote by \((^m\pi_{n_p}^{K_{m+1}})^f \) a unique representation of \(H(G, K_{m+1}) \) on \(V^{m+1} \) such that \(\tilde{\phi}_{n_p}^{m+1} \) is an isomorphism of representations. Passing to a subsequence \(((^{m+1}\pi_n, ^{m+1}V_n))_n \) of \(((^m\pi_n, ^mV_n))_n \) we may suppose that \(((^{m+1}\pi_{n_p}^{K_{m+1}})^f(f)) \) converges for each fixed \(f \in H(G, K_{m+1}) \) to some \(\pi^{m+1}(f) \). The restriction of the representation \(\pi^{m+1} \) to the subalgebra \(H(G, K_m) \) and the subspace \(V^m \) is \(\pi^m \). Corresponding isomorphism \(\tilde{\phi}_{k}^{m+1} : ^{m+1}V_{k^m}^{m+1} \rightarrow V^{m+1} \), with suitable \(k \), is denoted by \(\phi_{k}^{m+1} \).
We have constructed sequences \((k^n_n)_n\), \(k \in \mathbb{N}\), where \((k^{n+1}n)_n\) is a subsequence of \((k^n_n)_n\). To each \(k \in \mathbb{N}\) corresponds \(V^k\) and a representation \(\pi^k\) of \(H(G, K_b)\). Denote
\[
V_0 = \bigcup_{k \geq 1} V^k.
\]
On \(V_0\) we have a representation \(\pi_0\) of \(H(G)\) because \(H(G) = \bigcup_{k \geq 1} H(G, K_b)\). To this representation corresponds a smooth representation of \(G\), denoted by \(\pi_0\) again. We have \(\pi_0^k = \pi^k\). Thus \(\pi_0\) is admissible.

For \(f \in H(G)\) set \(f^* \in H(G)\)
\[
f^*(g) = f(g^{-1}).
\]
The representations \((\pi_n, V_n)\) are unitary so
\[
(\pi_n(f)v_1, v_2) = (v_1, \pi_n(f^*)v_2).
\]
Therefore,
\[
(\pi_0(f)v, w) = (v, \pi_0(f^*)w)
\]
for \(f \in H(G)\), \(v, w \in V_0\). From this one obtains directly that the inner product on \(V_0\) is \(G\)-invariant.

Let \(\sigma_k = k^n_n\). Then \((\sigma_k)\) is a subsequence of \((\pi_n)_n\) and
\[
\lim_k \text{ch}_{\sigma_k}(f) = \text{ch}_{\sigma_0}(f).
\]

Since an admissible unitarizable representation is completely reducible, it is a direct sum of unitarizable irreducible representations, with finite multiplicities ([7], 2.1.14). Thus, we have proved (ii) and part of (i).

Suppose that
\[
\sum_{\sigma \in \hat{G}} m_\sigma \text{ch}_\sigma(f) = \sum_{\sigma \in \hat{G}} n_\sigma \text{ch}_\sigma(f)
\]
for all \(f \in H(G)\). We define \(n_\sigma\) to be 0 for \(\sigma \in \hat{G} \setminus \hat{G}\). Let \(m_{\sigma_0}\) or \(n_{\sigma_0}\) be nonzero. Choose an open compact subgroup \(K\) of \(G\) such that \(\sigma_0\) has a nonzero vector invariant for \(K\). Let \(\hat{G}^K\) be the subset of \(\hat{G}\) consisting of all classes of representations with nonzero vector invariant for \(K\). Now
\[
\sum_{\sigma \in \hat{G}^K} m_\sigma \text{ch}_\sigma(f) = \sum_{\sigma \in \hat{G}^K} n_\sigma \text{ch}_\sigma(f)
\]
for all \(f \in H(G, K)\). Note that the sets
\[
\{\sigma \in \hat{G}^K; m_\sigma \neq 0\},
\{\sigma \in \hat{G}^K; n_\sigma \neq 0\}
\]
are finite. Since for \(\sigma_1, \sigma_2 \in \hat{G}^K \), \(\sigma_1 \neq \sigma_2 \), corresponding representations of \(H(G, K) \) are unequivalent ([7], Proposition 2.2.2), the linear independence of characters of representations of \(H(G, K) \) implies \(m_\alpha = n_\alpha \) for \(\sigma \in \hat{G}^K \). Thus \(m_{\alpha_0} = n_{\alpha_0} \). This proves the rest of (i).

Remark. — The D. Milicic description of the topology of the dual spaces of C*-algebras with bounded trace in [18] gives that irreducible subquotients of ends of complementary series of a reductive group over any local field are unitarizable (after using some general fact from the representation theory of such groups). As this author knows, this fact was noticed first by D. Milicic.

The topology of the dual spaces of real semi-simple Lie groups was studied by D. Milicic in his Ph. D. thesis (University of Zagreb, 1973). These results have not been published. Note that there exists also a considerable difference between the topology of the dual spaces of reductive groups over archimedean fields and over non-archimedean fields. For example, no one of the three main results of [27] mentioned in the introduction of that paper, holds for real reductive groups (counterexamples are either \(SL(2, \mathbb{R}) \) or \(SL(2, \mathbb{C}) \)).

2.8. Suppose that \(P \) is a parabolic subgroup in \(G \). Let \(P = MN \) be a Levi decomposition of \(P \). Denote by \(^0M \) the subgroup of all \(m \in M \) such that \(|\varpi(m)| = 1 \) for all rational characters \(\varpi \) of \(M \). A character \(\chi \) of \(M \) is called unramified if it is trivial on \(^0M \).

The group of all unramified characters \(\text{Unr}(M) \) of \(M \) has a topology of convergence over compacts. In fact, \(\text{Unr}(M) \) has a canonical structure of a complex Lie group.

For a smooth representation \(\sigma \) of \(M \), \(\text{Ind}(\sigma|P, G) \) denotes the representation of \(G \) induced by \(\sigma \) from \(P \).

The next fact can be easily obtained from the formula for the character of an induced representation (computed in [8]).

Lemma. — For \(\chi \in \text{Unr}(M) \) let \(\pi_\chi = \text{Ind}(\chi \sigma|P, G) \). Then the mapping

\[
\chi \mapsto \text{ch}_{\pi_\chi}(f)
\]

is continuous, for fixed \(f \in H(G) \).

2.9. We are again in the case of \(GL(n, F) \).

Proposition. — Let \(\sigma \in \hat{G}_n \). Suppose that \(\sigma_+ \times \sigma_- \) is irreducible for \(\alpha \in (-\alpha_0, \alpha_0) \), \(\alpha_0 > 0 \). Then \(\sigma_+ \times \sigma_- \) is unitarizable for \(\alpha \in (-\alpha_0, \alpha_0) \) and all composition factors of \(\sigma_+ \times \sigma_- \) are unitarizable.

This is a consequence of the Proposition 8.3 of [2], the last theorem and the last lemma.

2.10. The following proposition may be useful for applying the last proposition.

Proposition. — (i) If \(\sigma \in \hat{G}_n \) then there exist \(\alpha_0 > 0 \) such that \(\sigma_+ \times \sigma_- \) is irreducible for \(\alpha \in (-\alpha_0, \alpha_0) \).

(ii) Let \(\sigma \in \hat{G}_n \) with \(n \geq 1 \). Suppose that

\[\text{SERIE - TOME 19 - 1986 - N° 3}\]
\[\sigma_\alpha \times (\sigma^+)_{-\alpha} \]

is unitarizable and irreducible for \(\alpha \in (\beta, \gamma), \beta < \gamma \). Then

\[\gamma - \beta \leq 1. \]

If \(\gamma - \beta = 1 \) then \(\sigma_\beta \times (\sigma^+)_{-\beta} \) and \(\sigma_\gamma \times (\sigma^+)_{-\gamma} \) reduces.

Proof. — The fact that the set of all \(\alpha \in \mathbb{R} \) such that \(\sigma_\alpha \times \sigma_{-\alpha} \) is reducible, is finite and (ii) of Theorem 2.5 implies (i).

Proposition and Remark in 8.3 of [2] implies that \(\gamma - \beta \leq 1 \). The reducibility of \(\sigma_\beta \times (\sigma^+)_{-\beta} \) and \(\sigma_\gamma \times (\sigma^+)_{-\gamma} \), when \(\gamma - \beta = 1 \), follows from proposition 2.9, the fact that the set

\[\{ \alpha \in \mathbb{R}; \sigma_\alpha \times (\sigma^+)_{-\alpha} \text{ is reducible} \} \]

is closed, and the first part of (ii).

2.11. Let for a moment \(S \) be an abelian multiplicative semigroup with identity.

Let \(B \) be a subset of \(S \) such that \(B \) generates \(S \) as semigroup. Suppose that \(B \) satisfies the following property: if \(s \in S \) and \(s = b_1 b_2 \ldots b_i = c_1 c_2 \ldots c_j \) with \(b_k, c_k \in B \), then \(i = j \) and there exists a permutation \(\sigma \) of \(\{1, 2, \ldots, i\} \) such that \(b_k = c_{\sigma(k)}, 1 \leq k \leq i \). In this case we shall say that \(S \) is a free abelian semigroup over \(B \).

Let \(S_i, i \in I \), be a family of subsemigroups of \(S \) such that each \(S_i \) contains identity of \(S \). Suppose that the union of all \(S_i, i \in I \), generates \(S \) as semigroup and suppose that the following condition holds: if \(s_i, r_i \in S_i, i \in I \), are such that \(s_i \) and \(r_i \) are different from identity only for finitely many \(i \) and if

\[\prod_{i \in I} s_i = \prod_{i \in I} r_i, \]

then \(s_i = r_i \) for all \(i \in I \) (we take \(\prod_{i \in I} s_i \) to be identity if all \(s_i \) are identity, otherwise we take \(\prod_{i \in I} s_i \) to be the product of all \(s_i \) which are different from identity). In this case we say that \(S \) is a direct sum of semigroups \(S_i, i \in I \), and we write \(S = \bigoplus_{i \in I} S_i \).

If \(S \) is a direct sum of \(S_i, i \in I \), and if \(S_i \) are free abelian semigroups, then one can see directly that \(S \) is a free abelian semigroup.

If \(A \) is a subset of \(S \) then \(\chi(A) \) will denote the subsemigroup of \(S \), with identity, generated by \(A \).

2.12. The Theorem 2.5 implies that \(\text{Irr}^\alpha \) is multiplicatively closed in \(\mathbb{R} \). Thus \(\text{Irr}^\alpha \) is a semigroup. The group \(\mathbb{R} \) acts in \(C \) and a set of representatives of \(\mathbb{R} \)-orbits in \(C \) is \(\mathbb{C}^\omega \).

Proposition:

\[\text{Irr}^\alpha = \bigoplus_{\rho \in \mathbb{C}^\omega} \text{Irr}^\alpha(\rho_\alpha). \]
Proof. — Let \(\rho^1, \ldots, \rho^n \in \mathbb{C}^n \) be different elements. Then we have an injection
\[
\operatorname{Irr}^n(\rho^1_0) \times \ldots \times \operatorname{Irr}^n(\rho^n_0) \to \operatorname{Irr}^n(\rho^1_0 \cup \ldots \cup \rho^n_0)
\]
by 1.10. We shall prove that this is a surjection. Let
\[
\pi \in \operatorname{Irr}^n(\rho^1_0 \cup \ldots \cup \rho^n_0).
\]
Then \(\pi = \pi_1 \times \ldots \times \pi_n, \pi_i \in \operatorname{Irr}(\rho^i_0) \). Now \(\pi = \pi^+ \) implies \(\pi_i = \pi^+_i \) by 1.10. The Theorem 2.5 (ii) implies \(\pi_i \in \operatorname{Irr}^n(\rho^i_0) \).

Now it is easy to see that \(\operatorname{Irr}^n(\rho), \rho \in \mathbb{C}^n \), generates the whole \(\operatorname{Irr}^n \).

2.13. As in 2.12 we get, for \(\rho \in \mathbb{C}^n \),
\[
\operatorname{Irr}^n(\rho) = \left[\bigoplus_{\alpha \in (0, 1/2)} \operatorname{Irr}^n((\rho^\alpha_0) \cup (\rho^{-\alpha}_0)) \right] \oplus \left[\bigoplus_{\alpha \in (0, 1/2)} \operatorname{Irr}^n(\rho^\alpha_0) \right].
\]

It is now a question to classify the unitarizable representations in \(\operatorname{Irr}((\rho^\alpha_0) \cup (\rho^{-\alpha}_0)) \). The case \(\alpha \in \{0, 1/2\} \) is called the rigid case and \(\alpha \in (0, 1/2) \) the nonrigid case ([2], 8.4).

