NIELS VIGAND PEDERSEN
On the characters of exponential solvable Lie groups

<http://www.numdam.org/item?id=ASENS_1984_4_17_1_1_0>
ON THE CHARACTERS
OF EXPONENTIAL SOLVABLE LIE GROUPS

BY NIELS VIGAND PEDERSEN (*)

Introduction

Let G be a connected, simply connected solvable Lie group with Lie algebra \mathfrak{g}. In [6] it was shown that for any normal representation π of G (cf. [11]) there exists a continuous homomorphism $\chi : G \to \mathbb{R}_+^*$ such that π has a distribution χ-semicharacter. Moreover, it was shown that one can find a semi-invariant element u (with multiplier χ, say) in $U(\mathfrak{g}_C)$, the universal enveloping algebra of the complexification \mathfrak{g}_C of \mathfrak{g}, such that any normal representation π whose associated orbit of \mathfrak{g}' in \mathfrak{g}' ([10], [11]) is contained in a certain G-invariant Zariski open subset of \mathfrak{g}', has a distribution χ-semicharacter f_n expressible by $f_n(\phi)=\phi(\pi(u \ast \phi))$ for $\phi \in C_c^\infty(G)$, ϕ being the trace on the factor generated by π (here it is understood, in particular, that the right hand side is well defined). In [3] J.-Y. Charbonnel showed that for each normal representation π of G one can find a continuous homomorphism $\chi : G \to \mathbb{R}_+^*$ and an element $u \in U(\mathfrak{g}_C)$ such that π has a distribution χ-semicharacter f_n expressible as before: $f_n(\phi)=\phi(\pi(u \ast \phi))$ for $\phi \in C_c^\infty(G)$. Here u is not necessarily semi-invariant; however, $\pi(u)$ is semi-invariant, i.e.

$$\pi(s)d\pi(u)(s^{-1})=\chi(s)^{-1}d\pi(u).$$

Suppose now that G is exponential (1) and therefore, in particular, of type I, cf. [2]). In this paper we make a construction, depending only on the choice of a Jordan-Hölder sequence for \mathfrak{g}_C, of a finite set of polynomial functions $Q_j \geq 0, j=1, \ldots, n$, on \mathfrak{g}', a finite set of continuous homomorphisms $\chi_j : G \to \mathbb{R}_+^*$, $j=1, \ldots, n$, and a finite set $\alpha_j, j=1, \ldots, n$ of positive, G-invariant analytic functions on \mathfrak{g} such that setting

$$\Omega_j = \left\{ g \in \mathfrak{g}' \mid Q_j(g) \neq 0, Q_k(g) = 0 \text{ for } k < j \right\}$$

we have:

1) Ω_j is G-invariant and $\mathfrak{g}' = \bigcup_{j=1}^n \Omega_j$

2) $Q_j(\pi(g)) = \chi_j(\pi(g))$ for $\pi \in \mathfrak{g}, \pi \in \Omega_j$

(*) Supported by a grant from the Danish Natural Science Research Council (S.N.F.).

(1) G is said to be exponential if the exponential map $\exp : \mathfrak{g} \to G$ is diffeomorphism.
3) for any G-orbit O contained in Ω, the measure $Q_{\lambda}p_{\lambda}$ is a non-zero, positive, tempered, relatively invariant Radon measure on O with multiplier λ, (here p_{λ} is the canonical measure on O),

and such that, letting $u_j, j = 1, \ldots, n$, be the element in $U(q_c)$ corresponding via symmetrization to the polynomial function $g \rightarrow Q_j(ig)$ on q_c, we have for the irreducible representation π of G associated with the orbit O contained in Ω_j,

4) the operator $d\pi(u_j)$ is a selfadjoint, positive, invertible operator, semi-invariant under π with multiplier χ_p,

5) the operator $\pi(u_j \ast \varphi)$ is traceclass for all $\varphi \in C_c^\infty(G)$,

6) the functional $\varphi \rightarrow Tr(\pi(u_j \ast \varphi))$ is a non-zero, χ_p-semi-invariant distribution on G of positive type (a χ_p-distribution semicharacter for π), and

7) for all $\varphi \in C_c^\infty(G)$ we have

\[
\text{Tr}(\pi(u_j \ast \varphi)) = \int_{O} (\alpha_j \cdot \varphi \circ \exp)^{\wedge} (l)Q_j(l)d\beta_o(l),
\]

where $\langle \wedge \rangle$ stands for the ordinary Euclidian Fourier transform.

This construction is carried out in sections 1.1, 1.2 and 1.3, the theorem is formulated in section 1.4, and section 2 is devoted to the proof of the theorem; in section 3 we give a few examples.

We would like to emphasize the following feature of the formula \ast shared by no other previously known character formula for (non-nilpotent) solvable Lie groups: once a Jordan-Hölder basis in q_c has been selected, all objects in the formula are explicitly constructible (for a given orbit O and associated representation π), i.e. there is no choice (in particular of the weight function α_p cf. [9], [4], [5], [6], [3]) involved in setting up the formula. This, in particular, opens the possibility of using the formula \ast as a starting point for the pairing between orbits and representations, first established by Bernat ([1]), for exponential groups, and thus extending to these groups Pukanszky's approach to the Kirillov theory of nilpotent groups, [7].

In the special case where g is nilpotent $\chi_j \equiv 1$ and $\alpha_j \equiv 1$. Therefore Q_j is invariant on $O \subset \Omega_p$. $d\pi(u_j)$ is a scalar, and the formula \ast then gives that $d\pi(u_j) = Q_j(O)I$ and

\[
\text{Tr}(\pi(\varphi)) = \int_{O} (\varphi \circ \exp)^{\wedge} (l)d\beta_o(l),
\]

so \ast reduces in particular to the Kirillov character formula.

The main difference between the results obtained in [3] and the results obtained here can be subsumed under the following points: i. We exhibit a finite collection of elements $u_j \in U(q_c)$ to choose from so as to make a formula like \ast valid, ii. we construct such a finite collection explicitly, and iii. here the functions $g \rightarrow Q_j(ig)$ in \ast are (rather surprisingly) the polynomial functions corresponding to the u_j's via symmetrization.

The polynomials Q_j were first considered by Pukanszky in the nilpotent case ([8], [10]). We also use in an essential way the work of Pukanszky on exponential groups ([9]) and the work of Duflo-Rais ([5]). Our methods are very different from those of [3].

We conjecture that our results can be extended to arbitrary connected, simply connected
solvable Lie groups (with the usual condition on the support of the function \(\varphi \) appearing in the formula analogous to \((*)\), though; cf. e. g. [6]).

I would like to thank prof. L. Pukanszky for useful comments on the first version of the paper, and prof. M. Flensted-Jensen, as well as the referee, for a very careful reading of the manuscript which resulted in the elimination of a number of inaccuracies and obscurities.

1. Preliminaries and formulation of Theorem

In sections 1.1, 1.2 and 1.3 we introduce the notation necessary to formulate our Theorem in section 1.4.

1.1. — Let \(G \) be a connected, simply connected solvable Lie group with Lie algebra \(g \).

Let \(f_j, j=0, \ldots, m \), be a Jordan-Hölder sequence in \(g_{\mathbb{C}} \), i. e. a sequence of ideals such that \(f_j \supset f_{j-1} \) and such that \(\dim f_j = j, j=0, \ldots, m \).

Let \(\lambda_j : g \to \mathbb{C} \) be the root associated with the irreducible \(g \)-module \(f_j/f_{j-1} \) (i. e. \(\text{ad} X(Z) = \lambda_j(X) Z \pmod{f_{j-1}} \) for all \(Z \in f_j, X \in g \)), and let \(\Lambda_j : G \to \mathbb{C}^* \) be the continuous homomorphism with \(\Lambda_j(\exp X) = e^{\lambda_j(X)} \) for all \(X \in g \). We have \(\text{Ad}(s)Z = \Lambda_j(s)Z \pmod{f_{j-1}} \) for all \(Z \in f_j, s \in G \).

We let \(G \) act in \(g' \) via the coadjoint representation. For \(g \in g' \) we have the skewsymmetric bilinear form \(B_g : g \times g \to \mathbb{R} \) given by \(B_g(X, Y) = \langle g, [X, Y] \rangle \), \(X, Y \in g \). The radical of \(B_g \) is equal to the Lie algebra \(g_g \) of the stabilizer \(G_g \) of \(g' \) : \(g_g = \{ X \in g \mid B_g(X, Y) = 0 \text{ for all } Y \in g \} \). We let \(B_g^c : g'/g_g \times g'/g_g \to \mathbb{R} \) designate the symplectic form on \(g'/g_g \) arising from \(B_g \) by factorization. We extend \(g, B_g, \) etc. in the natural way to \(g_{\mathbb{C}} \) whenever convenient.

For \(g \in g' \) we set \(f_j(g) = f_j + (g_g)_{\mathbb{C}}, j=0, \ldots, m \). We then have a sequence of subalgebras:

\[
g_{\mathbb{C}} = f_m(g) \supset f_{m-1}(g) \supset \cdots \supset f_1(g) \supset f_0(g) = (g_g)_{\mathbb{C}}.
\]

and \(\dim f_j(g)/f_{j-1}(g) = 0 \) or \(= 1 \).

For \(g \in g' \) we define \(J_g \) to be the set \(\{ 1 \leq j \leq m \mid f_j(g) \not\subseteq f_{j-1}(g) \} \).

Let \(Z_j \in f_j/f_{j-1}, j=1, \ldots, m \). Then \(Z_1, \ldots, Z_m \) is a basis in \(g_{\mathbb{C}} \), and we have

\[
j \in J_g \iff Z_j \not\in f_{j-1} + (g_g)_{\mathbb{C}} = f_{j-1}(g).
\]

If \(g \in g' \) and \(J_g = \{ j_1 < \ldots < j_d \} \) we have

\[
g_{\mathbb{C}} = f_{j_d}(g) \supset f_{j_{d-1}}(g) \supset \cdots \supset f_{j_1}(g) \supset f_0(g) = (g_g)_{\mathbb{C}}.
\]

In particular \(Z_{j_1}, \ldots, Z_{j_d} \) is a basis for \(g_{\mathbb{C}} \) (mod \((g_g)_{\mathbb{C}} \)), and \(d = \dim g/g_g \).

Set \(\mathcal{E} = \{ J_g \mid g \in g' \} \), and for \(e \in \mathcal{E} \), set \(\Omega_e = \{ g \in g' \mid J_g = e \} \). Then we have \(g' = \bigcup_{e \in \mathcal{E}} \Omega_e \) as a (finite) disjoint union. Since clearly \(J_{sg} = J_g \) for \(s \in G \), \(\Omega_e \) is a \(G \)-invariant subset of \(g' \).

Let \(e \in \mathcal{E} \). If \(e \neq \emptyset \) with \(e = \{ j_1 < \ldots < j_d \} \) we define the skewsymmetric \(d \times d \)-matrix

\[
M_e(g) = \left[B_{g}(Z_{j_r}, Z_{j_s}) \right]_{1 \leq r, s \leq d},
\]
and let $P_e(g)$ denote the Pfaffian of $M_e(g)$. If $e = \emptyset$ we set $M_e(g) = 1$, and $P_e(g) = 1$. The map $g \to P_e(g)$ is a complex valued polynomial function on g', and $P_e(g)$ depends only on the restriction of g to $[g, g]$. P_e has the property that $P_e(g)^2 = \det M_e(g)$. We set $Q_e(g) = |\det M_e(g)| = |P_e(g)|^2$. $g \to Q_e(g)$ is a real valued non-negative polynomial function on g'.