2.14. Take \(\Delta \in \mathcal{S}(\mathbb{R}) \) such that \(\Delta = -\Delta \) and \(\rho \in \mathbb{C}^n \). Then
\[
\langle \Delta^{(\rho)} \rangle \quad \text{and} \quad \langle (\Delta^\alpha)^{(\rho)} \rangle
\]
are unitarizable representations (Lemmas 8.8 and 8.9 of [2]).

The above statement may be proved using Proposition 2.9 and (ii) of Theorem 2.5, by induction.

2.15. In [27], the following theorem is proved.

Theorem. — Let \(G \) be the group of rational points of a connected linear reductive \(\mathcal{F} \)-group and \(P = MN \) a parabolic subgroup. Let \(\sigma \) be an irreducible cuspidal representation of \(M \). Then the set of all \(\chi \in \operatorname{Unr}(M) \) such that \(\operatorname{Ind}(\chi \sigma | P, G) \) contains a unitarizable composition factor, is a compact subset of \(\operatorname{Unr}(M) \).

This can be easily proved from (ii) of the Theorem 2.7 using Bernstein center [3]. We shall not use this theorem in the paper.

3. Certain primes in \(\mathbb{R} \)

3.1. For a positive integer \(m \) we put
\[
\Delta[m] = \left[\frac{-m+1}{2}, \frac{m-1}{2} \right] \in \mathcal{S}(\mathbb{R}).
\]
If \(d, n \in \mathbb{N} \) then we set
\[
a(n, d) = (\Delta[d], \Delta[d], \ldots, \Delta[d]) \in M(S(\mathbb{R})).
\]
If \(n = 1 \) then \(a(1, d) = \Delta[d] \). If \(d = 1 \) then \(a(n, 1) = \Delta[n] \).
3.2. By 2.14 we have that \(\langle a(1, n)^{(\rho)} \rangle \), \(\langle a(n, 1)^{(\rho)} \rangle \) are unitarizable for \(\rho \in \mathbb{C}^\times \). Also we have, by the definition of the involution \(t \),
\[
\langle a(1, n)^{(\rho)} \rangle^t = \langle a(n, 1)^{(\rho)} \rangle.
\]

3.3. The ring \(R \) is a factorial ring ([33], Corollary 7.5). The ring \(R \) is a polynomial ring in indeterminates \(\langle \Delta \rangle \) over \(\mathbb{Z} \), \(\Delta \in S(C) \). Thus \(\langle \Delta \rangle \) are prime elements of \(R \). Since \(t: R \to R \) is a ring isomorphism, \(\langle \Delta \rangle^t \) are prime elements. It means that \(\langle a(n, 1)^{(\rho)} \rangle \) and \(\langle a(1, n)^{(\rho)} \rangle \) are prime elements. We shall prove generally that \(\langle a(n, d)^{(\rho)} \rangle \) are prime elements of the factorial ring \(R \).

We shall suppose in the rest that \(d > 1, n > 1 \). We fix \(\rho \in \mathbb{C} \).

3.4. Let \(a(n, d)^{(\rho)} = (\Delta_1, \Delta_2, \ldots, \Delta_n) \),
\[
\Delta_1 \to \Delta_2 \to \Delta_3 \to \ldots \to \Delta_n.
\]

Lemma. — Let \(b \in M(S(C)) \) such that \(b \leq a(n, d)^{(\rho)} \). Then
\[
b(\Delta_i) \in \{0, 1\}
\]
for \(1 \leq i \leq n \).

Proof. — Since \(b \leq a(n, d)^{(\rho)} \), then, for \(\sigma \in \mathbb{C} \), the number of segments in \(b \) which begin in \(\sigma \) is less than or equal to the number of segments in \(a(n, d)^{(\rho)} \) which begin in \(\sigma \). The same conclusion is true for the numbers of segments which end in \(\sigma \). This implies our lemma.

3.5. For \(a \in M(S(C)) \) we have
\[
\pi(a) = \sum_{b \leq a} m(b, a) \langle b \rangle, \quad m(b, a) \geq 1
\]
([33], Theorem 7.1). We fix \(a \) and consider the system of all equations
\[
\pi(c) = \sum_{b \leq c} m(b, c) \langle b \rangle
\]
with \(c \leq a \). This is a triangular unipotent system in indeterminates \(\langle b \rangle \), with \(b \leq a \), for a suitable order of indeterminates \(\langle b \rangle \). We can solve this system. In particular, we shall obtain
\[
\langle a \rangle = \sum_{b \leq a} m_{a, b} \pi(b).
\]
Here \(m_{a, a} = 1 \).

3.6. Suppose that \(b_0 < a \) but there is no \(b \in M(S(C)) \) such that
\[
b_0 < b < a.
\]

Then 3.5 implies \(m_{a, b_0} \neq 0 \) because \(m_{a, b_0} = -m(b_0, a) \) and \(m(b_0, a) \neq 0 \).
3.7. We return to the notation of 3.4. Set
\[\Delta_i^j = \Delta_i \cup \Delta_{i+1} \]
\[\Delta_i^l = \Delta_{i-1} \cap \Delta_i \]
Denote
\[a_{1,2} = (\Delta_1^b, \Delta_2^b, \Delta_3, \ldots, \Delta_n) \]
\[a_{2,3} = (\Delta_1^b, \Delta_2^b, \Delta_3, \Delta_4, \ldots, \Delta_n) \]
\[\ldots \]
\[a_{n-1,n} = (\Delta_1, \Delta_2, \ldots, \Delta_{n-2}, \Delta_n^b, \Delta_{n-1}, \Delta_n^b) \]
Now \(a_{i,i+1} \) satisfy 3.6 with respect to \(a(n, d)^{(p)} \). We shall denote \(a(n, d)^{(p)} \) by \(a_0 \).

3.8. Proposition. Let \(d, n \in \mathbb{N}, \) and \(p \in \mathbb{C}. \) Then \(\langle a(n, d)^{(p)} \rangle \) is a prime element of \(R \).

Proof. It is enough to consider the case \(d \geq 2, n \geq 2. \) Set \(a_0 = a(n, d)^{(p)}. \) We shall suppose that \(\langle a(n, d)^{(p)} \rangle \) is not a prime element. Let \(\langle a(n, d)^{(p)} \rangle = P_1 \times P_2 \) be some nontrivial decomposition. Since \(\langle a(n, d)^{(p)} \rangle \) is a homogeneous element of the graded ring \(R, P_1 \) and \(P_2 \) are homogeneous elements and \(\deg P_1 > 0, \deg P_2 > 0. \)

We shall look at \(R \) as a polynomial algebra over indeterminates \(\langle \Delta \rangle, \Delta \in S(C). \)

Now 3.5, 3.6 and 3.7 imply that we can decompose \(\langle a(n, d)^{(p)} \rangle \) in the basis \(\pi(b). \)

\[\langle a(n, d)^{(p)} \rangle = \langle \Delta_1 \rangle \times \ldots \times \langle \Delta_n \rangle \]
\[+ m_{a_0, a_1,2} \langle \Delta_1^b \rangle \times \langle \Delta_2^b \rangle \times \langle \Delta_3 \rangle \times \ldots \times \langle \Delta_n \rangle + \ldots \]
\[+ \ldots + m_{a_0, a_{n-1,n}} \langle \Delta_1 \rangle \times \ldots \times \langle \Delta_{n-2} \rangle \times \langle \Delta_{n-1}^b \rangle \times \langle \Delta_n^b \rangle + \text{other terms} \]

where \(m_{a_0, a_{i,i+1}} \neq 0, \) for \(1 \leq i \leq n. \)

Let
\[P_i = \sum_{b \in M(S(C))} m_b^i \pi(b), \quad i = 1, 2, \]
where \(m_b^i \in \mathbb{Z} \) are uniquely determined. Since

\[\langle a(n, d)^{(p)} \rangle = P_1 \times P_2, \]

the formula (*) implies that there exist \(b_1, b_2 \in M(S(C)) \) such that
\[b_1 + b_2 = (\Delta_1, \Delta_2, \ldots, \Delta_n), \] i.e.
\[\pi(b_1) \times \pi(b_2) = \langle \Delta_1 \rangle \times \ldots \times \langle \Delta_n \rangle \]
and \(m_{b_i}^i \neq 0 \) for \(i = 1 \) and 2. This implies that there exists a partition of \(\{ 1, 2, \ldots, n \} \) into two parts
\[\{ 1, 2, \ldots, n \} = \{ p(1), \ldots, p(r) \} \cup \{ q(1), \ldots, q(s) \}, \]
\(r + s = n \), such that

\[
b_1 = (\Delta_{p(1)}^1, \ldots, \Delta_{p(r)}^1)
\]

and

\[
b_2 = (\Delta_{q(1)}^1, \ldots, \Delta_{q(s)}^1).
\]

These parts are nonempty because \(P_1 \) and \(P_2 \) are homogeneous elements of \(R \) of positive degrees.

There exist \(p(i) \) and \(q(j) \) which are consecutive. We fix such \(i \) and \(j \). Clearly \(1 \leq i \leq r \) and \(1 \leq j \leq s \). Let

\[
\{ p(i), q(j) \} = \{ k, k + 1 \} \quad (1 \leq k \leq n - 1).
\]

As before, from (*) one obtains that there exist \(c_1, c_2 \in M(S(C)) \) such that

\[
c_1 + c_2 = a_{k, k + 1}
\]

and \(m_1 \neq 0, m_2 \neq 0 \). Thus

\[
c_1 + c_2 = (\Delta_1, \Delta_2, \ldots, \Delta_{k-1}, \Delta_k^b, \Delta_{k+1}^b, \Delta_{k+2}, \ldots, \Delta_n).
\]

This means that \(c_1 \) and \(c_2 \) determine a partition of the set \(\{ \Delta_1, \ldots, \Delta_{k-1}, \Delta_k^b, \Delta_{k+1}^b, \Delta_{k+2}, \ldots, \Delta_n \} \) and we consider \(c_1, c_2 \) as subsets of this set. Without loss of generality we may suppose that \(\Delta_k^b \subseteq c_1 \). Suppose that \(\Delta_{k+1} \notin c_1 \). Let \(\deg \rho = \gamma \in \mathbb{N} \). Now

\[
de \Delta_m^i = \frac{dz}{z},
\]

\[
de P_1 = rdz,
\]

\[
de P_2 = sdz,
\]

\[
de \Delta_k^b = (d + 1)z,
\]

\[
de \Delta_{k+1}^b = (d - 1)z.
\]

Since \(\Delta_k^b \subseteq c_1 \) and \(\Delta_{k+1} \notin c_1 \), there exist \(m \in \mathbb{Z}_+ \) such that

\[
\deg \pi(c_1) = m dz + (d + 1)z = z(d(m + 1) + 1).
\]

The element \(P_1 \) is homogeneous, so \(\deg \pi(c_1) = \deg P_1 \; i.e.

\[
r dz = z(d(m + 1) + 1).
\]

This implies that \(d \) divides \(1 \; i.e. \; d = 1 \). This is a contradiction since we consider the case of \(d \geq 2 \).

Thus \(\Delta_k^b, \Delta_{k+1} \subseteq c_1 \). Now degrees of \(c_1 \) and \(c_2 \) implies that there exist a partition

\[
\{ 1, 2, \ldots, k - 2, k - 1, k + 2, k + 3, \ldots, n \}
\]

\[
= \{ u(1), \ldots, u(r - 2) \} \cup \{ v(1), \ldots, v(s) \}
\]

\[\text{ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE}\]
such that

\[c_1 = (\Delta_k, \Delta_{k+1}, \Delta_{u(1)}, \ldots, \Delta_{u(r-2)}) \]
\[c_2 = (\Delta_{v(1)}, \ldots, \Delta_{v(s)}) \]

In particular, \(u(f) \notin \{k, k+1\} \) for \(1 \leq f \leq r-2 \) and \(v(f) \notin \{k, k+1\} \) for \(1 \leq f \leq s \). Thus \(q(f) \notin \{v(1), v(2), \ldots, v(s)\} \) i.e.

\[\{q(1), \ldots, q(s)\} \notin \{v(1), \ldots, v(s)\} \].

Therefore \(\{v(1), \ldots, v(s)\} \) has a nonempty intersection with the complement of \(\{q(1), \ldots, q(s)\} \), i.e.

\[\{v(1), \ldots, v(s)\} \cap \{p(1), \ldots, p(r)\} \neq \emptyset. \]

Let \(g = p(t_1) = v(t_2) \) be in the intersection \(1 \leq t_1 \leq r, 1 \leq t_2 \leq s, 1 \leq g \leq n \).

Now, the polynomial \(P_1 \) has a degree in the indeterminate \(\langle \Delta_{v(t_1)} \rangle = \langle \Delta_{v(t_2)} \rangle \) greater than or equal to 1, and the polynomial \(P_2 \) has a degree in the indeterminate \(\langle \Delta_{v(t_2)} \rangle = \langle \Delta_{v(t_1)} \rangle \) greater then or equal to 1. Thus, the polynomial \(\langle a(n, d)^{\varphi} \rangle = P_1 \times P_2 \) has a degree in the indeterminate \(\langle \Delta_{v(t_1)} \rangle \) greater than or equal to 2. This contradicts Lemma 3.4 and 3.5.