For $e \in \mathcal{E}$ we set $\Lambda_e = \prod_{\lambda \in e} \Lambda_{\lambda}$.

Lemma 1.1.1. — Let $e \in \mathcal{E}$. If $g \in \Omega_e$, then $P_e(g) \neq 0$ and $P_e(g) = \Lambda_e(s)^{-1} P_e(g)$ for all $s \in G$.

Proof. — Write $e = \{ j_1 < \ldots < j_d \}$. Since Z_{j_1}, \ldots, Z_{j_d} is a basis for $g_c \mod (g_c)^c$ we have that $M_e(g)$ is a regular matrix, hence $P_e(g)^2 = \det M_e(g) + 0$.

Now writing
\[\text{Ad}(s^{-1})Z_{j_p} = \sum_{u=1}^d a_{u p} Z_{j_u} + c_p, \]
where $c_u \in (g_c)^c$, we have $a_{u p} = 0$ for $u > p$ and $a_{p p} = \Lambda_{j_p}(s^{-1})$, and
\[B_{s p}(Z_{j_p}, Z_{j_u}) = \langle s g, [Z_{j_p}, Z_{j_u}] \rangle = \langle g, [\text{Ad}(s^{-1})Z_{j_p}, \text{Ad}(s^{-1})Z_{j_u}] \rangle = \sum_{u, v=1}^d a_{u p} \langle g, [Z_{j_u}, Z_{j_v}] \rangle a_{v q} = (\Lambda M_e(g) A)_{p q}, \]
where A is the matrix $[a_{u p}]_{u, p \leq d}$. This shows that $M_e(g) = \Lambda M_e(g) A$, and since $\det A = \prod_{p=1}^d \Lambda_{j_p}(s^{-1}) = \Lambda(e^{-1})$ we find that
\[P_e(g) = Pf(M_e(g)) = Pf(\Lambda M_e(g) A) = (\det A)Pf(M_e(g)) = \Lambda(e^{-1})P_e(g). \]

This ends the proof of the lemma.

Corollary 1.1.2. — If $g \in \Omega_g$ then $Q_e(g) > 0$ and $Q_e(g) = |\Lambda_e|^{-2} Q_e(g)$ for all $s \in G$.

For $e \in \mathcal{E}$ we set $|e| = \text{the number of elements in } e$. We define a total ordering $< e$ in the following way: let $e, e' \in \mathcal{E}$. Then $e < e'$ if and only if either $|e| > |e'|$ or $d = |e| = |e'|$ and, writing $e = \{ j_1 < \ldots < j_d \}$, $e' = \{ j'_1 < \ldots < j'_d \}$, $j_p < j'_p$, where $p = \min \{ |e| \leq d | j_p < j'_p \}$.

Lemma 1.1.3. — $\Omega_e = \{ g \in \Omega_e | Q_e(g) = 0 \text{ for } e' < e \text{ and } Q_{e'}(g) \neq 0 \}$.

Proof. — If $g \in \Omega_e$ we saw in Corollary 1.1.2 that $Q_e(g) = 0$. If $e' < e$ and $|e'| > |e|$, then, if $e = \{ j_1 < \ldots < j_d \}$, Z_{j_1}, \ldots, Z_{j_d} are linearly dependent $\mod (g_c)^c$, so $M_e(g)$ is singular, and therefore $Q_e(g) = 0$. If $|e| = |e'|$, and $j_1 = j'_1, \ldots, j_p = j'_p$, $j_{p+1} < j_{p+1}$, then $Z_{j_{p+2}, \ldots, j_{d+1}}$ are linearly dependent $\mod (g_c)^c$, and therefore $Z_{j_{p+2}}, \ldots, Z_{j_{d+1}}$ are linearly dependent $\mod (g_c)^c$, and again $Q_e(g) = 0$. This shows the lemma.

Remark 1.1.4. — If g is nilpotent our definitions agree with those given by Pukanszky in [10], p. 525 f., cf. also [8]. In [6], section 4.2 a study of the completely solvable case was initiated.

1.2. — Recall the following facts: there exists an isomorphism ω (the symmetrization map) between the complex vector space $S(g_c)$ (the symmetric algebra of g_c), and the complex vector space $U(g_c)$ (the universal enveloping algebra of g_c), characterized by the following
property: if Y_1, \ldots, Y_p are elements in $g_\mathfrak{c}$, then the image of the element $Y_1 \ldots Y_p$ in $S(g_\mathfrak{c})$ by ω is the element $(p!)^{-1} \sum_{\sigma \in \text{S}_p} Y_{\sigma(1)} \ldots Y_{\sigma(p)}$ in $U(g_\mathfrak{c})$, where S_p is the group of permutations of p elements. The following lemma is easily verified:

Lemma 1.2.1. — If Z is a central element in $g_\mathfrak{c}$, then $\omega(Zu) = Z \omega(u)$ for all $u \in S(g_\mathfrak{c})$.

We can identify $S(g_\mathfrak{c})$ with $\text{Pol}_e (g')$, the complex vector space of complex valued polynomial functions on g'. If $u \in U(g_\mathfrak{c})$ we let P_u be the polynomial on g' corresponding to $\omega^{-1}(u)$. The lemma above then says that if Z is central in $g_\mathfrak{c}$ and if $u \in U(g_\mathfrak{c})$, then $P_{Zu} = P_Z P_u$.

For $\epsilon \in \mathfrak{e}$, let ϵ_u be the element in $U(g)$ corresponding to the real valued polynomial function $g \mapsto \epsilon Q_\epsilon(g)$ on g'. Note that ϵ_u actually is contained in $U([g, g])$, since $Q_\epsilon(g)$ only depends on the restriction of g to $[g, g]$.

1.3. — If $g \in g'$, the weights of $g_\mathfrak{g}$ in $g/g_\mathfrak{g}$ are of the form $\pm \mu_1, \ldots, \pm \mu_d/2$, where $d = \dim g/\mathfrak{g}_\mathfrak{g}$, and these weights μ_j extend to linear forms, also called μ_j, on the ideal $I = g_\mathfrak{g} + [g, g]$ in such a manner that they are zero on $[g, g]$ (cf. [4], p. 248).

Following loc. cit. we set

$$S_\lambda(X) = \frac{\sin h(\lambda(X)/2)}{\lambda(X)/2}, \ \ \ \ X \in g_\mathfrak{g},$$

for a complex linear form λ on g, and define the function P_λ on I by

$$P_\lambda(X) = \prod_{j=1}^{d/2} S_{\mu_j}(X), \ \ \ \ X \in I,$$

where $O = \text{G}g$ is the G-orbit through g. This definition of P_λ does not depend on the choice of $g \in O$.

We set

$$j_\lambda(X) = \left| \det \frac{1 - e^{-\text{ad} X}}{\text{ad} X} \right|, \ \ \ X \in g_\mathfrak{g}.$$

j_λ is a G-invariant analytic function on $g_\mathfrak{g}$, and if dX is a Lebesgue measure on g there exists a Haar measure μ on G such that $d\mu(\exp X) = j_\lambda(X) dX$.

If G is exponential we set for $\epsilon \in \mathfrak{e}$,

$$\Gamma_\epsilon(X) = \left(\prod_{\lambda \in I} |S_{\lambda}(X)| \right)^{1/2}, \ \ \ X \in g_\mathfrak{g}.$$

Lemma 1.3.1. — (G exponential) Γ_ϵ is a positive, G-invariant analytic function on $g_\mathfrak{g}$, extending P_λ for any G-orbit O contained in Ω_ϵ.

Proof. — The function $X \mapsto S_{\lambda}(X)$ is a G-invariant analytic function on $g_\mathfrak{g}$, and since g is exponential $\lambda(X) \notin \text{I} \setminus \{0\}$ for all $X \in g_\mathfrak{g}$, hence $S_{\lambda}(X) \neq 0$ for all $X \in g_\mathfrak{g}$. This shows that Γ_ϵ is positive, G-invariant and analytic. Now an easy argument shows that $P_\lambda(X) \geq 0$ for all $X \in I = g_\mathfrak{g} + [g, g]$ (see e. g. [4], p. 264 top; again we use that g is exponential). Therefore

$$P_\lambda(X) = |P_\lambda(X)| = \prod_{j=1}^{d/2} |S_{\mu_j}(X)| = \left| \prod_{j=1}^{d/2} |S_{\mu_j}(X)| \right| = \left(\prod_{j=1}^{d/2} \left| S_{\mu_j}(X) \right| \left| S_{-\mu_j}(X) \right| \right)^{1/2},$$

and noting that λ_j vanishes on $[g, g]$ and that the weights of $g_\mathfrak{g}$ in $g/g_\mathfrak{g}$ are precisely

$$\{ \lambda_{j_1} | g_\mathfrak{g}, \ldots, \lambda_{j_a} | g_\mathfrak{g} \} = \{ \pm \mu_1 | g_\mathfrak{g}, \ldots, \pm \mu_d/2 | g_\mathfrak{g} \},$$

we get that $P_\lambda(X) = \Gamma_\epsilon(X)$ for $X \in I$. This proves the lemma.
We set
\[\alpha_e(X) = j_G(X) \Gamma_e(X)^{-1}, \quad X \in \mathfrak{g} \]
(still assuming that \(G \) is exponential). \(\alpha_e \) is a positive, \(G \)-invariant analytic function on \(\mathfrak{g} \).

Remark 1.3.2. — Lemma 1.3.1 should be compared with [4], section 4, p. 262-264. In the exponential case the result \(\text{loc. cit.} \) is that there exists a \(G \)-invariant Zariski open subset \(\Omega \) of \(\mathfrak{g}' \) and a positive, \(G \)-invariant analytic function \(P \) on \(\mathfrak{g} \), such that for any \(G \)-orbit \(O \) contained in \(\Omega \) the restriction of \(P \) to \(I = \mathfrak{g}_e + [\mathfrak{g}_e, \mathfrak{g}_e] \), \(e \in O \), is equal to \(P_0 \). By Lemma 1.3.1 and Lemma 1.1.3 we can obtain this result by taking \(\Omega \) to be \(\Omega_e \) for the minimal element \(e \) in \(\mathfrak{g}_e \), and taking \(P \) to be \(\Gamma_e \). In general the \(P \) from \(\text{loc. cit.} \) will be different from the one exhibited here. Incidentally, by refining the methods used here can give a complete solution to the problem raised, and partially solved, by Duflo, \(\text{loc. cit.}, p. 263 \), mid. However, at present this will not be needed, so we shall postpone it to a later time.

1.4. — Suppose now that \(G \) is exponential, and suppose in addition that the Jordan-Hölder sequence \(\mathfrak{g}_e = \mathfrak{g}_m \supset \ldots \supset \mathfrak{g}_0 = \{0\} \) has the property that if \(\mathfrak{f}_j \neq \mathfrak{f}_j \), then \(\mathfrak{f}_{j-1} = \mathfrak{f}_{j-1} \) and \(\mathfrak{f}_{j+1} = \mathfrak{f}_{j+1} \), \(1 \leq j \leq m-1 \) (such a Jordan-Hölder sequence clearly exists). Set \(\chi_e = |A_e|^{-2} \).