4. On completeness argument

4.1. Let \(\pi \in \text{Irr} \). If

\[\text{supp} \ \pi \in M(\bigcup_{\rho \in C^\ast} \rho(1/2), \zeta), \]

then we say that \(\pi \) is a rigid representation. If

\[\text{supp} \ \pi \in M(\bigcup_{\rho \in C^\ast} ((\rho_z)z \cup (\rho_{-z})z)), \]

then we say that \(\pi \) is a nonrigid representation.

Each \(\pi \in \text{Irr} \) can be uniquely decomposed

\[\pi = \pi (r) \times \pi (n) \]

where \(\pi (r) \) is a rigid and \(\pi (n) \) a nonrigid representation.

Now \(\pi \) is unitarizable if and only if \(\pi (r) \) and \(\pi (n) \) are unitarizable.

We have corresponding decomposition of unitarizable representations

\[\text{Irr}'' = \bigoplus_{\rho \in C^\ast} \text{Irr}''((\rho_z)z \cup (\rho_{-z})z) \bigoplus \bigoplus_{\rho \in C^\ast} \text{Irr}''((\rho_z)z). \]
4.2. Proposition. — Let $\sigma \in \text{Irr}^n$ be a rigid representation. Then

$$\pi(\sigma, \alpha) = \sigma_\alpha \times (\sigma_\alpha)^* = \sigma_\alpha \times \sigma_{-\alpha}$$

is irreducible and unitarizable for $\alpha \in (-1/2, 1/2)$.

The representation $\pi(\sigma, 1/2) = \pi(\sigma, -1/2)$ is reducible when $\deg \sigma > 0$.

Proof. — Suppose that $\sigma = \sigma_1 \times \sigma_2$ where σ_1, $\sigma_2 \in \text{Irr}^n$. Let $\pi(\sigma_1, \alpha)$, $\pi(\sigma_2, \alpha)$ be irreducible unitarizable representations for $\alpha \in (-1/2, 1/2)$. Then $\pi(\sigma, \alpha) = \pi(\sigma_1, \alpha) \times \pi(\sigma_2, \alpha)$ is unitarizable and irreducible for $\alpha \in (-1/2, 1/2)$ by Theorem 2.5. We can decompose $\sigma = \sigma_1 \times \ldots \times \sigma_m$ where each σ_i is supported in one Z-orbit in C and different σ_i are supported in distinct Z-orbits. Since σ is unitarizable σ_i are unitarizable because σ is rigid. Now $\sigma_1 \times \sigma_{1/2}$ is irreducible for $\alpha \in (-1/2, 1/2)$ since σ_1 is supported in $\rho_{1/2}$ or $\rho_{1+1/2}$, $\rho \in \text{C}^n$. Proposition 2.9 implies that $\pi(\sigma_i, \alpha)$ are unitarizable for $\alpha \in (-1/2, 1/2)$. The reducibility of $\pi(\sigma, 1/2)$ follows from (ii) of Proposition 2.10.

4.3. Proposition. — Suppose that $\pi^1, \pi^2 \in \text{Irr}^n$ are rigid representations. Then

$$\pi^1 \times (\pi^2)_\varepsilon$$

is irreducible for $\varepsilon \in \{-1/2, 0, 1/2\}$.

Proof. — By Theorem 2.5 it is enough to consider $\varepsilon \in \{-1/2, 1/2\}$. We shall prove the proposition for $\varepsilon = 1/2$. Now

$$\pi(\pi^1 \times \pi^2_{1/2}, \alpha) = (\pi^1_4 \times \pi^2_{1/2} + \varepsilon) \times (\pi^1_{-\alpha} \times \pi^2_{1/2} - \varepsilon) = (\pi^1_4 \times \pi^1_{-\alpha}) \times (\pi^2_{1/2} + \varepsilon) \times (\pi^2_{1/2} - \alpha).$$

Take $\alpha = -1/4$. Now $\pi(\pi^1 \times \pi^2_{1/2}, -1/4) = \pi(\pi^1, -1/4) \times \pi(\pi^2, 1/4)$ is irreducible by Theorem 2.5. Thus

$$(\pi^1 \times \pi^2_{1/2})$$

is irreducible. This implies the proposition.

Corollary. — Let $\pi^1, \ldots, \pi^k \in \text{Irr}^n$ be rigid representations. Then

$$\pi^1_{e_1} \times \pi^2_{e_2} \times \ldots \times \pi^k_{e_k}$$

is irreducible when all $e_i \in \{0, 1/2\}$ (or when all $e_i \in \{-1/2, 0\}$).

4.4. Proposition. — Let σ be an irreducible representation of G_n where $n \geq 1$. Suppose that

$$\pi(\sigma, \alpha) = \sigma_\alpha \times (\sigma^*)_{-\alpha}$$

is irreducible and unitarizable for all $\alpha \in (-1/2, 1/2)$. Then σ is a rigid representation.
Proof. — Let \(\sigma = \sigma_1 \times \ldots \times \sigma_s \) be a decomposition into product of (irreducible) representations. Now

\[
\pi(\sigma, \alpha) = (\sigma_1^\alpha) \times (\sigma_1^\alpha)^- \times \ldots \times (\sigma_s^\alpha) \times (\sigma_s^\alpha)^-.
\]

Theorem 2.5 (ii) reduces the proposition to the case when \(\sigma \) is in \(\text{Irr}(\sigma_1) \).

Take \(a \in M(S(\mathbb{Z})) \) such that \(\sigma = \langle a^{(\theta)} \rangle \). Then

\[
\pi(\sigma, \alpha) = \langle a^{(\theta)} \rangle \times \langle (a^{(\theta)})^{-} \rangle = \langle a^{(\theta)} \rangle \times \langle (a^{(\theta)})^{-} \rangle = \langle a^{(\theta)} + (a)^{(\theta)} \rangle.
\]

Suppose that \(x \in (0, 1/2) \). Now \(\pi(\sigma, \alpha) \) is irreducible and unitary for \(\alpha \in (-1/2, 1/2) \). By (ii) of Proposition 2.10 we have that \(\pi(\sigma, 1/2) = \langle a^{(\theta)} \rangle \times \langle (a)^{(\theta)} \rangle \) reduces so that \(2x \in \mathbb{Z} \). This means that \(\sigma \) is a rigid representation.

4.5. Lemma. — Let \(\varphi \in M(S(\mathbb{R})) \) consist of one-point segments (i.e. \(\varphi \in M(\mathbb{R}) \)). Suppose that \(\sup(\varphi) \in M(\mathbb{Z}) \) (resp. \(\sup(\varphi) \in M(1/2 + \mathbb{Z}) \)). Then there exist \(n_1, \ldots, n_s, m_1, \ldots, m_r \in \mathbb{N} \) and \(\alpha_1, \ldots, \alpha_s, \beta_1, \ldots, \beta_r \in \{0, -1/2\} \) such that

\[
\varphi + (\Delta[n_1]_{\alpha_1}, \ldots, \Delta[n_r]_{\alpha_r}) = (\Delta[m_1]_{\beta_1}, \ldots, \Delta[m_r]_{\beta_r}),
\]

and \(\supp \Delta[n_i]_{\alpha} \in M(\mathbb{Z}) \), (resp. \(\supp \Delta[n_i]_{\alpha} \in M(1/2 + \mathbb{Z}) \)), \(i = 1, \ldots, s \).

Proof. — We shall prove the case \(\supp \varphi \in M(\mathbb{Z}) \). The proof of the other case is analogous.

If \(\supp \varphi \in M(\{0\}) \) then the lemma is evident. Suppose that the statement of the lemma is true when \(\supp \varphi \in M([-k-1, k-1]) \) for some \(k \in \mathbb{N} \).

Take \(\varphi \) such that \(\supp \varphi \in M([-k, k]) \). Now

\[
\varphi + (\Delta[2]_{-1/2}, \ldots, \Delta[2]_{-1/2}) + (\Delta[2]_{-1/2}, \ldots, \Delta[2]_{-1/2})
\]

\[
\varphi \text{ (k) -times}
\]

\[
= (\Delta[2]_{-1/2}, \ldots, \Delta[2]_{-1/2}) \times \varphi_{\text{ (k -times}}
\]

where \(\supp \varphi_{\in M([-k-1, k-1])} \). We can apply inductive assumption on \(\varphi_{\in M([-k-1, k-1])} \).

4.6. For \(n, d \in \mathbb{N} \) and \(\rho \in \mathbb{C} \) set

\[
a(n, d)^{(\theta)} = (\nu^{-(\alpha - 1)/2} \Delta[d]^{(\theta)}, \nu^{1 - ((\alpha - 1)/2)} \Delta[d]^{(\theta)}, \ldots, \nu^{(\alpha - 1)/2} \Delta[d]^{(\theta)}).
\]

This is a multisegment in \(\mathbb{C} \).

Denote by \((U^m) \) the following statement

\((U^m)\): if \(n, d \in \mathbb{N} \) and \(\rho \in \mathbb{C}^n \) such that

\[
(nd) \deg \rho \leq m
\]

then \(\langle a(n, d)^{(\theta)} \rangle \) is unitarizable.

Set

\[
X_{m-1} = \{ \langle a(n, d)^{(\theta)} \rangle, \pi, \langle a(n, d)^{(\theta)} \rangle, \alpha \}; n, d \in \mathbb{N}, \rho \in \mathbb{C}^n, (nd) \deg \rho \leq m - 1, 0 < \alpha < 1/2 \}.
\]
4.7. LEMMA. — Suppose that \((U^m)\) holds. Let \(\sigma \in \bar{G}_m\) be rigid. If
\[
\pi(\sigma, \alpha) = \sigma_\alpha \times (\sigma^+)_{-\alpha}
\]
is irreducible and unitarizable for some \(\alpha \in (0, 1/2)\), then there \(\sigma^1, \ldots, \sigma^r \in X_m\),
and
\(\varepsilon_i \in \{-1/2, 0\}\) such that
\[
\sigma = \sigma^1_{\varepsilon_1} \times \ldots \times \sigma^r_{\varepsilon_r}.
\]

Proof. — We shall prove the lemma by induction. Let \(\sigma = \rho^\beta, \rho \in C^\alpha, \beta \in (1/2) \mathbb{Z}\). Now
\[
\pi(\sigma, \alpha) = \sigma_\alpha \times (\sigma^+)_{-\alpha} = \rho_{\alpha+\beta} \times \rho_{-\alpha-\beta}
\]
is irreducible and unitarizable if and only if \(\alpha + \beta \in (-1/2, 1/2)\). This implies that
\(\beta \in (0, -1/2)\).

Let \(m > 1\). Suppose that \(\sigma\) satisfies the assumption of the lemma. If \(\sigma = \sigma_1 \times \sigma_2\) is
nontrivial decomposition then
\[
\pi(\sigma, \alpha) = \pi(\sigma_1, \alpha) \times \pi(\sigma_2, \alpha).
\]

Theorem 2.5 implies that \(\pi(\sigma_1, \alpha)\) and \(\pi(\sigma_2, \alpha)\) are unitarizable so we can apply the
inductive assumption. Therefore, we may restrict ourselves to the case when \(\sigma\) is
supported in one \(Z\)-orbit. Take \(a \in M(S(R))\) and \(\rho \in C^\alpha\) such that \(\sigma = \langle \alpha^{(0)} \rangle\). Here
\(supp_a \in M(Z)\) or \(supp_a \in M(1/2 + Z)\).

Let \(a^0\) denote the multisection obtained from \(a\) by removing all one point
segments. Then \(a = a_0 + \varphi\) where \(\varphi\) consists of one point segments. Theorem 2.5 implies
that \(\pi(\sigma, \alpha') = \pi(\sigma', \alpha)\) is unitarizable. The inductive assumption implies
\[
\sigma' = \langle a(n_1, d_1)^{(0)} + \ldots + a(n_k, d_k)^{(0)} \rangle, \quad \varepsilon_i \in \{0, -1/2\}.
\]
This implies
\[
a_0 = a(n_1, d_1 + 1, \varepsilon_1 + \ldots + a(n_k, d_k + 1, \varepsilon_k).
\]

We set \(d_i = d_i + 1, n_i = n_i\). Now \(\langle a(n_i, d_i)^{(0)} \rangle\) are unitarizable by \((U^m)\).

For the multisection \(\varphi\) take \(\Delta[n_i, \Delta[m_j]i^0\) from Lemma 4.5. Now \(\pi(\Delta[n_i]i^0, \alpha)\) are
unitarizable and
\[
\pi(\sigma, \alpha) \times \pi(\langle \Delta[n_i]i^0, \alpha \times \ldots \times \pi(\langle \Delta[n_j]j^0, \alpha
\]
\[
\pi(\langle a(n_i, d_i)^{(0)} \rangle, \alpha) \times \ldots \times \pi(\langle a(n_k, d_k)^{(0)} \rangle, \alpha
\]
\[
\times \pi(\langle \Delta[m_i]i^0, \alpha \times \ldots \times \pi(\langle \Delta[m_j]j^0, \alpha).
\]

This implies that \(\sigma\) is dividing the right side of the equality. Thus \(\sigma\) is a product of
some \(\langle a(n_i, d_i)^{(0)} \rangle, \langle \Delta[n_i, \Delta[m_j]i^0 \rangle, \langle \Delta[m_j]j^0 \rangle\) and \(\langle \Delta[m_j]j^0 \rangle\) since these are
prime elements of the ring \(R\). Considering the support of \(\sigma\) we obtain that \(\sigma\) is a
product of some \(\langle a(\ell_n, \Delta_{j})^{(o)} \rangle \) \(\sigma \) is a product of some \(\langle a(\ell_n, \Delta_{j})^{(o)} \rangle \) \(\epsilon, \beta \in \{0, 1/2\} \).

4.8. Lemma. — Let \(m \geq 1 \). Suppose that \((U^{m-1})\) holds. Let
\[X_{m-1} = \langle a(n, d)^{(o)} \rangle, \pi(\langle a(n, d)^{(o)} \rangle, \alpha); \]
\[n, d \in \mathbb{N}, \rho \in \mathbb{C}^n, (nd) \text{deg} \rho \leq m - 1, 0 < \alpha < 1/2 \].

Then:

(i) If \(\sigma_1, \ldots, \sigma_k \in X_{m-1} \), then \(\sigma_1 \times \cdots \times \sigma_k \in \text{Irr}^\alpha \). In particular, if \(\text{deg} \sigma_1 + \cdots + \text{deg} \sigma_k = m \), then \(\sigma_1 \times \cdots \times \sigma_k \in \tilde{G}_m \).

(ii) Set
\[\tilde{G}_m \setminus \langle a(n, d)^{(o)} \rangle; n, d \in \mathbb{N}, \rho \in \mathbb{C}^n, (nd) \text{deg} \rho = m \].

If \(\pi \in \tilde{G}_m \), then there exist \(\sigma_1, \ldots, \sigma_i \in X_{m-1} \) such that
\[\pi = \sigma_1 \times \cdots \times \sigma_i \].

Representations \(\sigma_1, \ldots, \sigma_i \) are determined uniquely up to a permutation.

Proof. — By \((U^{m-1})\) and Proposition 2.9, \(X_{m-1} \subseteq \text{Irr}^\alpha \). Now (i) is a consequence of the fact that \(\text{Irr}^\alpha \) is multiplicatively closed.

The uniqueness of a factorization of \(\pi \) in (ii) is a direct consequence of Proposition 3.8 (it can be obtained also without use of that proposition, but then argument would be longer).

We shall prove existence of a factorization of \(\pi \) in (ii) by induction. For \(m = 1 \) there is nothing to prove.

Let \(m \geq 2 \). Take \(\pi \in \tilde{G}_m \). We can decompose
\[\pi = \tau_1 \times \cdots \times \tau_k \]
such that \(\tau_i \in \text{Irr}^\alpha \), and such that there exist \(\rho_i \in \mathbb{C}^n \), \(0 \leq \alpha_i \leq 1/2 \) so that
\[\text{supp} \tau_i \in \text{M} \{ \langle v^n(v^{\alpha_i} \rho_i), v^n(v^{-\alpha_i} \rho_i) \}; n \in \mathbb{Z} \} \]
i = 1, \ldots, k (4.1). If the factorization \(\pi = \tau_1 \times \cdots \times \tau_k \) is non-trivial, then the inductive assumption and \((U^{m-1})\) implies existence of the factorization.

Thus, we may suppose that
\[\text{supp} \pi \in \text{M} \{ \langle v^n(v^{\alpha} \rho), v^n(v^{-\alpha} \rho) \}; n \in \mathbb{Z} \} \].

Let \(\pi = \langle a \rangle, \ a \in \text{M} \text{(S(C))} \).

We proceed now in the same way as in the proof of Lemma 4.7.

We shall consider first the case \(\alpha \in \{0, 1/2\} \). Since the highest shifted derivative \(\pi' \) of \(\pi \) is irreducible and unitarizable, we obtain by inductive assumption, considering the
support of \(\pi \), that

\[\pi' = \langle a(n_1, d_1)^{(o)} + \ldots + a(n_r, d_k)^{(o)} \rangle. \]

This implies that

\[\pi = \langle a(n_1, d_1 + 1)^{(o)} + \ldots + a(n_r, d_k + 1)^{(o)} + \varphi \rangle \]

\[= \langle a(n_1, d_1^*)^{(o)} + \ldots + a(n_r, d_k^*)^{(o)} + \varphi \rangle, \quad d_i^* = d_i + 1 \]

where \(\varphi \in M(\{v^n(v^2 \rho); n \in \mathbb{Z}\}) \). The assumption \(\pi \in I(\hat{G}_{3n}) \) implies

\[(n_i, d_i^*) \deg \rho < m. \]

Thus \(\langle a(n_i, d_i^*)^{(o)} \rangle \in X_{m-1} \). Since \(\pi \) is unitary we have \(\pi = \pi^+ \), and thus

\[\varphi = \{v^{p_1 + x} \rho, v^{-(p_1 + x)} \rho, \ldots, v^{p_j + x} \rho, v^{-(p_j + x)} \rho\} \]

where \(p_j \in \mathbb{Z}_+ \). Now

\[\pi \times \Delta [2p_1 + 2a - 1]^{(o)} \times \ldots \times \Delta [2p_j + 2a - 1]^{(o)} \]

\[= \langle a(n_1, d_1^*)^{(o)} \rangle \times \ldots \times \langle a(n_r, d_k^*)^{(o)} \rangle \]

\[\times \Delta [2p_1 + 2a + 1]^{(o)} \times \ldots \times \Delta [2p_j + 2a + 1]^{(o)}, \]

where \(\Delta [s]^{(o)} = \emptyset \) if \(s \leq 0 \). Proposition 3.8 implies that \(\pi \) is a subproduct of the right hand side and this implies existence of the factorization.

Suppose that \(0 < a < 1/2 \). Using Lemma 4.7 we obtain a factorization.

5. Langlands classification

5.1. Let \(\Delta = \{\rho, v\rho, \ldots, v^{m-1} \rho\} \in S(C) \). Then the representation

\[\rho \times v\rho \times \ldots \times v^{m-1} \rho \]

possesses the unique irreducible quotient which is denoted by \(L(\Delta) \).

5.2. Let \(a = (\Delta_1, \ldots, \Delta_n) \in M(S(C)) \). Choose a permutation \(\sigma \) of \(\{1, \ldots, n\} \), so that

\[\Delta_{\sigma(i)} \rightarrow \Delta_{\sigma(j)} \Rightarrow \sigma(i) > \sigma(j), \quad 1 \leq i, j \leq n. \]

The representation

\[L(\Delta_{\sigma(1)}) \times L(\Delta_{\sigma(2)}) \times \ldots \times L(\Delta_{\sigma(n)}) \]

does not depend on \(\sigma \) as above. This can be proved in the same way like Proposition 6.4 of [33], using Theorem 9.7, (a) of [33]. We denote this representation by \(\lambda(a) \). The representation \(\lambda(a) \) has a unique irreducible quotient, which is denoted by \(L(a) \).

The mapping

\[a \rightarrow L(a), \]

\[M(S(C)) \rightarrow \text{Irr} \]
is a bijection. This is another parametrization of Irr and it is a version of Langlands classification of \(\text{Irr} \). As presented here, this classification was presented by F. Rodier in [21] (see also [15]).

5.3. Let \(D^a \) denote the set of all classes of square-integrable representations in \(\text{Irr}^a \). Set

\[
D = \{ v^a \pi; \pi \in D^a, \alpha \in \mathbb{R} \}.
\]

Elements of \(D \) are called essentially square-integrable representations. For \(\delta = v^a \pi \in D, \pi \in D^a, \alpha \in \mathbb{R} \) we define \(\delta^a \) and \(e(\delta) \) by

\[
\delta^a = \pi \quad \text{and} \quad e(\delta) = \alpha.
\]

5.4. By Theorem 9.3 of [33],

\[
\Delta \to L(\Delta), \quad S(C) \to D
\]

is a bijection. Denote this bijection by \(\varphi \). This bijection lifts to a bijection of \(M(S(C)) \) and \(M(D) \) which is again denoted by \(\varphi \). Now

\[
d \to L(\varphi^{-1}(d)),
\]

\[
M(D) \to \text{Irr}
\]

is a bijection which will be again denoted by \(L \). This is a parametrization of \(\text{Irr} \) and can be described directly, without going to \(M(S(C)) \), as follows. Let \(d=(\delta_1, \ldots, \delta_n) \in M(D) \). Suppose that the ordering of \(\delta_i \) satisfies

\[
i < j \implies e(\delta_i) \geq e(\delta_j).
\]

Then \(\lambda(d) = \delta_1 \times \ldots \times \delta_n \) possesses a unique irreducible quotient, and it is equal to \(L(d) \). This classification \(d \to L(d), M(D) \to \text{Irr} \) is directly related to the Langlands classification of [15] in a simple manner.

5.5. For \(d=(\delta_1, \ldots, \delta_n) \in M(D), \alpha \in \mathbb{R}, \) set, as before:

\[
\overline{d}=(\delta_1, \ldots, \delta_n),
\]

\[
\overline{\overline{d}}=(\delta_1, \ldots, \delta_n),
\]

\[
d^+ = \overline{\overline{d}} = (\delta_1^+, \ldots, \delta_n^+),
\]

\[
v^a \delta d = (v^a \delta_1, \ldots, v^a \delta_n).
\]

Let \(\delta \in D, \delta = v^a (\delta) \) and \(\alpha \in \mathbb{R} \). Now

\[
\overline{\delta} = v^{-e(\delta)} (\delta), \quad \text{i.e.} \quad e(\delta) = -e(\delta) \quad \text{and} \quad (\delta)^a = (\delta)^{-a};
\]

\[
\overline{\delta} = v^e(\delta) (\delta)^{-a} \quad \text{i.e.} \quad e(\delta) = e(\delta) \quad \text{and} \quad (\delta)^a = (\delta)^{-a};
\]

\[
\delta^+ = v^{-e(\delta)} \delta^a \quad \text{i.e.} \quad e(\delta^+) = -e(\delta) \quad \text{and} \quad (\delta^+)^a = \delta^a;
\]

\[
v^a \delta = v^a + e(\delta) \delta^a \quad \text{i.e.} \quad e(v^a \delta) = \alpha + e(\delta) \quad \text{and} \quad (v^a \delta)^a = \delta^a.
\]
Now we shall recall some very well known facts about the classification.

5.6. PROPOSITION. — For $\alpha \in \mathbb{R}$, $a \in M(S(C))$ and $d \in M(D)$ we have:

(i) $\{ v^a \lambda(a) \cong \lambda(v^a a), \lambda(\overline{a}) \cong \lambda(a) ;$
(ii) $\{ v^d \Lambda(d) \cong \Lambda(v^d d), \Lambda(\overline{d}) \cong \Lambda(d) ;$
(iii) $\{ \Lambda(a) = \Lambda(\overline{a}), \Lambda(a)^+ = \Lambda(a^+) ;$
$\{ \Lambda(d) = \Lambda(\overline{d}), \Lambda(d)^+ = \Lambda(d^+).$

Proof. — For (i) one constructs desired isomorphisms directly. Clearly (i) implies (ii).

The relation $\Lambda(d)^+ = \Lambda(d^+)$ is another expression of the relation (3.3.13) of [15]. Now (ii) implies $L(d)^+ = L(d^+)$. We obtain $L(a) = L(\overline{a})$ from the previous case $L(d)^+ = L(d)$ and Proposition 9.5 of [33] which states that $L(\Delta^+) = L(\Delta^+).

5.7. Let $\sigma \in \text{Irr}$. Take $a, b \in M(S(C))$ such that

$\sigma = \langle a \rangle, \quad \sigma = L(b).$

Then $\text{supp} a = \text{supp} b$ (Proposition 1.10 of [33]). Consider $\text{supp} \sigma$ as an element of $M(S(C))$ in a natural way. Then the set of all representations in Irr whose support is equal to $\text{supp} \sigma$ is just the set of all composition factors of

$\pi(\text{supp} \sigma) = \lambda(\text{supp} \sigma).$

Suppose that $\pi_1, \pi_2 \in \text{Irr}$ and σ is a composition factor of $\pi_1 \times \pi_2$, then

$\text{supp} \sigma = \text{supp} \pi_1 + \text{supp} \pi_2.$

5.8. We introduce, like in [21], an additive endomorphism t of R defined by

$t(\langle a \rangle) = L(a), \quad a \in M(S(C)).$

There exists a unique mapping

$t : \ M(S(C)) \rightarrow M(S(C))$

such that

$t(\langle a \rangle) = \langle t(a) \rangle, \quad a \in M(S(C)),$

i.e.