Theorem 1.4.1. — (\(G \) exponential) Let \(\pi \) be an irreducible representation of \(G \), and let \(O \) be the \(G \)-orbit in \(\mathfrak{g}' \) associated with \(\pi \). Let \(e \in \mathfrak{g}_e \) be the unique element such that \(\Omega_e \) contains \(O \). Then

1) The measure \(Q_\beta_0 \) is a non-zero, positive, tempered, relatively invariant Radon measure on \(O \) with multiplier \(\chi_e \) (\(\beta_0 \) is the canonical measure on \(O \)).

2) The operator \(d\pi(u_e) \) is a selfadjoint, positive, invertible operator, semi-invariant under \(\pi \) with multiplier \(\chi_e \) (i.e. \(\pi(s)d\pi(u_e)\pi(s^{-1}) = \chi_e(s^{-1})d\pi(u_e) \)).

3) For any \(\varphi \in C^\infty_c(G) \) the operator \(\pi(u_e \ast \varphi) \) is traceclass.

4) The functional \(\varphi \rightarrow \text{Tr} (\pi(u_e \ast \varphi)) \) on \(C^\infty_c(G) \) is a non-zero, \(\chi_e \)-semi-invariant distribution on \(G \) of positive type (a distribution semicharacter for \(\pi \) (with multiplier \(\chi_e \))).

5) For any \(\varphi \in C^\infty_c(G) \) we have the formula

\[(\star) \quad \text{Tr} (\pi(u_e \ast \varphi)) = \int_O (\alpha_e \cdot \varphi \cdot \exp) \cdot (l) Q_\beta_0(l) d\beta_0(l). \]

Here we use the notation \(\Psi(l) = \int_{\mathfrak{g}_e} \psi(X) e^{i(X \cdot l)} dX \) for \(\psi \in C^\infty_c(\mathfrak{g}_e) \), \(l \in \mathfrak{g}' \), where \(dX \) is the Lebesgue measure on \(\mathfrak{g} \) with the property that \(d\mu(\exp X) = j_G(X) dX \), \(d\mu \) being a fixed Haar measure on \(G \), and \(\pi(\varphi) = \int_G \varphi(s) \pi(s) d\mu(s) \) for \(\varphi \in L^1(G) \).

Remark 1.4.2. — In the formula (\(\star \)) above we can instead of \(\alpha_e \) use any \(C^\infty \)-function \(\alpha \) on \(\mathfrak{g} \) with the property that the restriction of \(\alpha \) to \(\mathfrak{f} = \mathfrak{g}_e + [\mathfrak{g}_e, \mathfrak{g}_e] \), \(g \in O \), is the same as the restriction of \(\alpha_e \) to \(\mathfrak{f} \).
2. Proof of Theorem

Here we shall for brevity say that a Jordan-Hölder sequence \(g_0 = f_m \supseteq \ldots \supseteq f_0 = \{0\} \) is of class (b) if it has the property required in 1.4 (i.e. that \(f_j + f_{j+1}, 1 \leq j \leq m-1 \), implies that \(f_{j-1} = f_{j-1} \) and \(f_{j+1} = f_{j+1} \)), cf. [2] Définition 4.2.1, pp. 78.

2.1. — The purpose of this subsection is to prove the following lemma, from which part 1) of Theorem 1.4.1 follows immediately.

Lemma 2.1.1. — The measure \(P_{eB_0} \) is a non-zero, tempered, \(\Lambda^{-1} \)-relatively invariant (complex) Radon measure on \(O \).

Remark 2.1.2. — In the completely solvable case this was proved in [6], section 4.1. If. The proof loc. cit. does not carry over to the case at hand, so we have to modify our approach.

Proof. — We have only left to show that \(P_{eB_0} \) is tempered, cf. Lemma 1.1.1.

(i) Let \(I \) be the set of indices \(0 \leq j \leq m \) for which \(f_j = f_i \). For \(j \in I \) there exists an ideal \(g_j \) in \(g \) such that \((g_j)_{c} = f_j \).

Set \(I' = \{ j \in I | j \leq 1 \} \) and \(I'' = \{ j \in I | j - 1 \in I \} \). Then \(I = \{ 0 \} \cup I' \cup I'' \) as a disjoint union, and for \(j \in I'' \) we have that \(j - 2 \in I \) (since \(f_0, \ldots, f_m \) is of class (b)).

Now since \(\Lambda \) only depends on the Jordan-Hölder sequence \(f_j \) and not on the basis \(Z_j \) we can assume here that the \(Z_j \)'s are constructed in the following way: for \(j \in I' \), let \(X \in g \setminus g_{j-1} \), and set \(Z_j = X_j \). For \(j \in I'' \), pick \(Z_{j-1} \in f_{j-1} - f_{j-2} \). Since \(f_{j-1} + f_{j-2} \) we have that \(Z_{j-1} \in f_{j-1} \). Set \(Z_j = Z_{j-1} \), and define \(X_{j-1}, X_j \) by \(Z_j = X_{j-1} + iX_j \). Then \(X_{j-1}, X_j \) is a basis for \(g_j \) (mod \(g_{j-2} \)), and \(X_1, \ldots, X_m \) is a basis for \(g \). Let \(g_1, \ldots, g_m \in g' \) be the basis dual to \(X_1, \ldots, X_m \).

Fix an element \(g \in O \), and write \(e = e_g = \{ j_1 < \ldots < j_k \} \). Set \(D_1 = \{ 1 \leq k \leq d | j_k \in I' \} \), \(D_2 = \{ 1 \leq k \leq d | j_k \in I'' \} \), \(D_3 = \{ 1 \leq k \leq d | j_k \in I \} \), \(D_4 = \{ 1 \leq k \leq d | j_k \in I'' \} \).

Clearly \(I, I', I'' \) are disjoint.

(ii) The following is an adaptation of [9], p. 102-106, II-III to the present situation:
For $k \in \mathbb{D}_1$ there exists an element Y_k in $g^{-1}_{g}\mathbb{G}^{-1}$ such that Y_k is a coexponential basis to g^{-1}_{g} in g^{-1}_{g} and such that $Y_k g = g_{j_k} \pmod{g^1_{g}}$, and for $s \in \mathbb{G}$ we have
\[\text{Ad}(s)Y_k = \Lambda_{j_k}(s^{-1})Y_k \pmod{g^1_{g}}. \]

For $k \in \mathbb{D}_2$ there exists an element Y_k in $g^{-1}_{g}\mathbb{G}_{k+1}$ such that Y_k is a coexponential basis to $g^{-1}_{g}g_{k+1}^{-1}$ in g^{-1}_{g}, and such that $Y_k g = g_{j_k}(g_{j_k+1})(\pmod{g^1_{g}+1})$ (to obtain this it can be necessary to change $X_{j_k}X_{j_k+1}$ in a way that only affects Z_{j_k}, Z_{j_k+1} by multiplying them by a factor of modulus one), and for $s \in \mathbb{G}_{k+1}^{-1}$ we have $\text{Ad}(s)Y_k = \Lambda_{j_k}(s^{-1})Y_k(g_{j_k+1}^{-1})$ (so in particular $\Lambda_{j_k}(s^{-1})$ is real).

For $k \in \mathbb{D}_3$ there exists elements Y_k, Y_{k+1} in $g^{-1}_{g}\mathbb{G}_{k+1}$ such that $\exp t Y_k \exp (t+1) Y_{k+1}$ is a coexponential basis to $g^{-1}_{g}g_{k+1}^{-1}$ in g^{-1}_{g}, such that $\Lambda_{j_k}(Y_k) = \Lambda_{j_k}(Y_{k+1}) = 0$ and such that
\[\exp t Y_k \exp (t+1) Y_{k+1} = \exp (t Y_k + t Y_{k+1}) \pmod{g^1_{g}+1}. \]

For $s \in \mathbb{G}_{k+1}^{-1}$ we have $\text{Ad}(s)(Y_k + i Y_{k+1}) = \Lambda_{j_k}(s^{-1})(Y_k + i Y_{k+1}) \pmod{g^1_{g}+1}$.

(iii) The map $\mathbb{R}^d \to O = \mathbb{G}$ given by
\[(t_1, \ldots, t_d) \to \exp t_1 Y_1 \ldots \exp t_d Y_d \]
is a diffeomorphism. We shall compute the canonical measure β_0 in terms of the coordinates $t = (t_1, \ldots, t_d)$.

Let ω be the canonical symplectic form on O. Via the natural correspondence between g / g_s and the tangent space to O at g, ω_0 corresponds to \mathcal{B}_g.

Lemma 2.1.3. — For a β_0-integrable function f on O we have
\[\int_{O} f(l) d\beta_0(l) = C \int_{\mathbb{R}^d} f(\exp t_1 Y_1 \ldots \exp t_d Y_d) \prod_{k < r} |\Lambda_{j_k}(\exp t_r Y_r)| dt_1 \ldots dt_d, \]
where $C = (2\pi)^d Q(g,g)^{-1}$.

Proof. — Denote by σ the inverse of the map $(*)$. σ is a global chart and
\[\int_{O} f(l) d\beta_0(l) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} f(\sigma^{-1}(t)) \theta(\sigma^{-1}(t)) dt, \]
where $\theta(l) = (\det S_l)^t$, S_l being the skewsymmetric matrix $S_l = [\omega(\partial / \partial t_u, \partial / \partial t_v)]_{e_u,e_v \in \mathcal{G}}$ (19 Proposition 4, p. 99).

Now ω is G-invariant. Therefore, writing $s = \exp t_1 Y_1 \ldots \exp t_d Y_d$ and $l = sg$, we have
\[\omega_k(\partial / \partial t_u, \partial / \partial t_v) = \omega_g(\partial / \partial t_u, \partial / \partial t_v) \gamma(s^{-1}) \gamma(s^{-1}) \partial / \partial t_u, \partial / \partial t_v) \gamma(s^{-1}) \gamma(s^{-1}), \]
where $\gamma(s) : l \to sl$. Let us then compute $\gamma(s^{-1}) \gamma(s^{-1}) \partial / \partial t_u$.
For a differentiable function \(\varphi \) we have

\[
\gamma(s^{-1}) \ast \left(\frac{\partial}{\partial t} \right)_{t=0} \varphi = \left(\frac{\partial}{\partial t} \right)_{t=0} \varphi \circ \gamma(s^{-1})
\]

\[
= \left. \frac{d}{dt} \varphi(s^{-1}(t+\tau^n)) \right|_{t=0} \quad (\tau^n = \delta_{uv}, t \leq r \leq d)
\]

\[
= \left. \frac{d}{dt} \varphi(\exp -t_d Y_d \ldots \exp -t_1 Y_1 \exp t_1 Y_1 \ldots \exp (t_u + \tau) Y_u \exp t_d Y_d) \right|_{t=0}
\]

\[
= \left. \frac{d}{dt} \varphi(\exp -t_d Y_d \ldots \exp -t_{u+1} Y_{u+1} \exp \tau Y_u \exp t_{u+1} Y_{u+1} \ldots \exp t_d Y_d) \right|_{t=0}
\]

\[
= \left. \frac{d}{dt} \varphi(s_u^{-1} \exp \tau Y_u s_d g) \right|_{t=0} = \left. \frac{d}{dt} \varphi(\exp \tau \text{Ad}(s_u^{-1}) Y_u s_d g) \right|_{t=0}
\]

where we have set \(s_u = \exp t_{u+1} Y_{u+1} \ldots \exp t_d Y_d, u < d, s_d = e. \)