$L(a) = \langle t(a) \rangle.$

This implies

$t(L(a)) = L(t(a)), \quad a \in M(S(C)).$
Formally, we have
\[t^{-1}(L(a)) = \langle a \rangle, \]
\[t^{-1}(L(a)) = L(t^{-1}(a)), \]
\[t^{-1}(\langle a \rangle) = \langle t^{-1}(a) \rangle. \]

The homorphism \(t \) contains all informations about connection of Zelevinsky and Langlands classification.

We have
\[\text{supp } t(\pi) = \text{supp } \pi, \quad \pi \in \text{Irr}. \]

6. Technical lemmas

6.1. Lemma. — Suppose that \(2 \leq k \leq d \) and \(\rho \in C \). Then
\[\langle a(k, d)^{(\rho)} \rangle \times \langle a((k-2), d)^{(\rho)} \rangle \]
is irreducible if and only if
\[\langle a(k, d-1)^{(\rho)} \rangle \times \langle a((k-2), d-1)^{(\rho)} \rangle \]
is irreducible.

Proof. — Let \(k \leq d \) and \(\rho \in C \). The representation
\[\pi_1 = \langle a(k, d)^{(\rho)} \rangle \times \langle a((k-2), d)^{(\rho)} \rangle \]
is a subquotient of the representation
\[\pi_2 = \pi(a(k, d)^{(\rho)}) \times \pi(a((k-2), d)^{(\rho)}) = \pi(a(k, d)^{(\rho)}) + a((k-2), d)^{(\rho)}. \]
It means that each composition factor of \(\pi_1 \) is also a composition factor of \(\pi_2 \).

Let \(m = \text{deg } \rho \). Let
\[a(k, d)^{(\rho)} + a((k-2), d)^{(\rho)} = (\Delta_1, \ldots, \Delta_{2k-2}). \]
Suppose that \(b \leq a(k, d)^{(\rho)} + a((k-2), d)^{(\rho)} \). The inequality \(k \leq d \) implies that
\[\Delta_i \cap \Delta_j \neq \emptyset \]
for any \(1 \leq i, j \leq 2k-2 \). This implies that the cardinal number of the multiset \(b \) is \(2k-2 \). Therefore, the highest derivative of \(b \) has degree
\[m(2(k-1)(d-1)). \]
This degree does not depend on \(b \).
Suppose that \(\pi_1 \) is irreducible. Then the highest derivative of \(\pi_1 \) is irreducible and equal to
\[
\langle a(k, d-1)^{\rho-1/2} \rangle \times \langle a(k-2, d-1)^{\rho-1/2} \rangle.
\]
This implies that
\[
\langle a(k, d-1)^{\rho} \rangle \times \langle a(k-2, d-1)^{\rho} \rangle
\]
is irreducible.

Suppose that \(\pi_1 \) is not irreducible. Then the derivative \(D(\pi_1) \) is
\[
D(\pi_1) = \langle a(k, d-1)^{\rho-1/2} \rangle \times \langle a(k-2, d-1)^{\rho-1/2} \rangle + (\text{terms of higher degree}).
\]
Let \(\pi_1 = \sigma_1 + \ldots + \sigma_n \), \(\sigma_i \in \text{Irr} \). Here \(n \geq 2 \). Let \(\sigma_i^- \) be the highest derivative of \(\sigma_i \). Then
\[
D(\pi_1) = \sigma_1^- + \ldots + \sigma_n^- + (\text{terms of higher degree}).
\]
The above discussion about degrees of highest derivatives implies that
\[
\langle a(k, d-1)^{\rho-1/2} \rangle \times \langle a(k-2, d-1)^{\rho-1/2} \rangle = \sigma_1^- + \ldots + \sigma_n^-.
\]
Thus
\[
\langle a(k, d-1)^{\rho-1/2} \rangle \times \langle a(k-2, d-1)^{\rho-1/2} \rangle \text{ is not irreducible.}
\]
Therefore
\[
\langle a(k, d-1)^{\rho} \rangle \times \langle a(k-2, d-1)^{\rho} \rangle \text{ is not irreducible.}
\]

6.2. Lemma. — Let \(m \geq 1 \). Suppose that \((U^{m-1}) \) holds. Let \(n, d \in \mathbb{N} \), \(\rho \in \mathbb{C}^w \) such that
\[
(nd) \deg \rho = m \quad \text{and} \quad n \leq d.
\]
Then \(\langle a(n, d)^{\rho} \rangle \) is unitarizable.

Proof. — If \(n = 1 \), then
\[
\langle a(1, d)^{\rho} \rangle = \langle \Delta[d]^{\rho} \rangle
\]
and this is unitarizable by 2.14. Suppose \(n \geq 2 \). By \((U^{m-1}) \)
\[
\langle a(n-1, d)^{\rho} \rangle
\]
is unitarizable. Proposition 2.9 implies that all composition factors of
\[
v^{1/2} \langle a(n-1, d)^{\rho} \rangle \times v^{-1/2} \langle a(n-1, d)^{\rho} \rangle
\]
are unitarizable. Thus
\[
\langle v^{1/2} a(n-1, d)^{\rho} + v^{-1/2} a(n-1, d)^{\rho} \rangle = \langle a(n, d)^{\rho} + a(n-2, d)^{\rho} \rangle
\]
is unitarizable. Now Lemma 6.1 implies that
\[
\langle a(n, d)^{\rho} \rangle \times \langle a(n-2, d)^{\rho} \rangle
\]
is irreducible, since
\[
\langle a(n, d-1)^{\rho} \rangle \times \langle a(n-2, d-1)^{\rho} \rangle
\]
6.3. LEMMA. — Let \(n, d \in \mathbb{N} \) and \(n < d \). Then
\[
t(\langle a(n, d)^{(\rho)} \rangle) \neq \langle a(n, d)^{(\rho)} \rangle, \quad \rho \in \mathbb{C},
\]
i.e.
\[
L(a(n, d)^{(\rho)}) \neq \langle a(n, d)^{(\rho)} \rangle.
\]

Proof. — Let \(\rho \in C(G_m) \), i.e. \(\deg \rho = m \). Suppose that
\[
L(a(n, d)^{(\rho)}) = \langle a(n, d)^{(\rho)} \rangle.
\]

Thus \(\lambda(a(n, d)^{(\rho)}) \) and \(\pi(a(n, d)^{(\rho)}) \) have a common composition factor, by the definition of \(L(a(n, d)^{(\rho)}) \) and \(\langle a(n, d)^{(\rho)} \rangle \).

Let \(P_0 \) (resp. \(P_1 \)) be the unique standard parabolic subgroup of \(GL(md, F) \) whose Levi factor \(M_0 \) (resp. \(M_1 \)) is naturally isomorphic to \(GL(m, F)^d \) (resp. \(GL(md, F)^n \)). Let \(N_i \) be the unipotent radical of \(P_i \), \(i = 0, 1 \).

In the rest of the proof we shall use freely notation of § 1 of [33].

First of all, note that there is no standard parabolic subgroup of \(GL(md, F) \) associated to \(P_0 \) different from \(P_0 \). Since \(\langle a(n, d)^{(\rho)} \rangle \) is a composition factor of an induced representation from \(P_0 \) by a cuspidal irreducible representation of \(M_0 \), by § 6 of [7]
\[
r_{(m, m, \ldots, m), (nm)}(\langle a(n, d)^{(\rho)} \rangle) \neq 0.
\]
Now \(\langle a(n, d)^{(\rho)} \rangle = L(a(n, d)^{(\rho)}) \) implies that representations
\[
r_{(m, m, \ldots, m), (nm)}(\pi(a(n, d)^{(\rho)}))
\]
and
\[
r_{(m, m, \ldots, m), (nm)}(\lambda(a(n, d)^{(\rho)}))
\]
have a common non-trivial irreducible composition factor.

Let \(a(n, d)^{(\rho)} = (\Lambda_1, \ldots, \Lambda_n) \) where \(\Lambda_1 \to \Lambda_2 \to \ldots \to \Lambda_n \). Choose \(\sigma \in C(G_n) \) so that
\[
\Delta_1 = [\sigma, v^{d-1} \sigma],
\]
\[
\Delta_2 = [v\sigma, v^d \sigma],
\]
\[
\Delta_n = [v^{n-1} \sigma, v^{n-1+d-1} \sigma].
\]

Now
\[
(*) \quad (\sigma \otimes v\sigma \otimes \ldots \otimes v^{d-1} \sigma) \otimes (v\sigma \otimes \ldots \otimes v^d \sigma) \otimes \ldots \otimes (v^{n-1} \sigma \otimes \ldots \otimes v^{n-1+d-1} \sigma)
\]
is a composition factor of \(r_{(m, \ldots, m), (n, d)}(\pi(a(n, d)^{(p)})) \) and each other irreducible composition factor is obtained from \((\ast)\) after a permutation of factors of \((\ast)\) with a permutation which preserves the order of elements of each bracket (see (3) of Proof of Proposition 6.9 of [33]).

In the similar way

\[
(\ast \ast \ast) \quad (\nu^{d-1} \sigma \otimes \nu^{d-2} \sigma \otimes \ldots \otimes \sigma) \otimes (\nu^d \sigma \otimes \ldots \otimes \nu \sigma) \\
\otimes \ldots \otimes (\nu^{n-1+d-1} \sigma \otimes \ldots \otimes \nu^{n-1} \sigma)
\]

is a composition factor of \(r_{(m, \ldots, m), (n, d)}(\lambda(a(n, d)^{(p)})) \) and each other irreducible composition factor is obtained from \((\ast \ast \ast)\) after a permutation of \((\ast \ast \ast)\) with a permutation which preserves the order of elements of each bracket.

Let \(\tau \) be an irreducible factor of \(r_{(m, \ldots, m), (n, d)}(\pi(a(n, d)^{(p)})) \). Let \(\tau = \nu^a \sigma \otimes \ldots \otimes \nu^{\nu^{n, d}} \sigma \). Then there exist \(1 \leq p_1 < \ldots < p_d \leq mnd \) so that

\[
(\ast \ast \ast) \quad \alpha_{p_i} = i - 1, \quad i = 1, \ldots, d.
\]

Let \(\omega \) be an irreducible composition factor of \(r_{(m, \ldots, m), (n, d)}(\pi(a(n, d)^{(p)})) \). Let \(\omega = \nu^{p_1} \sigma \otimes \ldots \otimes \nu^{\nu^{n, d}} \sigma \). Now simple combinatorial observation implies that if \(\beta_{g_1} < \beta_{g_2} < \ldots < \beta_{g_r} \), for some \(1 \leq g_1 < g_2 < \ldots < g_r \leq mnd \), then \(r \leq n \).

Therefore

\[
r_{(m, \ldots, m), (n, d)}(\pi(a(n, d)^{(p)})) \quad \text{and} \quad r_{(m, \ldots, m), (n, d)}(\lambda(a(n, d)^{(p)}))
\]

can not have a common non-trivial composition factor.

We obtained a contradiction. This proves the lemma.

6.4. Let \(n, d \in \mathbb{N}, \rho \in \mathbb{C} \). One sees directly that

\[
\supp \langle a(n, d)^{(p)} \rangle = \supp \langle a(n, d)^{(p)} \rangle.
\]

Suppose that \(n \leq d \). Then \(\supp \langle a(n, d)^{(p)} \rangle(\sigma) = 0 \) for \(\sigma \in \mathbb{C} \) and \(\sigma \notin \{ \nu^a \sigma; \alpha \in \mathbb{N}(n + d)/2 + \mathbb{Z} \} \).

Let \(\sigma = \nu^a \rho, \alpha \in \mathbb{N}(n + d)/2 + \mathbb{Z} \). Then

\[
\supp \langle a(n, d)^{(p)} \rangle(\sigma) = \begin{cases}
0 & \alpha \leq -(n + d)/2, \\
\alpha + (n + d)/2, & 1 - (n + d)/2 \leq \alpha \leq (n - d)/2, \\
n & (n - d)/2 \leq \alpha \leq (d - n)/2, \\
-\alpha + (n + d)/2, & (d - n)/2 \leq \alpha \leq -1 + (n + d)/2, \\
0 & (n + d)/2 \leq \alpha.
\end{cases}
\]

7. Unitary dual

In 1.14 we have defined \(f: \mathbb{R} \rightarrow \mathbb{R} \) and in 5.8 we have defined \(t: \mathbb{R} \rightarrow \mathbb{R} \). F. Rodier
showed that $(\text{Irr}^t) = \text{Irr}$ implies $t = 1[21]$. In this section and the following one we assume $(\text{Irr}^t) = \text{Irr}$ and thus we do not make difference between t and t.

7.1. The following theorem completely solves the unitarizability problem for $\text{GL}(n)$ over non-archimedean field, and also presents explicit connection between Zelevinsky and Langlands classifications in the unitary case. The Bernstein Conjecture 8.10 of [2] was stating that $t(\text{Irr}^u) \subseteq \text{Irr}^u$. The following theorem describes completely $t: \text{Irr}^u \to \text{Irr}^u$.

THEOREM. — Let

$$B = \{ \langle a (n, d)^{(\alpha)} \rangle, \pi(\langle a (n, d)^{(\alpha)} \rangle, \alpha); n, d \in \mathbb{N}, \rho \in \mathbb{C}, 0 < \alpha < 1/2 \}.$$

Fix $m \in \mathbb{N}$. Then

(i) If $\sigma_1, \ldots, \sigma_k \in B$ are such that

$$\deg \sigma_1 + \ldots + \deg \sigma_k = m,$$

then $\sigma_1 \times \ldots \times \sigma_k \in \hat{G}_m$.

(ii) If $\pi \in \hat{G}_m$, then there exist $\tau_1, \ldots, \tau_j \in B$ so that

$$\pi = \pi_1 \times \ldots \times \tau_j.$$

Such τ_1, \ldots, τ_j are unique up to a permutation and

$$\deg \tau_1 + \ldots + \deg \tau_j = m.$$

(iii) The following formulas hold

$$t(\langle a (n, d)^{(\alpha)} \rangle) = \langle a (d, n)^{(\alpha)} \rangle$$

$$t(\pi(\langle a (n, d)^{(\alpha)} \rangle, \alpha)) = \pi(\langle a (d, n)^{(\alpha)} \rangle, \alpha)$$

for elements of B.

7.2. **Remark.** — Note that by (i), $B \subseteq \text{Irr}^u$. The statement (iii), together with (i) and (ii) describes explicitly $t(\langle a \rangle)$ in terms of Zelevinsky classification, when $\langle a \rangle$ is unitarizable. The same description is valid for Langlands classification.

Proof. — We shall prove (i), (ii) and (iii) by induction on m (in (iii), $m = (nd) \deg \rho$). Define X_{m-1} as in Lemma 4.8.

Suppose that $m = 1$. Then (i), (ii) and (iii) hold. Here the only possible $\langle a (n, d)^{(\alpha)} \rangle$ is for $n = d = 1$ and ρ a unitary character of G_1, t is here identity.

Suppose that (i), (ii) and (iii) hold for $k \leq m - 1$. Then (U_{m-1}) holds. Now Lemma 6.2 implies that $\langle a (n, d)^{(\alpha)} \rangle$ is unitarizable, for $n \leq d$ and $(nd) \deg \rho = m$. By [28], $t(\langle a (n, d)^{(\alpha)} \rangle)$ is unitarizable, i.e.

$$t(\langle a (n, d)^{(\alpha)} \rangle) \in \hat{G}_m.$$

From the inductive assumption one sees that

$$t(\langle a (n, d)^{(\alpha)} \rangle) \notin \hat{1}(\hat{G}_m),$$
where \(I(\tilde{G}_m) \) is defined in (ii) of Lemma 4.8 (by the inductive assumption and Lemma 4.8 we know how \(t \) acts on \(I(\tilde{G}_m) \)). One can obtain that also from Proposition 3.8 (\(t(\langle a(n, d) \rangle) \) is a prime element of \(R \) since it is the image of a prime element under an automorphism of \(R \), and elements in \(I(\tilde{G}_m) \) are composite by Lemma 4.8).

The above discussion and Lemma 4.8 imply

\[
\{ \langle a(n_1, d_1) \rangle; n_1, d_1 \in \mathbb{N}, \rho_1 \in S^w, (n_1, d_1) \text{deg} \rho_1 = m \}\]

Thus \(t(\langle a(n, d) \rangle) = \langle a(n_1, d_1) \rangle \) for some \(n_1, d_1, \rho_1 \) as above. The fact

\[
\text{supp } \langle a(n, d) \rangle = \text{supp } \langle a(n_1, d_1) \rangle
\]

implies

\[
\rho = \rho_1
\]
\[
\{ n, d \} = \{ n_1, d_1 \}
\]

(support of \(\langle a(n, d) \rangle \) is computed in 6.4).

Therefore,

\[
t(\langle a(n, d) \rangle) \in \{ \langle a(n, d) \rangle, \langle a(n, d) \rangle \}.
\]

If \(n = d \) then

\[
t(\langle a(n, d) \rangle) = \langle a(n, d) \rangle.
\]

If \(n < d \), then Lemma 6.3 implies

\[
t(\langle a(n, d) \rangle) = \langle a(d, n) \rangle.
\]

Thus \(\langle a(d, n) \rangle \) is unitarizable. This means that \(X_m \subseteq \text{Irr}^w \). Since \(t \) is an involution, we have that

\[
t(\langle a(n, d) \rangle) = \langle a(n, d) \rangle.
\]

Thus, (iii) holds. Clearly (i) holds because if \(\sigma_1, \ldots, \sigma_k \in B \) and \(\text{deg} \sigma_1 + \ldots + \text{deg} \sigma_k = m \), then \(\sigma_1, \ldots, \sigma_k \in X_m \). Lemma 4.8 implies (ii).

7.3. The above theorem can be expressed in the following form:

Theorem. — Let

\[
B = \{ a(n, d) \}, (v^a a(n, d) + v^{-a} a(n, d)) ; n, d \in \mathbb{N}, \rho \in S^w, 0 < \alpha < 1/2 \}.
\]

Let \(X(B) \) be the additive subsemigroup of \(M(S(C)) \) generated by \(B \). Then

\[
a \mapsto \langle a \rangle
\]

and

\[
a \mapsto L(a)
\]
are bijections from $X(B)$ onto Irr^ω.

The mapping

$$t: \quad B \rightarrow B,$$

$$t: \quad a(n, d)^{(\rho)} \rightarrow a(d, n)^{(\rho)},$$

$$(v^a a(n, d)^{(\rho)} + v^{-a} a(n, d)^{(\rho)}) \rightarrow (v^a a(d, n)^{(\rho)} + v^{-a} a(d, n)^{(\rho)})$$

extends uniquely to a morphism of semigroups $t: X(B) \rightarrow X(B)$. Now

$$\langle a \rangle = L(t(a))$$

and

$$t(\langle a \rangle) = \langle t(a) \rangle.$$

7.4. For $\delta \in D^\omega$ and $n \in \mathbb{N}$ set

$$u(\delta, n) = L(v^{-(n-1)/2} \delta, v^{1-(n-1)/2} \delta, \ldots, v^{(n-1)/2} \delta).$$

We can characterize $u(\delta, n)$ as the unique irreducible quotient of $v^{(n-1)/2} \delta \times v^{(n-1)/2}-1 \delta \times \ldots \times v^{-(n-1)/2} \delta$.

Clearly $L(a(n, d)^{(\rho)}) = u(L(\Delta [d]^\rho), n)$ and this implies

$$\{ L(a(n, d)^{(\rho)}); n, d \in \mathbb{N}, \rho \in C^\omega \} = \{ u(\delta, n); \delta \in D^\omega, n \in \mathbb{N} \}.$$

7.5. Theorem. — Set

$$B = \{ u(\delta, n), v^a u(\delta, n) \times v^{-a} u(\delta, n); \delta \in D^\omega; n \in \mathbb{N}, 0 < \alpha < 1/2 \}.$$

(i) If $\pi_1, \ldots, \pi_r \in B$, then $\pi_1 \times \ldots \times \pi_r \in \text{Irr}^\omega$.

(ii) Let $\sigma \in \text{Irr}^\omega$. Then there exist $\pi_1, \ldots, \pi_r \in B$ so that $\sigma = \pi_1 \times \ldots \times \pi_r$. The multiset (π_1, \ldots, π_r) is uniquely determined by σ.

7.6. Corollary. — Let $a \in \mathbb{M}(S(\mathbb{R}))$, $\rho_1, \rho_2 \in C^\omega$. Then $\langle a^{(\rho_1)} \rangle$ is unitarizable if and only if $\langle a^{(\rho_2)} \rangle$ is unitarizable.

7.7. Remark. — The formula for the Zelevinsky involution in Theorem 7.1 can be obtained using C. Moeglin and J.-L. Waldspurger results in [19] where they proved Zelevinsky conjecture on $\iota: \text{Irr} \rightarrow \text{Irr}$ from [34]. It is also possible to prove this conjecture for representations $\langle a(n, d)^{(\rho)} \rangle$ using Theorem 7.1 as it was done in the previous draft of this paper.

8. Bernstein conjecture
on complementary series

8.1. In 4.1, we introduced the notion of a rigid representation.
THEOREM. — Let $\sigma \in \text{Irr}$. Suppose that σ is a rigid representation such that $\pi(\sigma, \alpha)$ is an irreducible and unitarizable representation for some $\alpha \in (0, 1/2)$. Then there exist unitarizable representations σ_1 and σ_2 so that
\[\sigma = \sigma_1 \times \nu^{-1/2} \sigma_2. \]

Proof. — The theorem is a consequence of Theorem 7.1 and Lemma 4.7.

8. 2. THEOREM. — Let $\sigma \in \text{Irr}$. Suppose that
\[\pi(\sigma, \alpha) = \sigma_\alpha \times (\sigma^+) \]
is irreducible and unitarizable for all $\alpha \in (-1/2, 1/2)$. Then σ is a unitarizable rigid representation.

Proof. — Let $\sigma \in \text{Irr}$. Suppose that $\pi(\sigma, \alpha) = \sigma_\alpha \times (\sigma^+) \times$ is irreducible and unitarizable for $\alpha \in (-1/2, 1/2)$. Then 4.4 and 7.1 implies $\sigma = \sigma_1 \times (\sigma^2 - 1/2)$ where $\sigma_1, \sigma^2 \in \text{Irr}^\circ$. Clearly, σ_1 and σ^2 are rigid.

Suppose that σ is not unitarizable. This implies that $\deg \sigma^2 \geq 1$. Proposition 4.2 implies that
\[\pi(\sigma^2, 1/2) = (\sigma^2)_{1/2} \times (\sigma^2)_{-1/2} \]
is reducible. Thus, in the ring R we have
\[\pi(\sigma, 0) = \sigma \times \sigma^+ = (\sigma_1 \times (\sigma^2)_{-1/2}) \times (\sigma_1 \times (\sigma^2)_{1/2}) \times ((\sigma^2)_{-1/2} \times (\sigma^2)_{1/2}). \]
This implies that $\pi(\sigma, 0)$ reduces which is a contradiction.

8. 3. Remark. — These theorems prove Bernstein Conjecture 8.6 in [2] on complementary series.

APPENDIX

In this appendix we shall prove all the statements of the seventh and the eighth section without using the result that $(\text{Irr})' \subseteq \text{Irr}$, if characteristic of F is zero. This means that we shall not use the result of [28].

We consider here the additive homomorphism
\[t : R \to R \]
declared by $t(a) = L(a), a \in M(S(C))$. This is all we assume in this section about t (we do not assume that t is involutive, and also that t is multiplicative).

A. 1. We shall first prove one result about classification L.

PROPOSITION. — Let $a = (\Delta_1, \ldots, \Delta_n), b = (\Gamma_1, \ldots, \Gamma_m) \in M(S(C))$. Suppose that Δ_i and Γ_j are not linked for all $1 \leq i \leq n, 1 \leq j \leq m$. Then:
(i) $\lambda(a) \times \lambda(b) = \lambda(a + b)$.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE
(ii) \[\langle a \rangle \times \langle b \rangle = \langle a+b \rangle. \]

Proof. — The definition of \(\lambda \) implies (i). Proposition 8.5 of [33] gives
\[\langle a \rangle \times \langle b \rangle = \langle a+b \rangle. \]

A. 2. Remark. — One can obtain that \(L(a) \times L(b) = L(a+b) \) when \(a, b \) are as in the above proposition, using multiplicity one of the Langlands representation in \(\lambda(a+b) \). For our purposes, the following irreducibility result will be sufficient.

A. 3. Corollary. — Let \(r_i = (p^i_1, \ldots, p^i_n) \in M(C), i = 1,2 \).
Suppose that
\[e(p^1_p) - e(p^2_q) \notin \{ -1, 1 \} \]
for \(1 \leq p \leq n_1, 1 \leq q \leq n_2 \). Let \(a, b \in M(S(C)) \) so that
\[\text{supp} \langle a \rangle = r_1 \quad \text{and} \quad \text{supp} \langle b \rangle = r_2. \]
Then \(L(a) \times L(b) \) and \(\langle a \rangle \times \langle b \rangle \) are irreducible and
\[L(a) \times L(b) = L(a+b), \quad \langle a \rangle \times \langle b \rangle = \langle a+b \rangle. \]

Proof. — The assumption (\(\ast \)) implies that \(a \) and \(b \) are as in Proposition A.1, and (ii) of Proposition A.1 implies our statement for Zelevinsky classification.