The conclusion of this is that \(S = [\text{Ad}(s_u^{-1}) Y_u \text{Ad}(s_v^{-1}) Y_v]_{1 \leq u, v \leq d}. \) Since \(Y_1, \ldots, Y_d \)
is a basis for \(g \) (mod \(g_d \)) we can write

\[
\text{Ad}(s_u^{-1}) Y_u = \sum_{u} a_{pu} Y_p + c_u,
\]

where \(c_u \in g_d \), and then \(S = 'AS A, \) where \(A \) is the matrix \([a_{uv}]_{1 \leq u, v \leq d} \) so that

\[
\theta(l) = | \det A \theta(g). \)

We shall then find \(\det A: \) for \(u \in D_1 \) we have that \(s_u \in G_{d_u}^l, \) so \(\text{Ad}(s_u^{-1}) Y_u = \Lambda_{j_u}(s_u) Y_u \) (mod \(g_d^l \)

implying that \(a_{uv} = \Lambda_{j_v}(s_u) \), while \(a_{uv} = 0 \) for \(u < v. \) For \(u \in D_2 \) we have

\[
\text{Ad}(s_u^{-1}) Y_u = \Lambda_{j_u}(s_u) Y_u \) (mod \(g_d^{l+1} \)

implying that \(a_{uv} = \Lambda_{j_v}(s_u) = | \Lambda_{j_v}(s_u) |, \) while \(a_{uv} = 0 \) for \(u < v. \) For \(u \in D_3 \) we have

\[
\text{Ad}(s_u^{-1}) Y_u + i Y_{u+1} = \Lambda_{j_u}(s_u)(Y_u + i Y_{u+1}) \) (mod \(g_d^{l_u+1} \)

implying that

\[
\det \begin{bmatrix} a_{uu} & a_{uu+1} \\ a_{u+1u} & a_{u+1u+1} \end{bmatrix} = | \Lambda_{j_u}(s_u) |^2,
\]

while \(a_{uu} = 0 \) and \(a_{u+1u} = 0 \) for \(v > u+1. \) It follows that

\[
\det A = \prod_{u \in D_1 \cup D_2} | \Lambda_{j_u}(s_u) | \cdot \prod_{u \in D_3} | \Lambda_{j_u}(s_u) |^2.
\]

Now for \(u \in D_3 \) we have

\[
\Lambda_{j_u}(t_u) = \Lambda_{j_u}(\exp t_{u+1} Y_{u+1} \ldots \exp t_d Y_d)
\]

\[
= \Lambda_{j_u}(\exp t_{u+2} Y_{u+2} \ldots \exp t_d Y_d) = \Lambda_{j_{u+1}}(\exp t_{u+2} Y_{u+2} \ldots \exp t_d Y_d) = \Lambda_{j_{u+1}}(s_{u+1})
\]

so \(| \Lambda_{j_u}(s_u) | = | \Lambda_{j_{u+1}}(s_{u+1}) |, \) hence \(\det A = \prod_{u=1}^{d} | \Lambda_{j_u}(s_u) | = \prod_{1 \leq u < r \leq d} | \Lambda_{j_u}(\exp t_r Y_r) |. \)
Finally, a simple computation shows that \(\det S_g = \det [B_g(Y_r, Y_s)]_{1 \leq r, s \leq d} = Q_d(g)^{-1} \). This ends the proof of the lemma.

(iv) For \(1 \leq j \leq m \) we define the function \(S_j \) by
\[
S_j(t_1, \ldots, t_d) = \langle \exp t_1 Y_1 \ldots \exp t_d Y_d, Z_j \rangle.
\]
We consider \(S_h \): arguing like in [9], p. 106 we find for \(k \in D_1 \cup D_2 \):
\[
S_h(t_1, \ldots, t_d) = \frac{e^{-\lambda_h(Y_k)^{-1}}}{-\lambda_h(Y_k)} \prod_{r < k} \Lambda_{h_r} \exp t_r Y_r)^{-1} + S_h(t_1, \ldots, t_{k-1}, 0, \ldots, 0),
\]
and for \(k \in D_4 \) we find
\[
S_h(t_1, \ldots, t_d) = (t_{k-1} + it_k) \prod_{r < k-1} \Lambda_{h_r} \exp t_r Y_r)^{-1} + S_h(t_1, \ldots, t_{k-2}, 0, \ldots, 0).
\]

(v) For a real number \(n > 0 \) we set \(M(n) = \int_0^1 (1 + x^2)^{-n/2} dx \). We have \(0 < M(n) \leq +\infty \) and \(M(n) < +\infty \) if and only if \(n > 1 \).

Lemma 2.1.4. — Let \(a, \alpha, \beta \) be real numbers with \(a > 0, \alpha \neq 0 \), and let \(c, k \) be complex numbers with \(k \neq 0 \). We have

\[
(*) \quad \int_{\mathbb{R}} (a + k e^{(\alpha + i\beta) t} - c)^{-n/2} e^{at} dt < \frac{M(n)}{|\alpha| |k| a^{(n-1)/2}}.
\]

\[
(**) \quad \int_0^\infty (a + k (s + it) - c)^{-n/2} dsdt = \frac{M(n)M(n-1)}{|k|^2 a^{(n-2)/2}}.
\]

Proof. — Obviously we can assume that \(k > 0 \). Writing \(k^{-1}c = be^{i\gamma}, b \geq 0, \gamma \in \mathbb{R} \) we have

\[
\int_{\mathbb{R}} (a + k e^{(\alpha + i\beta) t} - c)^{-n/2} e^{at} dt = \int_{\mathbb{R}} (a + k^2 |e^{(\alpha + i\beta) t} - b|^2)^{-n/2} e^{at} dt
\]
\[
\leq \int_{\mathbb{R}} (a + k^2 |e^{at} - b|^2)^{-n/2} e^{at} dt
\]
\[
= |\alpha|^{-1} \int_0^\infty (a + k^2 |x - b|^2)^{-n/2} dx
\]
\[
< |\alpha|^{-1} \int_{\mathbb{R}} (a + k^2 |x - b|^2)^{-n/2} dx
\]
\[
= |\alpha|^{-1} \int_{\mathbb{R}} (a + k^2 x^2)^{-n/2} dx
\]
\[
= \frac{M(n)}{|\alpha| k a^{(n-1)/2}}.
\]

This proves (\(*) \). Similarly for (\(** \)).

(vi) We shall then prove the temperedness of the measure \(P_\alpha \beta_0 \). First observe that
We must show that we can find $n > 0$ such that \[
\int_0^1 \left(1 + ||l||^2\right)^{-n/2} |P_e(l)| \, d\beta_0(l)
\] is finite. We have, using Lemma 2.1.3:

\[
\int_0^1 \left(1 + ||l||^2\right)^{-n/2} |P_e(l)| \, d\beta_0(l) = C \int_{\mathbb{R}^d} \frac{|P_e(\exp t_1 Y_1 \ldots \exp t_d Y_d)|}{(1 + \|t_1 Y_1 \ldots t_d Y_d\|)^{2n/2}} \prod_{k \leq s} |\Lambda_{j_k}(\exp t_s Y_s)| \, dt_1 \ldots dt_d \]

\[
= (2\pi)^{-d/2} \int_{\mathbb{R}^d} \frac{\prod_{r \leq k} |\Lambda_{j_k}(\exp t_r Y_r)|^{-1}}{(1 + \sum_{j=1}^d |S_j(t_1, \ldots, t_d)|^2)^{n/2}} \, dt_1 \ldots dt_d \]

\[
\leq (2\pi)^{-d/2} \int_{\mathbb{R}^d} \frac{\prod_{r \leq k} |\Lambda_{j_k}(\exp t_r Y_r)|^{-1}}{(1 + \sum_{k \in D_1} |S_j(t_1, \ldots, t_d)|^2)^{n/2}} \, dt_1 \ldots dt_d.
\]

Suppose first that $d \in D_1 \cup D_2$. Then (assuming that $\lambda_{j_d}(Y_d) \neq 0$)

\[
S_{j_d}(t_1, \ldots, t_d) = \frac{e^{-t_d \lambda_{j_d}(Y_d)} - 1}{-\lambda_{j_d}(Y_d)} \prod_{r < d} |\Lambda_{j_r}(\exp t_r Y_r)|^{-1} + S_{j_d}(t_1, \ldots, t_{d-1}, 0),
\]

and the last integral is equal to

\[
(2\pi)^{-d/2} \int_{\mathbb{R}^{d-1}} \prod_{r \leq k \leq d-1} |\Lambda_{j_k}(\exp t_r Y_r)|^{-1} \, dt_1 \ldots dt_{d-1} \int_{\mathbb{R}} F(t_1, \ldots, t_d) \, dt_d,
\]

where

\[
F(t_1, \ldots, t_d) = \prod_{r \leq k \leq d-1} |\Lambda_{j_k}(\exp t_r Y_r)|^{-1} \left(1 + \sum_{k \in D_1} |S_j(t_1, \ldots, t_d)|^2\right)^{n/2}.
\]

Applying Lemma 2.1.4 with $a = 1 + \sum_{k \in D_1} |S_j(t_1, \ldots, t_d)|^2$, $\alpha + i\beta = -\lambda_{j_d}(Y_d)$,

\[
k = -\lambda_{j_d}(Y_d)^{-1} \prod_{r < d} |\Lambda_{j_r}(\exp t_r Y_r)|^{-1}, \quad c = -S_{j_d}(t_1, \ldots, t_{d-1}, 0) - \lambda_{j_d}(Y_d)^{-1} \prod_{r < d} |\Lambda_{j_r}(\exp t_r Y_r)|^{-1}
\]

we find that

\[
\int_{\mathbb{R}} F(t_1, \ldots, t_d) \, dt_d \leq C_d \cdot M(n) \cdot \frac{1}{(2\pi)^{d/2}} \left(1 + \sum_{k \in D_1} |S_{j}(t_1, \ldots, t_{d-1}, 0)|^2\right)^{(n-1)/2},
\]

where $C_d = |\lambda_{j_d}(Y_d)| \left(|\Re \lambda_{j_d}(Y_d)|\right)^{-1}$ (note that since g is exponential the non-vanishing of $\lambda_{j_d}(Y_d)$ implies the non-vanishing of $\Re \lambda_{j_d}(Y_d)$), and therefore

\[
\int_0^1 \left(1 + ||l||^2\right)^{-n/2} |P_e(l)| \, d\beta_0(l) \leq C_d \cdot M(n) \cdot \left(\int_{\mathbb{R}^{d-1}} \left(1 + \sum_{k \in D_1} |S_j(t_1, \ldots, t_{d-1}, 0)|^2\right)^{(n-1)/2} \, dt_1 \ldots dt_{d-1}\right).
\]
If $\lambda_{jd}(Y_d)=0$ a simple change in the argument shows that the same relation is valid with $C_d=1$ (cf. below).