Choose \(a^*, b^* \) so that
\[L(a) = \langle a^* \rangle \quad \text{and} \quad L(b) = \langle b^* \rangle. \]
Now \(\text{supp} \langle a \rangle = \text{supp} \langle a^* \rangle \) and \(\text{supp} \langle b \rangle = \text{supp} \langle b^* \rangle \). The first part of our proof implies that
\[L(a) \times L(b) = \langle a^* \rangle \times \langle b^* \rangle \]
is irreducible.

Now \(L(a) \times L(b) \) is an irreducible quotient of \(\lambda(a) \times \lambda(b) \). By (i) of Proposition A.1 we have
\[\lambda(a) \times \lambda(b) \cong \lambda(a+b) \]
since \(a \) and \(b \) satisfy the assumption of Proposition A.1. The representation \(\lambda(a+b) \) has a unique irreducible quotient which is \(L(a+b) \). Thus \(L(a) \times L(b) = L(a+b) \).

A. 4. Proposition. — (i) Suppose that \(a, b \in M(S(C)) \). Then \(L(a+b) \) is a composition factor of \(L(a) \times L(b) \).
(ii) If \(c, d \in M(D) \), then \(L(c+d) \) is a composition factor of \(L(c) \times L(d) \).
Proof. — First of all, note that it is enough to prove the proposition for \(M(S(C)) \).
Let \(a, b \in M(S(C)) \). Set
\[\text{supp} \langle a \rangle = (\rho_1, \ldots, \rho_n), \text{supp} \langle b \rangle = (\sigma_1, \ldots, \sigma_n). \]
Let \(\varepsilon \) be the minimum of all
\[
\left| 1 + e(p_i) - e(\sigma_j) \right| \text{ with } 1 + (e(p_i) - e(\sigma_j)) \neq 0, \\
\left| 1 - (e(p_i) - e(\sigma_j)) \right| \text{ with } 1 - (e(p_i) - e(\sigma_j)) \neq 0,
\]
when \(1 \leq i \leq u, 1 \leq j \leq v \). Then \(\varepsilon > 0 \). Let \(0 < \alpha < \varepsilon \). By the choice of \(\alpha \), \(a \) and \((v^a b) \) satisfy the assumption of Corollary A.3. Thus \(L(a) \times L(v^a b) \) is irreducible and equals to \(L(a + v^a b) \). Proposition A.1 implies \(\lambda(a) \times \lambda(v^a b) \cong \lambda(a + v^a b) \).

Suppose that \(a \) consists of \(n \) segments and \(b \) of \(m \) segments. We can denote those segments in the following way
\[
a = (\Delta_{i(1)}, \ldots, \Delta_{i(n)}), \quad i(1) < \ldots < i(n), \\
b = (\Delta_{j(1)}, \ldots, \Delta_{j(m)}), \quad j(1) < \ldots < j(m)
\]
with \(\{i(1), \ldots, i(n)\} \cup \{j(1), \ldots, j(m)\} = \{1, 2, \ldots, n+m\} \), such that
\[
\Delta_u \to \Delta_v \quad \Rightarrow \quad v < u.
\]
For \(0 \leq \alpha < \varepsilon \) set \(\Delta^a_i = \Delta_{i(k)}, \Delta^a_j = v^a \Delta_{j(k)} \).

Now
\[
a + v^a b = (\Delta^a_1, \ldots, \Delta^a_{n+m}).
\]

By construction
\[
\lambda(a + v^a b) \cong L(\Delta^a_1) \times \ldots \times L(\Delta^a_{n+m})
\]
for \(0 \leq \alpha < \varepsilon \). The representation \(\lambda(a + v^a b) \) possesses a unique irreducible quotient, which is equal to \(L(a + v^a b) = L(a) \times v^a L(b) \) for \(0 < \alpha < \varepsilon \), and \(L(a + b) \) for \(\alpha = 0 \).

Suppose that \(L(a + b) \) is a representation of a group \(G_\rho \). Let \(H(G_\rho) \) be the Hecke algebra of \(G_\rho \). For an admissible smooth representation \(\pi \) of \(G_\rho \), \(\chi_\pi \) will denote the character of \(\pi \). With a fixed \(f \in H(G_\rho) \)
\[(*) \quad \alpha \to \chi_{L(a) \times v^a L(b)}(f) \]
is a continuous function. One can see this from the formula for the character of an induced representation in [8] (see also Lemma 2.1 of [26]).

Let \((\alpha_n) \) be a sequence of real numbers converging to 0 such that \(0 < \alpha_n < \varepsilon \) for all \(n \). Suppose that we have proved that there exist a quotient \(\lambda(a + b) \) and a subsequence \((\alpha_n(k)) \) of \((\alpha_n) \) such that
\[(** \quad \lim_{k} \chi_{L(a + v^{\alpha_n(k)} b)}(f) = \chi_\pi(f)\]
for all \(f \in H(G_\rho) \).
Now \(L(a+b)\) is the unique irreducible quotient of \(\lambda(a+b)\), so it is a (unique irreducible)
quotient of \(\pi\). The relations (*) and (**) imply
\[
\lim_{k} \text{ch}_{L(a+v_{\pi}(k)b)}(f) = \lim_{k} \text{ch}_{L(a) \times v_{\pi}(k)L(b)}(f) = \text{ch}_{L(a) \times L(b)}(f) = \text{ch}_{\pi}(f)
\]
for all \(f \in H(G_{\nu})\). Since \(L(a+b)\) is a subquotient of \(\pi\), the last equality implies that
\(L(a+b)\) is the subquotient of \(L(a) \times L(b)\).
Thus, for a proof of the proposition we need to contract \(\pi\) as above.
Roughly speaking, such \(\pi\) is contracted as follows. One can realize all representations
\[L(\Delta_{1}^{*}) \times \ldots \times L(\Delta_{n+m}^{*})\]
on the same vector space (by restriction to the standard maximal compact subgroup). In
this way one obtains a continuous family of representations on the same vector space
(for a precise formulation of “continuous family” see Lemma 3.5 of [27]). Now using
the compactness of the Grassmanian manifold of a finite dimensional vector space,
and the diagonal procedure (several times), one constructs a subsequence \((\pi_{n}(a))\)
and \(\pi\) as above.
For a formal proof, to avoid the whole construction, we pass to the contragredient
representations. Now
\[L(a+v_{\pi}^{*}b) = L(a) \times v^{-\pi} L(b)^{\sim}\]
is a subrepresentation of \(L(\Delta_{1}^{*}) \times \ldots \times L(\Delta_{n+m}^{*})\), and we can as in the proof of Lemma
3.6 of [27], construct a subsequence \((\pi_{n}(a))\) of \((\pi_{n})\) and a subrepresentation \(\pi_{0}\)
of \(L(\Delta_{1}^{*}) \times \ldots \times L(\Delta_{n+m}^{*})\) such that
\[
\lim_{k} \text{ch}_{L(a+v_{\pi}(k)b)}^{\sim}(f) = \text{ch}_{\pi_{0}}(f)
\]
for all \(f \in H(G_{\nu})\). Lemma 3.6 of [27] deals with induced representations by cuspidals,
but the fact that inducing is by cuspidals, is not used in the part of the proof of the
lemma that we need (this fact is used at the end of the proof to reduce the lemma to the
case of subrepresentations). Now \(\pi_{0}\) is in a natural way a quotient of
\[L(\Delta_{1}) \times \ldots \times L(\Delta_{n+m}).\]
Using the fact that
\[
\text{ch}_{\pi}(f) = \text{ch}_{\pi}(\tilde{f})
\]
where \(\tilde{f}\) is defined by \(\tilde{f}(g) = f(g^{-1})\), one obtains that
\[
\lim_{k} \text{ch}_{L(a+v_{\pi}(k)b)}^{\sim}(f) = \text{ch}_{\pi_{0}}(f)
\]
for all \(f \in H(G_{\nu})\). Thus, we can take \(\pi = \pi_{0}\). This finishes the proof.
For another possible proof of the preceding proposition see (iii) of A.12.
A. 5. Remark. — Since the multiplicity of the Langlands representation in $\lambda(a+b)$ is one, then $L(c+d)$ is a composition factor of $L(c) \times L(d)$ whose multiplicity is one.

A. 6. Corollary. — (i) Let $c, d \in M(D)$. If $L(c) \times L(d)$ is irreducible, then

$$L(c) \times L(d) = L(c+d).$$

(ii) Let $a, b \in M(S(C))$. If $L(a) \times L(b)$ is irreducible then

$$L(a) \times L(b) = L(a+b).$$

A. 7. Corollary. — (i) Let $c, d \in M(D)$. Suppose that $L(c)$ and $L(d)$ are unitarizable. Then $L(c+d)$ is unitarizable and

$$L(c+d) = L(c) \times L(d).$$

(ii) Let $a, b \in M(S(C))$. If $L(a)$ and $L(b)$ are unitarizable, then

$$L(a+b) = L(a) \times L(b).$$

In the rest of this section we suppose that the characteristic of the field F is zero.

Let $\delta \in GL(m, F)$ be a square-integrable representation and $n \in \mathbb{N}$. Then the induced representation

$$(\delta^{(n-1)/2} \times (\delta^{(n-1)/2} - 1 \delta) \times \ldots \times (\delta^{-(n-1)/2} \delta))$$

has a unique irreducible quotient. This quotient was denoted by $u(\delta, n)$.

A. 8. Theorem. — Suppose that $\text{char } F = 0$. Let $\delta \in \text{Irr}$ be a square-integrable representation and let $n \in \mathbb{N}$. Then

$$u(\delta, n)$$

is a unitarizable representation.

Proof. — The first part of the proof uses a result of [3] or [22], and the second part uses a result of [16].

Let $\delta \in G_m = GL(m, F)$ be a square integrable representation and $n \in \mathbb{N}$.

There exists a division algebra H central over F with dimension m^2 over F. We choose, like in paragraph 5 of [22], a number field k, a place w of k, and a group G defined by a division algebra D over k such that: F is isomorphic to the completion k_w of k at w, the group $G(k_w)$ of k_w-rational points of G is isomorphic to the multiplicative group of H, G satisfies assumptions of paragraph 5 of [22]. Let S_0 be the set of all places v such that $G(k_v)$ is ramified. Clearly $w \in S_0$. Let \mathbb{A} be the Adele ring of k.

Since δ is an irreducible square-integrable representation of $GL(m, F) \cong GL(m, k_w)$, the proof of Proposition 5.15 of [22] implies that there exists an irreducible cuspidal automorphic representation σ of $GL(m, \mathbb{A})$ such that, in the factorisation

$$\sigma = \bigotimes_v \sigma_v$$
which corresponds to the factorisation of $GL(m, \mathbb{A})$ into the restricted product of all $GL(m, k_v)$ (see [9]), we have

$$\sigma_v \cong \delta.$$

Let Z^m be the center of the algebraic group $GL(m)$. Then Z^m is isomorphic to $GL(1)$. Now $Z^m(\mathbb{A})$ is naturally isomorphic to the restricted product of $Z^m(k_v)$. Let Z^m_∞ be the group of all $z=(z_v) \in Z^m(\mathbb{A})$ such that $z_v=1$ for all finite places, and z_∞ is a positive real number independent of v infinite.

Let η be the central character of the cuspidal automorphic representation σ. Suppose that η is trivial on Z^m_∞.

Let P be the standard parabolic subgroup of $GL(nm)$ whose Levi factor M is naturally isomorphic to $GL(m)$. We identify elements of $M(\mathbb{A})$ with n-tuples (g_1, \ldots, g_m), $g_i \in GL(m, \mathbb{A})$. Let π be the representation

$$(g_1, \ldots, g_m) \mapsto \sigma(g_1)\left|\det g_1\right|^{(n-1)/2} \otimes \sigma(g_2)|\det g_2|^{((n-1)/2)\cdots \otimes \sigma(g_n)|\det g_n|^{-(n-1)/2}.$$

Let $\pi = \otimes \pi_v$ be the decomposition of π into the restricted product of representations of $M(k_v)$. The induced representation from $P(\mathbb{A})$ to $GL(nm, \mathbb{A})$ (resp. $P(k_v)$ to $GL(nm, k_v)$) by π (resp. π_v) is denoted by $\text{Ind}(\pi)$ (resp. $\text{Ind}(\pi_v)$).

Since the center Z^{mn} of $GL(n, m)$ is isomorphic to $GL(1)$, we may consider η like a character of $Z^{mn}(\mathbb{A})$. Set $\omega = \eta^m$. Let $L^2(\omega, GL(mn, \mathbb{A}))$ be the space of (classes of) functions on $GL(mn, \mathbb{A})$ such that

$$f(\gamma zg) = \omega(z)f(g)$$

for all $\gamma \in GL(mn, k)$, $z \in Z^{mn}(\mathbb{A})$, $g \in GL(mn, \mathbb{A})$; and $|f|^2$ is integrable function on

$$GL(mn, k)Z^{mn}(\mathbb{A})\backslash GL(mn, \mathbb{A})$$

with respect to a non-trivial right-invariant measure. Action of $GL(mn, \mathbb{A})$ on $L^2(\omega, GL(mn, \mathbb{A}))$ by right shifts defines a unitary representation of $GL(mn, \mathbb{A})$.

In paragraph 2 of [16] it is proved that there exists an intertwining operator

$$E: \text{Ind}(\pi) \rightarrow L^2(\omega, GL(mn, \mathbb{A}))$$

whose image is an irreducible representation. Let τ be the image of E. Decompose τ into restricted tensor product $\tau = \otimes \tau_v$.

Since $\text{Ind}(\pi) \cong \otimes \text{Ind}(\pi_v)$ we have the epimorphism

$$E: \otimes \text{Ind}(\pi_v) \rightarrow \otimes \tau_v.$$

Now $\otimes \text{Ind}(\pi_v)$ is, like a representation of $GL(mn, k_\infty)$, isomorphic to a direct sum of copies of $\text{Ind}(\pi_v)$ (we need to fix a basis in each $\text{Ind}(\pi_v)$, $v \neq \infty$, and use the fact that the local Hecke algebras are idempotened algebras). Since $\otimes \tau_v$ is also a direct sum of
copies of τ_w, by the same reasons, we obtain directly that there exists a surjective intertwining operator

$$e : \text{Ind}(\pi_w) \to \tau_w.$$

Now

$$\text{Ind}(\pi_w) \cong (v^{(n-1)/2}) \times \ldots \times (v^{-(n-1)/2}).$$

Thus

$$\tau_w \cong u(\delta, n).$$

Since τ is a subrepresentation of $L^2(\omega, \text{GL}(mn, A))$, τ_w is unitarizable and therefore $u(\delta, n)$ is unitarizable.

It remains to consider the general case (without assumption $\eta Z^u = 1$).

This case reduces to the case of $\eta Z^u = 1$ by twisting δ with a suitable character.

The following theorem is a direct consequence of the preceding theorem.

A. 9. THEOREM. — Representations

$L(a(n, d)^{po}), \quad n, d \in \mathbb{N}, \quad \rho \in \mathbb{C}^w$

are unitarizable.

A. 10. THEOREM. — Let char $F = 0$. Set

$$B = \{ \langle a(n, d)^{po} \rangle, \pi(\langle a(n, d)^{po} \rangle, \alpha); n, d \in \mathbb{N}, \rho \in \mathbb{C}^w, 0 < \alpha < 1/2 \}.$$

Fix $m \in \mathbb{N}$. Then

(i) If $\sigma_1, \ldots, \sigma_k \in B$ such that

$$\deg \sigma_1 + \ldots + \deg \sigma_k = m,$$

then $\sigma_1 \times \ldots \times \sigma_k \in \hat{G}_m$.

(ii) If $\pi \in \hat{G}_m$ then there exist $\tau_1, \ldots, \tau_j \in B$ so that

$$\pi = \tau_1 \times \ldots \times \tau_j.$$

(iii) If $n, d \in \mathbb{N}, \rho \in \mathbb{C}^w$ so that $nd (\deg \rho) \leq m$, then

$$\langle a(n, d)^{po} \rangle = L(a(d, n)^{po}).$$

(iv) Let $n_i, d_i, m_j, e_j \in \mathbb{N}, \rho_i, \sigma_j \in \mathbb{C}^w, 0 < \alpha_j < 1/2$ for $1 \leq i \leq p, 1 \leq j \leq q$ where $p, q \in \mathbb{Z}_+$. Suppose that

$$\sum_{i=1}^p (n_i d_i) \deg \rho_i + 2 \sum_{j=1}^2 (m_j e_j) \deg \sigma_j = m.$$

Annales Scientifiques de l'École Normale Supérieure
Then
\[
L \left(\sum_{i=1}^{p} a(n_i, d_i) + \sum_{j=1}^{q} [v^a_j a(m_j, e_j)^{\alpha_j} + v^{-a_j} a(m_j, e_j)^{\alpha_j}] \right)
\]
\[
= \left[\prod_{i=1}^{p} L(a(n_i, d_i)) \right] \times \left[\prod_{j=1}^{q} \pi(L(a(m_j, e_j)^{\alpha_j}), \alpha_j) \right]
\]
\[
= \left[\prod_{i=1}^{p} \langle a(d_i, n_i) \rangle \right] \times \left[\prod_{j=1}^{q} \pi(\langle a(e_j, m_j) \rangle, \alpha_j) \right]
\]
\[
= \langle \sum_{i=1}^{p} a(d_i, n_i) \rangle + \sum_{j=1}^{q} [v^a_j a(e_j, m_j)^{\alpha_j} + v^{-a_j} a(e_j, m_j)^{\alpha_j}] .
\]

Proof. — We shall prove (i), (ii), (iii) and (iv) by induction on \(m\). The proof is similar with the proof of Theorem 7.1.

For \(m = 1\) there is nothing to prove. Let \(m \geq 2\). Suppose that the theorem holds for \(k \leq m - 1\). Let \(X_{m-1}\) be defined as in Lemma 4.8. By our inductive assumption \((U^{m-1})\) holds \((U^m)\) is defined at 4.6). Thus we can apply Lemma 4.8. Each element of \(I(\hat{G}_m)\) is some product of elements of \(X_{m-1} (I(\hat{G}_m)\) is defined in (ii) of Lemma 4.8). By definition
\[
I(\hat{G}_m) \subseteq \hat{G}_m
\]
and
\[
\hat{G}_m \setminus I(\hat{G}_m) \subseteq \{ \langle a(n, d) \rangle, n, d \in \mathbb{N}, \rho \in \mathbb{C} \text{ and } (nd) \deg \rho = m \} .
\]

Let \(\tau \in I(\hat{G}_m)\). Then
\[
\tau = \prod_{i=1}^{p} \langle a(n_i, d_i) \rangle \times \prod_{j=1}^{q} \pi(\langle a(m_j, e_j) \rangle, \alpha_j)
\]
for some \(n_i, d_i \in \mathbb{N}, \rho_i, \sigma_j \in \mathbb{C}^\omega, 0 < \alpha_j < 1/2, \rho, q \in \mathbb{Z}_+, \) by Lemma 4.8. By inductive assumption, we have
\[
\langle a(n_i, d_i) \rangle = L(a(d_i, n_i)).
\]

Also
\[
\pi(L(a(e_j, m_j)^{\alpha_j}), \alpha_j) = v^a_j L(a(e_j, m_j)^{\alpha_j}) \times v^{-a_j} L(a(e_j, m_j)^{\alpha_j}) = \pi(\langle a(e_j, m_j) \rangle, \alpha_j).
\]

Thus \(\pi(L(a(e_j, m_j)^{\alpha_j}), \alpha_j)\) is unitarizable. Using Corollary A. 7 we obtain
\[
\tau = \prod_{i=1}^{p} L(a(d_i, n_i)) \times \prod_{j=1}^{q} \pi(L(a(e_j, m_j)^{\alpha_j}), \alpha_j).
\]

This implies that (iv) holds for representations in \(I(\hat{G}_m)\).
Let now \(n, d \in \mathbb{N}, \rho \in \mathbb{C}^w \) so that
\[
(nd) \deg \rho = m.
\]
Now \(L(a(n, d)^{(\rho)}) \) is unitarizable, by Theorem A.9. By the preceding considerations
\[
L(a(n, d)^{(\rho)}) \notin \hat{\mathcal{G}}_m.
\]
Thus
\[
L(a(n, d)^{(\rho)}) \in \{ \langle a(u, v)^{(\sigma)} \rangle ; u, v \in \mathbb{N}, \sigma \in \mathbb{C}^w \text{ and } (uv) \deg \sigma = m \}.
\]
Therefore, \(L(a(n, d)^{(\rho)}) = \langle a(u, v)^{(\sigma)} \rangle \) for some \(u, v \) and \(\sigma \) as above. The fact
\[
\text{supp } \langle a(n, d)^{(\rho)} \rangle = \langle \text{supp } a(u, v)^{(\sigma)} \rangle
\]
implies
\[
L(a(n, d)^{(\rho)}) \in \{ \langle a(n, d)^{(\rho)} \rangle, \langle a(d, n)^{(\rho)} \rangle \}.
\]
By Lemma 6.3
\[
L(a(n, d)^{(\rho)}) = \langle a(d, n)^{(\rho)} \rangle.
\]
Thus \(\langle a(d, n)^{(\rho)} \rangle \) is unitarizable. This implies (i), (ii), (iii) and the rest of (iv).

Let \(R^* \) be the additive subgroup of \(R \) generated by \(\text{Irr}^* \). Then \(\text{Irr}^* \) is a \(\mathbb{Z} \)-basis of \(R^* \), and \(R^* \) is a subring of \(R \).

The following theorem is a direct consequence of the preceding one.

A.11. THEOREM. — (i) Let \(a \in M(S(C)) \). The representation \(\langle a \rangle \) is unitarizable if and only if
\[
t(\langle a \rangle) = L(a)
\]
is unitarizable.

(ii) The mapping
\[
t : \text{Irr}^* \to \text{Irr}^*
\]
\[
\langle a \rangle \to L(a), \quad \langle a \rangle \in \text{Irr}^*,
\]
is an involutive automorphism of the multiplicative semigroup \(\text{Irr}^* \).

(iii) The homomorphism in (ii) satisfies
\[
t(\langle a(n, d)^{(\rho)} \rangle) = \langle a(d, n)^{(\rho)} \rangle,
\]
\[
t(\pi(\langle a(n, d)^{(\rho)} \rangle, \alpha)) = \pi(\langle a(d, n)^{(\rho)} \rangle, \alpha),
\]
\[
n, d \in \mathbb{N}, \rho \in \mathbb{C}^w, \quad 0 < \alpha < 1/2.
\]

(iv) The mapping \(t|_{R^*} \) is an involutive ring automorphism.
A. 12. Remark. — (i) Lemma 6.3 cannot be omitted in our proof of Theorem 7.1, while we can prove (i) and (ii) of Theorem A.10, and also (i), (ii), (iv) of Theorem A.11 without using Lemma 2.3.

(iii) Now we shall give an outline of another possible proof of Proposition A.4. If \(d \in \mathcal{M}(D) \) then we have in \(\mathbb{R} \)

\[
\lambda(d) = \sum_{x \in \mathcal{M}(D)} m_x^d L(x), \quad m_x^d \in \mathbb{Z}_+, m_x^d = 1,
\]

\[
L(d) = \sum_{x \in \mathcal{M}(D)} m(d, x) \lambda(x), \quad m(d, x) \in \mathbb{Z}, m(d, d) = 1.
\]

Take \(d_1, d_2 \in \mathcal{M}(D) \). In the ring \(\mathbb{R} \) we have

\[
L(d_1) \times L(d_2) = \left(\sum m(d_1, x_1) \lambda(x_1) \right) \times \left(\sum m(d_2, x_2) \lambda(x_2) \right)
\]

\[
= \lambda(d_1 + d_2) + \sum_{x_1 \neq d_1, \text{or } x_2 \neq d_2} m(d_1, x_1) m(d_2, x_2) \lambda(x_1 + x_2)
\]

\[
= L(d_1 + d_2) + m(d_1, d_2) m(d_2, d_2) \sum_{y \neq d_1 + d_2} m_y^{d_1 + d_2} L(y)
\]

\[
+ \sum_{x_1 \neq d_1, \text{or } x_2 \neq d_2} (m(d_1, x_1) m(d_2, x_2) \sum_{y} m_y^{x_1 + x_2} L(y)).
\]

For a proof of Proposition A.4 it is enough to show that if

\[
m(d_1, x_1) m(d_2, x_2) m_y^{x_1 + x_2} \neq 0
\]

where \(x_1 \neq d_1 \) or \(x_2 \neq d_2 \), then \(y \neq d_1 + d_2 \). This can be obtained using relation which exists between \(a \) and \(b \) when \(m_a^b \neq 0 \) (i. a. when \(L(b) \) is a composition factor of \(\lambda(a) \)). For this relation one can consult A. 4. f of [3].

For details of a proof of such type one can consult proofs of Propositions 3.5 and 5. 6 in [30].

REFERENCES

(Manuscrit reçu le 22 janvier 1984, révisé le 19 septembre 1985.)

Marko Tadić,
Max-Planck-Institut für Mathematik,
Gottfried-Claren-Str. 26,
D-5300 Bonn 3
and
Department of Mathematics,
University of Zagreb,
p. o. box 187,
41001 Zagreb,
Yugoslavia.