Suppose next that $d\in D_4$. Then

$$S_{jd}(t_1, \ldots, t_d) = (t_{d-1} + it_d) \prod_{r \leq d-2} \Lambda_{jd}(\exp t_r Y_r)^{-1} + S_{jd}(t_1, \ldots, t_{d-2}, 0, 0),$$

and therefore we find as above that

$$\int_0^\infty (1 + |l|^2)^{-n/2} |P_d(l)| \, d\beta_0(l)$$

$$\leq (2\pi)^{-d/2} \prod_{r \leq k \leq d-2} \Lambda_{jd}(\exp t_r Y_r)^{-1} \int_{\mathbb{R}^d} F(t_1, \ldots, t_d) \, dt_{d-1} \, dt_d,$$

where now

$$F(t_1, \ldots, t_d) = \frac{\prod_{r=1}^{d-2} \Lambda_{jd}(\exp t_r Y_r)^{-1}}{(1 + \sum_{k \leq d-1} S_{jd}(t_1, \ldots, t_{d-2}, 0, 0)^2 + |S_{jd}(t_1, \ldots, t_d)|^2)^{n/2}}$$

(here we have used that $|\Lambda_{jd}| = |\Lambda_{jd-1}|$ and that

$$\lambda_{jd-1}(Y_{d-1}) = \lambda_{jd}(Y_{d-1}) = \lambda_{jd-1}(Y_d) = \lambda_{jd}(Y_d) = 0).$$

Applying the relation (**) in Lemma 2.1.4 with $a = 1 + \sum_{k \leq d-1} S_{jd}(t_1, \ldots, t_{d-2}, 0, 0)^2$, $k = \prod_{r=1}^{d-2} \Lambda_{jd}(\exp t_r Y_r)^{-1}$, and $c = -S_{jd}(t_1, \ldots, t_{d-2}, 0, 0)$ we find that

$$\int_{\mathbb{R}^2} F(t_1, \ldots, t_d) \, dt_{d-1} \, dt_d \leq \frac{M(n)M(n-1)}{(2\pi)^d} \cdot \frac{1}{(1 + \sum_{k \leq d-1} S_{jd}(t_1, \ldots, t_{d-2}, 0, 0)^2)^{n/2}},$$

and therefore

$$\int_0^\infty (1 + |l|^2)^{-n/2} |P_d(l)| \, d\beta_0(l)$$

$$\leq \frac{M(n)M(n-1)}{(2\pi)^d} \cdot \int_{\mathbb{R}^d} \frac{\prod_{r \leq k \leq d-2} |\Lambda_{jd}(\exp t_r Y_r)^{-1}|}{(1 + \sum_{k \leq d-1} S_{jd}(t_1, \ldots, t_{d-2}, 0, 0)^2)^{n/2}} \, dt_1 \ldots \, dt_{d-2}.$$

Repeating these two methods of estimation on the new integral (#) or (##) we find that

$$\int_0^\infty (1 + |l|^2)^{-n/2} |P_d(l)| \, d\beta_0(l) \leq (2\pi)^{-d/2} M(n) \ldots M(n-d+1) C_d \ldots C_1 < +\infty$$

for $n>d$. Here $C_k = |\lambda_{jd}(Y_k)| / (|\text{Re} \lambda_{jd}(Y_k)|)^{-1}$ if $\lambda_{jd}(Y_k) \neq 0$, and $C_k = 1$ if $\lambda_{jd}(Y_k) = 0).$

This ends the proof of Lemma 2.1.1.

2.2. — The purpose of this subsection is to prove Proposition 2.2.1 below. Let n be the nilradical of g, and let N be the analytic subgroup corresponding to n. We have $[g, g] \subset n \subset g$, and therefore $u \in U(n)$.
PROPOSITION 2.2.1. — If \(ge \Omega_e \) and if \(\pi \) is the irreducible representation of \(N \) corresponding to the orbit \(O = N f \), where \(f = g | n \), then
\[
dm(u_e) = Q_d(g)I.
\]

REMARK 2.2.2. — Even in the special case where \(g \) is assumed to be nilpotent (and therefore \(q = n \)), Proposition 2.2.1 provides a new result.

Proof. — The proof is by induction on the dimension of \(g \). The proposition is clearly valid for \(\dim g = 1 \) (in which case \(e = \emptyset \), and \(Q_1 = 1, u_e = 1 \)). Assume then that the proposition has been proved for all dimensions of \(g \) less than or equal to \(m - 1 \), and that \(\dim g = m \). The case \(e = \emptyset \) being trivial we can assume that \(e \neq \emptyset \), and write \(e = \{ j_1 < \ldots < j_d \} \).

Case (a): Suppose that there exists a non-trivial abelian ideal \(a \) in \(g \) such that \(g | a = 0 \). Let \(A \) be the analytic subgroup of \(G \) corresponding to \(a \). We have \(a \subset n \) and setting \(\tilde{g} = g/a, \tilde{n} = n/a \) is the nilradical of \(\tilde{g} \). We set \(\tilde{f}_j = f_j + a_c/a_c, 0 \leq j \leq m \), and let \(c : g \to g/a \) denote the coset map. Then we have the diagram
\[
\tilde{g}_c = \tilde{f}_m \supset \tilde{f}_{m-1} \supset \ldots \supset \tilde{f}_1 \supset \tilde{f}_0 = \{ 0 \},
\]
and \(\dim \tilde{f}_j/\tilde{f}_{j-1} = 0 \) or \(= 1 \). Set \(I = \{ 1 \leq j \leq m \mid \tilde{f}_j \neq \emptyset \} \), write \(I = \{ i_1 < \ldots < i_m' \} \), and set \(\tilde{f}_j = \tilde{f}_{i_j}, 1 \leq j \leq m' \). We then have a Jordan-H"older sequence in \(\tilde{g}_c \):
\[
\tilde{g}_c = \tilde{f}_{m'} \supset \tilde{f}_{m'-1} \supset \ldots \supset \tilde{f}_1 \supset \tilde{f}_0 = \{ 0 \}
\]
which is immediately seen to be of class (b), and setting \(\tilde{Z}_j = c(Z_{i_j}) \) we have that
\[
\tilde{Z}_{j} \in \tilde{f}_j \setminus \tilde{f}_{j-1}, j = 1, \ldots, m'.
\]
Define \(\tilde{g} \in \tilde{g}' \) by \(\tilde{g} \circ c = g \) and \(\tilde{f} = \tilde{g} | \tilde{n} \). We have \(a \subset g_k \) and \(\tilde{g}_k = g_k/a \). Moreover, \(j \in J_k \Rightarrow j \notin 1 \), since \(j \notin 1 \Leftrightarrow f_j \subset f_{j-1} + a_c \subset f_{j-1} + (g_k)_c \Rightarrow j \notin J_k \). Writing
\[
\tilde{e} = \tilde{f}_k = \{ \tilde{j} \mid \tilde{j} < \ldots < \tilde{j}_d \}
\]
we have \(J_k = \{ i_{j_1} < \ldots < i_{j_d} \} = \{ j_1 < \ldots < j_d \} \). For \(\tilde{f} \in \tilde{g}' \) we then have with \(l = \tilde{f} \circ c \):
\[
Q_d(l) = | \det [B_k(Z_{j_{s}}, Z_{j_{s}})]_{1 \leq s, s \leq d} | = | \det [B_k(\tilde{Z}_{j_{s}}, \tilde{Z}_{j_{s}})]_{1 \leq s, s \leq d} |
\]
\[
= | \det [B_{k}(\tilde{Z}_{j_{s}}, \tilde{Z}_{j_{s}})]_{1 \leq s, s \leq d} | = Q_k(\tilde{f}).
\]
This shows that the canonical image of \(u_e \) in \(U(\tilde{g}) \) is precisely \(u_{\tilde{g}} (\subset U(\tilde{n})) \). Now the representation \(\pi \) is trivial on \(A \), so there exists an irreducible representation \(\bar{\pi} \) of \(\bar{N} = N/A \) such that \(\bar{\pi} \circ (c | N) = \pi \), and the orbit of \(\bar{\pi} \) is \(\bar{N} \tilde{f} \). But since \(\tilde{g} \in \Omega_\tilde{g} \) we have \(d\bar{\pi}(u_\tilde{g}) = Q_k(\tilde{g})I \) by the induction hypothesis, and therefore \(dm(u_e) = d\bar{\pi}(c(u_e)) = d\bar{\pi}(u_\tilde{g}) = Q_k(\tilde{g})I = Q_k(g)I \).
This ends case (a).

Case (b): Suppose that we are not in case (a) and that \(\lambda_1 \neq 0 \).

Write \(Z_1 = X_1 + iY_1 \) and set \(a = \mathbb{R}X_1 + \mathbb{R}Y_1 \). Then \(a \) is an abelian ideal (of dimension 1 or 2), and \(g | a \neq 0 \) (since otherwise we would be in case (a)), and therefore \((g, Z_1) \neq 0 \).

Since \(G \) is exponential we can write \(\lambda_1(Xran) = \alpha_1(Xran)(1 + ik_1) \), where \(\alpha_1 \) is a real linear form on \(g \), and where \(k_1 \) is a real number.
Set \(\mathfrak{h} = \ker \lambda_1 = \ker \alpha_1 \). \(\mathfrak{h} \) is an ideal in \(\mathfrak{g} \) of codimension 1 with \([\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{h} \), so the nilradical of \(\mathfrak{h} \) is \(\mathfrak{n} \). Clearly \(Z_{\mathfrak{g}} \in \mathfrak{h}_C \). Set \(p = \min \{ 1 \leq j \leq m \mid Z_j \notin \mathfrak{h}_C \} \). \(p \) is well-defined and \(p \geq 2 \). We observe that \(p \notin J_e \). In fact, suppose \(p \notin J_e \). Then \(Z_p \in f_{p-1} + (\mathfrak{g}_C)_C \), and therefore \(0 \neq \langle g, [Z_p, f_1] \rangle = \langle Z_p g, f_1 \rangle = \langle f_{p-1} g, f_1 \rangle = \langle g, [f_{p-1}, f_1] \rangle = 0 \), which is a contradiction. Also \(1 \in J_e \), since otherwise \(Z_1 \in (\mathfrak{g}_C)_C \), and therefore

\[
0 = \langle g, [Z_1, f_1] \rangle = \langle g, f_1 \rangle = 0.
\]

We also note that \(\mathfrak{g}_C \subseteq \mathfrak{h}_C \), since otherwise \(\mathfrak{g} = \mathfrak{h} + \mathfrak{g}_C \) and therefore \(0 = \langle \mathfrak{g}_C, f_1 \rangle = \langle g, f_1 \rangle = 0 \).

Set \(Z_j = Z_j \) for \(1 \leq j \leq p - 1 \), \(Z_j = Z_{j+1} + c_{j+1} Z_p \) for \(p \leq j \leq m - 1 \) and \(Z_m = Z_p \). Here \(c_p, p + 1 \leq j \leq m \), is defined such that \(Z_j + c_j Z_p \in \mathfrak{h}_C \). This is possible since \(CZ_p \oplus \mathfrak{h}_C = \mathfrak{g}_C \). Clearly \(\hat{Z}_1, \ldots, \hat{Z}_m \) is a basis in \(\mathfrak{g}_C \).

Set \(\hat{f}_j = C \hat{Z}_j \oplus \ldots \oplus C \hat{Z}_j \). For \(0 \leq j \leq p - 1 \) we have that \(\hat{f}_j = f_j \). For \(p - 1 \leq j \leq m - 1 \) we have \(\hat{f}_j \oplus C Z_p = f_{j+1} \), hence

\[
\begin{align*}
\hat{f}_j &= f_j \quad \text{for } 0 \leq j \leq p - 1, \\
\hat{f}_j &= f_{j+1} \cap \mathfrak{h}_C \quad \text{for } p - 1 \leq j \leq m - 1, \\
\hat{f}_m &= \mathfrak{g}_C.
\end{align*}
\]

From this it follows that \(\hat{f}_j, j = 0, \ldots, m \), is a Jordan-Hölder sequence for \(\mathfrak{g}_C \) with \(\hat{f}_{m-1} = \mathfrak{h}_C \). We claim it is of class \((b) \). In fact, since \(\hat{f}_{p-1} = f_p \cap \mathfrak{h}_C \) and \(\hat{f}_{p-1} = f_{p-1} \) it follows that \(\hat{f}_{p-1} = \hat{f}_{p-1} \), and from this it is immediate that the claim is true. We thus have a new diagram

\[
\begin{array}{c}
\mathfrak{g}_C = \hat{f}_m \\
\Downarrow \\
\mathfrak{h}_C
\end{array}
\]

The objects defined relative to this new Jordan-Hölder sequence are designated \(\mathfrak{f}_p, \mathfrak{e}, \mathfrak{e}_p, \) etc.

For \(1 \leq j \leq p - 1 \) we clearly have \(\mathfrak{e} \subseteq \mathfrak{g} \Rightarrow \mathfrak{e} \subseteq \mathfrak{f}_p \). Furthermore \(p \notin J_e \) (see above) and \(m \notin J_e \). In fact, if \(m \notin J_e \), then \(Z_p = Z_m \in f_{m-1} + (\mathfrak{g}_C)_C = \mathfrak{h}_C + (\mathfrak{g}_C)_C \), and therefore

\[
0 \neq \langle Z_p g, f_1 \rangle = \langle h g, f_1 \rangle = 0.
\]

For \(p + 1 \leq j \leq m \) we have

\[
\mathfrak{e} \subseteq Z_j e f_{j-1} + (\mathfrak{g}_C)_C \Rightarrow Z_j e f_{j-2} + C Z_p + (\mathfrak{g}_C)_C \Rightarrow Z_{j-1} e f_{j-2} + C Z_p + (\mathfrak{g}_C)_C \Rightarrow Z_{j-1} e f_{j-2} + (\mathfrak{g}_C)_C
\]

(since \(\mathfrak{g}_C \subseteq \mathfrak{h}_C \)) \Rightarrow \mathfrak{e} = f_{j-1} + (\mathfrak{g}_C)_C \). Therefore, if \(j_h = p \) we have \(\hat{f}_h = f_h \) for \(1 \leq h \leq \alpha - 1 \), \(\hat{f}_h + 1 = f_h + 1 \) for \(\alpha \leq h \leq d - 1 \) and \(\hat{f}_d = m \), so

\[
\begin{align*}
\hat{Z}_h &= Z_h \quad \text{for } 1 \leq h \leq \alpha - 1, \\
\hat{Z}_h &= Z_{h+1} + c_{h+1} Z_h \quad \text{for } \alpha \leq h \leq d - 1, \\
\hat{Z}_d &= Z_d.
\end{align*}
\]
Therefore, letting \(C = [c_{rs}]_{1 \leq r, s \leq d} \) be the \(d \times d \)-matrix:

\[
C = \begin{bmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
c_{j_{d+1}} & \cdots & c_{jd} \\
1 & \cdots & 1
\end{bmatrix}
\]

where the empty entries are 0, we have \(Z_{j_d} = \sum_{r=1}^{d} c_{rs} Z_{j_r} \), and therefore \(M_g(l) = LC_{d}(l)C \), with \(\bar{c} = J_\bar{c} \). Now \(\det C = (-1)^d \), so \(\det M_g(l) = \det M_g(l) \), and \(\det Q_\phi(l) = Q_\phi(l) \), and therefore \(u_g = u_g \). The conclusion of this is then that we can assume that \(f_{d-1} = h_\bar{c} \), and this assumption will be in effect from now on. We then have:

\[
Q_\phi(l) = \left| \det [B_{\phi}[Z_{j_d}, Z_{j_d}]]_{1 \leq r, s \leq d} \right|
\]

\[
= \left| \sum_{\sigma \in S_d} \operatorname{sign} \sigma \langle l, [Z_{j_d}, Z_{j_d(1)}] \rangle \cdots \langle l, [Z_{j_d}, Z_{j_d(d-1)}] \rangle \right|
\]

\[
= \left| \langle l, [Z_{j_1}, Z_{j_1}] \rangle \right|^2 \left| \sum_{\sigma \in S_d} \operatorname{sign} \sigma \langle l, [Z_{j_d}, Z_{j_d(1)}] \rangle \cdots \langle l, [Z_{j_d-1}, Z_{j_d(d-1)}] \rangle \right|
\]

where \(S_d \) is the set of elements \(\sigma \in S_d \) with \(\sigma(1) = d \), \(\sigma(d) = 1 \).

Set \(g_0 = g \mid h \). Then \(f = g_0 \mid n \). We designate the objects associated with the group \(H = \text{exp} h \), and the class \((b)\) Jordan-Hölder sequence \(b_c = f_{m-1} \Rightarrow \cdots \Rightarrow f_1 \Rightarrow f_0 = \{0\} \) by \(J_{g_0}^0 \), etc. We have \(b_{g_0} = (g_0) \oplus \mathbb{Z}_1 \), so \(J_{g_0}^0 = J_x \setminus \{1, m\} \), and therefore

\[J_{g_0}^0 = \{f_0 < \cdots < f_{d-2} \}
\]

with \(f_h = f_{h+1} \) for \(1 \leq h \leq d - 2 \), so we have for \(\phi \phi' \):

\[
Q_\phi'(l) = \left| \det [B_{\phi'}[Z_{f_0}, Z_{f_0}]]_{1 \leq r, s \leq d-2} \right|
\]

\[
= \left| \sum_{\sigma \in S_{d-2}} \operatorname{sign} \sigma \langle l, [Z_{f_0}, Z_{f_0(1)}] \rangle \cdots \langle l, [Z_{f_0-2}, Z_{f_0(d-2)}] \rangle \right|
\]

\[
= \left| \sum_{\sigma \in S_{d-2}} \operatorname{sign} \sigma \langle l, [Z_{j_d}, Z_{j_d(1)}] \rangle \cdots \langle l, [Z_{j_d-1}, Z_{j_d(d-2)+1}] \rangle \right|
\]

and comparing with the result above we get \(Q_\phi(l) = \left| \langle l, W \rangle \right|^2 Q_\phi'(l_0) \), where \(W = [Z_1, Z_m] \) and \(l_0 = l \mid h \). Now since \(W \) is central in \(H \) and since \(P_{W}(l) = \langle l, W \rangle \), \(P_{W}(l) = \langle l, W \rangle \) we find that \(\phi Q_\phi(l) = \phi P_{W}(l)P_{W}(l)^{d-2} Q_\phi'(l_0) \), and therefore \(u_\phi = -W W_\phi u_\phi \) by Lemma 1.2.1. By the induction hypothesis we have that \(d\pi(u_\phi) = Q_\phi'(l_0) \), and noting that

\[
d\pi(W) = i \langle g, W \rangle I, \ d\pi(W) = i \langle g, W \rangle I
\]

we finally get \(d\pi(u_\phi) = \left| \langle g, W \rangle \right|^2 d\pi(u_\phi) = \left| \langle g, W \rangle \right|^2 Q_\phi'(g)I = Q_\phi'(g)I \). This settles case (b).

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPERIEURE
Case (c): Suppose we are not in case (a) and (b) and that $\lambda_2 \neq 0$.

Again we have $\langle g, Z_1 \rangle \neq 0$ and, moreover, $\bar{f}_1 = f_1$ (since f_1 is a central ideal in \mathfrak{g}_C). We write $[X, Z_2] = \lambda_2(X)Z_2 + \gamma(X)Z_1$, $X \in \mathfrak{g}$, where γ is a (complex valued) linear form on \mathfrak{g}. The linear form γ has the form $\gamma(X) = \gamma_1(X) + \gamma_2(X)$, where γ_1, γ_2 are real linear forms on \mathfrak{g}. We extend λ_2, γ to complex linear forms on \mathfrak{g}_C such that we have

$$[Z, Z_2] = \lambda_2(Z)Z_2 + \gamma(Z)Z_1 \quad \text{for} \quad Z \in \mathfrak{g}_C.$$

We note the formula

$$\gamma([Z, W]) = \gamma(Z)\lambda_2(W) - \gamma(W)\lambda_2(Z)$$

for $Z, W \in \mathfrak{g}_C$, which we get by a simple application of the Jacobi identity.

Since G is exponential we can write $\lambda_2(X) = \alpha_2(X)(1 + ik_2)$, where α_2 is a real linear form on \mathfrak{g} and where k_2 is a real number.

We then distinguish three subcases: (c1): rank $(\alpha_2, \gamma_1, \gamma_2) = 3$, (c2): rank $(\alpha_2, \gamma_1, \gamma_2) = 2$ and (c3): rank $(\alpha_2, \gamma_1, \gamma_2) = 1$.

Case (c1): Set $\mathfrak{h} = \ker \gamma_1 \cap \ker \gamma_2 \quad (= \ker \gamma \mid \mathfrak{g})$. It follows from the formula (2.2.2) that \mathfrak{h} is a subalgebra in \mathfrak{g}, and its codimension is 2. We observe that $Z \in \mathfrak{h}_C$ if and only if $\gamma(Z) = 0$ and $\gamma(Z) = 0$. Set $\mathfrak{h}_0 = \ker \lambda_2 \mid \mathfrak{h} = \ker \alpha_2 \mid \mathfrak{h} = \ker \text{ad} Z_2 \mid \mathfrak{g}$. \mathfrak{h}_0 is an ideal in \mathfrak{g} of codimension 3. That \mathfrak{h}_0 is an ideal in \mathfrak{g} follows from the fact that

$$\mathfrak{h}_0 = \ker (\gamma \cap \ker \lambda_2 \cap \mathfrak{g})$$

and by applying the formula (2.2.2).

Let m be the nilradical of \mathfrak{h}_0. Since \mathfrak{h}_0 is an ideal we have that $m = n \cap \mathfrak{h}_0 = n \cap \mathfrak{h}$. Observe that dim $n/m = 2$. In fact, pick $W \in \mathfrak{h}_0$. Then we have that

$$\gamma([Z, W]) = \lambda_2(W)\gamma(Z) \quad \text{for} \quad Z \in \mathfrak{g}_C,$$

and therefore $\gamma([Z, W]) = \lambda_2(W)\gamma(Z)$. Choosing Z such that $\gamma(Z) = 1, \gamma(Z) = 0$ and Z' such that $\gamma(Z') = 0, \gamma(Z') = 1$ we get that

$$\gamma([Z, W]) = \lambda_2(W) + 0, \gamma([Z, W]) = 0, \gamma([Z', W]) = \lambda_2(W) + 0, \gamma([Z', W]) = 0,$$

and this shows that $[Z, W], [Z', W]$ is a basis in n_C (mod m_C).

We claim that $\bar{f}_2 + f_2$. In fact, we have $[Z, Z_2] = \lambda_2(Z)Z_2 + \gamma(Z)Z_1$ for all $Z \in \mathfrak{g}_C$, and therefore $[Z, Z_2] = \lambda_2(Z)Z_2 + \gamma(Z)\bar{Z}_1$. Since λ_2 does not vanish on \mathfrak{h}_C we have that $[\mathfrak{h}_C, \bar{Z}_2] = \mathfrak{C}Z_2$ and $[\mathfrak{h}_C, f_2] = \mathfrak{C}\bar{Z}_2$. Therefore, if $\bar{f}_2 = f_2$, then $\mathfrak{C}Z_2 = \mathfrak{C}\bar{Z}_2$, hence $\gamma(Z) = 0$ implies that $\gamma(Z) = 0$, so \mathfrak{h}_C is the set of $Z \in \mathfrak{g}_C$ such that $\gamma(Z) = 0$, contradicting the fact that codim $\mathfrak{h} = 2$. We conclude that $\bar{f}_2 + f_2$, and therefore that $\bar{f}_1 = f_1$ and $\bar{f}_3 = f_3$. In particular $\bar{Z}_2 \neq f_2$.

We have seen that Z_1, Z_2, \bar{Z}_2 span f_3. Now since $\lambda_2(Z_2) = 0$ we have that $\alpha_2(Z_2) = 0$, and this means that $[f_3, f_2] \subset f_1$. We then distinguish two possibilities: case (c11): $[f_3, f_2] = 0$ and case (c12): $[f_3, f_2] = f_1$.

4° série — tome 17 — 1984 — no 1
Set \(f_0 = f \mid m = g \mid m \), and let \(\pi_0 \) be the irreducible representation of \(M = \exp m \) corresponding to \(M f_0 \).

Case (c11): (i) It is our first aim to show that \(u_\in U(m_c) \), and that \(d\pi_0(u_\in) = Q_\in(g)I \). We start by noting that we can assume that \(\langle g, Z_2 \rangle = 0 \); in fact, if necessary replace \(Z_2 \) by \(Z_2 - cZ_1 \); this does not change \(e, Q_\in, \) etc. (it changes \(\gamma = \gamma_1 + i\gamma_2 \), though, but does not affect \(h_0 \) and rank \((\alpha_2, \gamma_1, \gamma_2) \)). Set \(p = \min \{ 1 \leq j \leq m \mid Z_\in \notin h_C \} \). \(p \) is well-defined, and \(4 \leq p \leq m - 1 \), since \(Z_1, Z_2, Z_\in \in h_C \), and since the codimension of \(h_C \) is 2. Set \(q = \min \{ 1 \leq j \leq m \mid Z_\in \notin C Z_p \oplus h_C \} \). \(q \) is well-defined and \(5 \leq p + 1 \leq q \leq m \) (so \(\dim g \geq 6 \)).

We first note \(2, 3 \in J_\in \). In fact, if \(2 \notin J_\in \), then \(Z_2 \in f_1 + (g_\in)C \), and therefore

\[
\gamma(Z) \langle g, Z_1 \rangle = \langle g, [Z_2, Z_2] \rangle = \langle Z_2g, Z \rangle = 0 \quad \text{for all} \quad Z \in g_C
\]

which is a contradiction. So \(2 \in J_\in \). If \(3 \notin J_\in \), then \(Z_2 \in f_2 + (g_\in)C \), i.e., \(Z_2 = aZ_2 \pmod{(g_\in)C} \), \(a \in C \). But then

\[
\gamma(Z) \langle g, Z_1 \rangle = \langle g, [Z_2, Z_2] \rangle = \langle Z_2g, Z \rangle = a \langle Z_2g, Z \rangle = a\gamma(Z) \langle g, Z_1 \rangle
\]

which contradicts the fact that codim \(h = 2 \), so \(3 \in J_\in \). We also note that \(1 \notin J_\in \), since \(f_1 \subset (g_\in)C \).

Next we note that \(\alpha, \beta \in J_\in \). In fact, if \(\alpha \notin J_\in \), then \(Z_\in \in h_C + (g_\in)C \) and \(Z_\in \in h_C + (g_\in)C \), and therefore

\[
-\gamma(Z_\in) \langle g, Z_1 \rangle = \langle g, [Z_\in, Z_\in] \rangle = \langle Z_\in g, Z_2 \rangle = \langle bC, Z_2 \rangle = \langle g, C Z_2 \rangle = 0
\]

so \(\gamma(Z_\in) = 0 \) and similarly \(\gamma(Z_p) = 0 \) implying that \(Z_\in \in h_C \), which is a contradiction. Therefore \(\alpha \in J_\in \). Suppose then that \(\alpha \notin J_\in \). Then \(Z_\in \in h_C + (g_\in)C \), i.e., there exists \(a \in C \) with \(Z_\in = aZ_\in \pmod{(h_C + (g_\in)C)} \). But then

\[
-\gamma(Z_\in) \langle g, Z_1 \rangle = \langle g, [Z_\in, Z_\in] \rangle = \langle Z_\in g, Z_2 \rangle = a \langle Z_\in g, Z_2 \rangle = -a\gamma(Z_\in) \langle g, Z_1 \rangle
\]

from which \(\gamma(Z_\in) = a\gamma(Z_\in) \). Similarly \(\gamma(Z_p) = a\gamma(Z_p) \). Now consider the linear map from \(g_C \) to \(C^2 \) given by \(Z \to \gamma(Z) \gamma(Z) \). The kernel is \(h_C \), so it is surjective since codim \(h = 2 \). But \(Z_p, Z_\in \) is a basis for \(g_C \mod h_C \), and we have just shown that the images of \(Z_p \) and \(Z_\in \) are linearly dependent; in fact, \((\gamma(Z_\in), \gamma(Z_p)) = a(\gamma(Z_p), \gamma(Z_\in)) \). But this is a contradiction, and we conclude that \(\alpha \in J_\in \).

Define \(\tilde{Z}_j = Z_j \) for \(1 \leq j \leq p - 1 \), \(Z_j = Z_{j+1} + a_{j+1}Z_p \) for \(p \leq j \leq q - 2 \) (empty if \(q = p + 1 \)), \(\tilde{Z}_j = Z_{j+2} + a_{j+2}Z_p \) for \(q - 1 \leq j \leq m - 2 \), \(Z_{m-1} = aZ_p + bZ_q \), \(Z_m = aZ_p + bZ_q \), where \(a_0, a_1, a_2, \ldots, a_q, b_0, b_1, b_2, \ldots, b_m \) have been picked such that \(Z_\in \in h_C \), \(1 \leq j \leq m - 2 \); this is possible since \(g_C = h_C \oplus CZ_{q-1} \oplus CZ_p \). The numbers \(a, b, a', b' \in C \) has been selected such that \(ab' - a'b = 1 \), and such that \(\langle g, [Z_{m-1}, Z_2] \rangle = 0 \), \(\langle g, [Z_{m-1}, Z_3] \rangle = 0 \), \(\langle g, [Z_m, Z_2] \rangle = 0 \), which is possible by a reasoning as above. Clearly \(Z_1, \ldots, Z_m \) is a basis for \(g_C \). Set \(f_j = CZ_1 \oplus \cdots \oplus CZ_{j-1} \). For \(0 \leq j \leq p - 1 \) we have
that \(f_j = f_j \). For \(p-1 \leq j \leq q-2 \) we have that \(f_j \otimes CZ_p = f_{j+1} \) and for \(q-2 \leq j \leq m-2 \) we have that \(f_j \otimes CZ_p \otimes CZ_q = f_{j+2} \). Also \(f_{m-2} = h_0 \), \(f_m = g_0 \). We thus have

\[
\begin{align*}
f_j &= f_j & \text{for } 0 \leq j \leq p-1, \\
f_j &= f_{j+1} \cap h_0 & \text{for } p-1 \leq j \leq q-2, \\
f_j &= f_{j+2} \cap h_0 & \text{for } q-2 \leq j \leq m-2, \\
f_m &= g_0.
\end{align*}
\]

From this it follows that

\[
\begin{align*}
h_0 &= f_{m-2} \supset \ldots \supset f_1 \supset f_0 = \{ 0 \}
\end{align*}
\]

is a Jordan-Hölder sequence for \(h_0 \) (but note that \(f_0, \ldots, f_m \) is not necessarily a Jordan-Hölder sequence for \(g_0 \), since \(h \) is not necessarily an ideal in \(g \)). We claim it is a Jordan-Hölder sequence of class \((b)\). To see this, observe that \(f_{p-1} = f_{p-1} \), since \(f_{p-1} = f_{p-1} \) and \(f_{p-1} = f_{p-1} \cap h_0 \), and \(f_{q-2} = f_{q-2} \), since \(f_{q-2} = f_{q-2} \cap h_0 \) and \(f_{q-2} = f_{q-2} \cap h_0 \), and from this it follows easily that \(f_{p-1} = f_{p-1} \), \ldots, \(f_m = f_m \) is of class \((b)\).

Write \(e = \{ j_1 < \ldots < j_d \} \), and let \(j_1 = p, j_2 = q \) with \(1 \leq \alpha < \beta \leq d \). Define the set \(\hat{J}_e = \{ \hat{j}_1 < \ldots < \hat{j}_d \} \) by setting \(\hat{j}_1 = j_1, \ldots, \hat{j}_{\alpha-1} = j_{\alpha-1}, \hat{j}_\alpha = j_{\alpha+1} - 1 \) for \(\alpha \leq h \leq \beta - 2 \), \(\hat{j}_\beta = j_{\beta+2} - 2 \) for \(\beta - 1 \leq h \leq d - 2 \), \(\hat{j}_{d-1} = m - 1 \), \(\hat{j}_d = m \). We then have

\[
\begin{align*}
Z_{j_1} &= Z_{j_1} & \text{for } 1 \leq h \leq \alpha - 1, \\
Z_{j_\beta} &= Z_{j_1} + a_{j_{\alpha+1}} Z_{j_\alpha} & \text{for } \alpha \leq h \leq \beta - 2, \\
Z_{j_\beta} &= Z_{j_1} + a_{j_{\alpha+1}} Z_{j_\alpha} + b_{j_{\alpha+1}} Z_{j_\beta} & \text{for } \beta - 1 \leq h \leq d - 2, \\
Z_{j_{d-1}} &= a_Z_{j_\beta} + b_Z_{j_\beta}, \\
Z_{j_d} &= a_Z j_\beta + b Z_{j_\beta}.
\end{align*}
\]

Therefore, letting \(C = [c_{rs}]_{1 \leq r, s \leq d} \) be the \(d \times d \)-matrix:

\[
\begin{bmatrix}
1 & \alpha & \beta - 2 & \beta - 1 & d - 2 & d - 1 & d \\
\alpha \\
\beta \\
\end{bmatrix}
\]

where the empty entries are zero, we have \(Z_{j_e} = \sum_{s=1}^d c_{rs} Z_{j_s} \) and \(\tilde{M}_d(l) = \langle CM_{e}(l) \rangle C \), where

4e série — tome 17 — 1984 — no 1
\[\hat{M}_d(l) \text{ is the matrix } [B_j(Z_{j+}, Z_{j-})]_{1 \leq r, s \leq d}. \] Now \(\det C = (-1)^{x+y} \), and therefore we have for \(l \in \mathcal{O} \) with \(\langle l, Z_2 \rangle = 0 \):

\[Q_d(l) = | \det M_d(l) | = | \det \hat{M}_d(l) | = | \sum_{\sigma \in S_d} \text{sgn} \, \langle l, [Z_{j+}, Z_{j+}] \rangle \cdots \langle l, [Z_{j+}, Z_{j+}] \rangle | \]

\[= | \langle l, [Z_{j+}, Z_{j+}] \rangle |^2 | \langle l, [Z_{j+}, Z_{j+}] \rangle | \]

where \(S_d^+ \) is the set of permutations \(\sigma \) in \(S_d \) such that \(\sigma(1) = d, \sigma(2) = d-1, \sigma(d-1) = 2, \sigma(d) = 1 \).

Set \(g_0 = g | b \), and let \(J_0 \) etc. designate the objects defined relative to the Jordan-Hölder sequence \(f_0 < f_1 < \ldots < f_{d-2} = b_0 \). Since clearly \(g_0 < b \), and \(\langle b_0 c \rangle = \langle g_0 c \rangle = CZ_2 + CZ_3 \) we find that \(1, 2, 3 \notin J_0 \), and for \(4 \leq j \leq p - 1 \) we find \(j \in J_0 \) \(\iff \) \(j \in J \). For \(p + 1 \leq j \leq q - 2 \) we have

\[j \notin J \iff Z_{j-1} \in J \cdot \langle g_0 c \rangle \iff Z_{j-1} \in J \cdot \langle g_0 c \rangle \iff j - 1 \in J_0 \cdot \langle g_0 c \rangle , \]

so \(j \in J \iff j - 1 \in J_0 \cdot \langle g_0 c \rangle \). For \(q + 1 \leq j \leq m \) we have

\[j \notin J \iff Z_{j-1} \in J \cdot \langle g_0 c \rangle \iff Z_{j-1} \in J \cdot \langle g_0 c \rangle \iff j - 2 \in J_0 \cdot \langle g_0 c \rangle \]

so \(j \in J \iff j - 2 \in J_0 \cdot \langle g_0 c \rangle \). Therefore, if \(\mathcal{O} = \{ j_0 < \cdots < j_{d-4} \} \) we find that \(\mathcal{O} = \{ j_k < \cdots < j_{d-4} \} \) for \(1 \leq h \leq \alpha - 3, \mathcal{O} + 1 = j_{h+3} \) for \(\alpha - 2 \leq h \leq \beta - 4, \mathcal{O} + 2 = j_{h+4} \) for \(\beta - 3 \leq h \leq d - 4 \), and comparing with the definition of \(j_h \) we find that \(\mathcal{O} = \{ j_h \} \) for \(1 \leq h \leq d - 4 \). Using this we get for \(l_0 \in U \) :

\[Q_0(l_0) = | \sum_{\sigma \in S_4} \text{sgn} \, \langle l_0, [Z_{j+}, Z_{j+}] \rangle \cdots \langle l_0, [Z_{j+}, Z_{j+}] \rangle | \]

Comparing with what we saw above we find for \(l_0 \in U \) with \(\langle l, Z_2 \rangle = 0 \) and \(l_0 = l | b \) :

\[Q_0(l) = | \langle l, [Z_2, Z_2] \rangle |^2 | \langle l, [Z_3, Z_{m-1}] \rangle |^2 Q_0(l_0). \]

Let us now observe that the nilradical of \(b \) is \(m \). In fact, since \(Z_2 | b \), \(\lambda_2 | b \) is a root for \(b \), and therefore the nilradical of \(b \) is contained in \(b_0 \) and consequently it is precisely \(m \).

Write \(Z_2 = X_2 + iY_2 \) and set \(b = \mathbb{R}X_2 \oplus \mathbb{R}Y_2 \). Then \(b \) is an ideal in \(b \), and \(b = 0 \).

Let \(c : b \to b/\mathbb{R} = \mathbb{R} \) be the coset map and define \(\tilde{g}_0 \in U(b) \) by \(\tilde{g}_0 \circ c = g_0 \).

We now claim that \(u \in U(n) \), i.e. that \(Q_0 \) only depends on its restriction to \(b \) (and therefore to \(m \)). Assuming for a moment this claim to be true, we consider \(Q_0 \) as a polynomial function on \(b \) and get for \(\tilde{f}_0 \) (using the formula (*)):

\[Q_0(\tilde{f}_0 \circ c) = \langle l_0, W_1 \rangle |^2 \langle l_0, W_2 \rangle |^2 Q_0(\tilde{f}_0 \circ c), \]

where \(W_1 = c([Z_2, Z_m]), W_2 = c([Z_3, Z_{m-1}]) \). Now since \(W_1, W_1, W_2, W_2 \) are central.
in \(\tilde{\mathfrak{h}} \) and since \(P_{w_1}(\tilde{t}_0) = \langle \mathbf{W}_1, \tilde{t}_0 \rangle \), \(P_{w_1}(\tilde{t}_0) = \langle \mathbf{W}_1, \tilde{t}_0 \rangle \), and similarly for \(W_2 \), we find that

\[
Q_\phi(\tilde{t}_0 \circ c) = P_{w_1}(\tilde{t}_0)P_{w_2}(\tilde{t}_0)P_{w_3}(\tilde{t}_0)P_{w_4}(\tilde{t}_0)\phi(\tilde{t}_0 \circ c),
\]

and therefore

\[
c(u) = W_1 W_2 W_3 \phi(u)\]

by Lemma 1.2.1.

Since \(b \) is an abelian ideal in \(\mathfrak{h}_0 \) and since \(\langle f_0, b \rangle = 0 \) there exists a representation \(\pi_0 \) of \(M = M/B, B = \text{exp} b \), such that \(\pi_0 \circ c = \pi_0 \). Using the induction hypothesis we then get

\[
d\pi_0(u) = d\pi_0(c(u)) = d\pi_0(W_1 W_2 W_3 c(u)) = |\langle f_0, W_1 \rangle|^2 |\langle f_0, W_2 \rangle|^2 d\pi_0(u) = |\langle g, [Z_2, Z_m] \rangle|^2 |\langle g, [Z_3, Z_{m-1}] \rangle|^2 Q_\phi(g) |.
\]

We have thus shown that \(d\pi_0(u) = Q_\phi(g) \). This ends case (c1) (i), except for the fact that we have to prove the claim from above:

Proof of claim: We shall prove that \(Q_\phi(l) \) only depends on the restriction of \(l \) to \(\mathfrak{h} \). If all \(Z_3, 3 \leq r \leq d-2 \) belong to \((\mathfrak{h}_0)_C \), then the result is clear (because \(\mathfrak{h}_0 \) is an ideal). Suppose then that there exists \(3 \leq r \leq d-2 \) such that \(Z_3 \notin (\mathfrak{h}_0)_C \), and let \(\rho \) be the smallest such \(r \). We then have \(b_0 = C_2 Z_3 + (\mathfrak{h}_0)_C \), and let \(g \in \mathfrak{h}_0 \). Set \(Y_r = Z_r + c_r Z_{d-r}, r = 1, \ldots, d \), where \(c_r \) is defined such that \(Y_r \in \ker \alpha_r \) for \(r \neq \rho \), and where \(c_\rho = 0 \). We then have \(Y_r \notin (\mathfrak{h}_0)_C \) for \(1 \leq r \leq d-2, r \neq \rho \), while \(Y_\rho \notin (\mathfrak{h}_0)_C \) and \(Y_\rho \in \ker \alpha_\rho \). We also have \([Y_\rho, Z_2] \in C Z_3, [Y_\rho, Z_3] = 0, [Y_{d-1}, Z_2] \in C Z_1, [Y_{d-1}, Z_2] = 0 \).

Letting \(C = [c_{rs}]_{1 \leq r, s \leq d} \) be the \(d \times d \)-matrix given by:

\[
\begin{bmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & c_{\rho+1} \ldots c_d \\
& & & 1 \\
& & & 1 \\
& & & 1
\end{bmatrix}
\]

the empty entries meaning zero, we have \(Y_r = \sum_{s=1}^d c_{rs} Z_{d-s} \), so, setting \(N(l) = \{ B(Y_\rho, Y_s) \}_{1 \leq r, s \leq d} \) we get \(N(l) = C M_4(l) C \), from which \(Q_\phi(l) = |\det M_4(l)| = |\det C M_4(l)| = |\det N(l)| \). Therefore

\[
Q_\phi(l) = \sum_{\sigma \in S_4} \text{sign} \sigma P_\sigma(l),
\]

where we have set \(P_\sigma(l) = \langle l, [Y_1, Y_{\sigma(1)}] \rangle \ldots \langle l, [Y_\rho, Y_{\sigma(d)}] \rangle \).

Define the following subsets of \(S_4 \):

\[
S_4^{(1)} = \{ \sigma | \sigma(1) = \rho, \sigma(2) = d-1, \sigma(\rho) = d, \sigma(d-1) = 2, \sigma(d) = 1 \},
\]

\[
S_4^{(2)} = \{ \sigma | \sigma(1) = \rho, \sigma(2) = d, \sigma(\rho) = d-1, \sigma(d-1) = 2, \sigma(d) = 1 \},
\]

\[
S_4^{(3)} = \{ \sigma | \sigma(1) = \rho, \sigma(2) = d, \sigma(\rho) = d-1, \sigma(d-1) = 2, \sigma(d) = 1 \},
\]

\[
S_4^{(4)} = \{ \sigma | \sigma(1) = d, \sigma(2) = d-1, \sigma(\rho) = 2, \sigma(d) = \rho, \sigma(d-1) = 1 \},
\]

\[
S_4^{(5)} = \{ \sigma | \sigma(\rho) + d \wedge \rho = \sigma(d) \wedge \rho = \sigma(d-1) \},
\]

\[
S_4^{(6)} = S_4 \setminus \bigcup_{j=1}^5 S_4^{(j)}.
\]
We then assert that $P_o = 0$ if $\sigma \in S_d^{(6)}$. In fact, observe first that
\[
P_o \neq 0 \Rightarrow (\sigma(1) = \rho \lor \sigma(1) = d) \land (\sigma(2) = \rho \lor \sigma(2) = d - 1) \land (1 = \sigma(\rho) \lor 1 = \sigma(d)) \land (2 = \sigma(\rho) \lor 2 = \sigma(d - 1)).
\]
Therefore, if $P_o = 0$ and if $\sigma \notin S_d^{(5)}$ with e.g. $\sigma(\rho) = d$, then $\sigma(1) = \rho$, $\sigma(2) = d - 1$, $\sigma(d) = 1$, $\sigma(d - 1) = 0$, so $\sigma \notin S_d^{(4)}$. Similarly, if $\sigma \notin S_d^{(5)}$ with $\sigma(\rho) = d - 1$, then $P_o \neq 0 \Rightarrow \sigma \in S_d^{(2)}$, etc. This shows our assertion.

We next assert that $P(l) = \sum_{j=1}^{d} \sum_{\sigma \in S_d^{(1)}} \text{sign} \sigma P_{\sigma}(l) = 0$. To see this, define the permutations τ_1, τ_2, τ_3, τ_4 in S_d by $\tau_1 = \text{identity}$, $\tau_2(1) = \rho$, $\tau_2(2) = 1$, $\tau_2(\rho) = 2$, $\tau_3(1) = \rho$, $\tau_3(\rho) = d$, $\tau_4(d) = 1$, $\tau_4(1) = \rho$, $\tau_4(\rho) = d - 1$, $\tau_4(d - 1) = 1$, all other elements left fixed. It is then immediate to verify that the map $\sigma \to \sigma \circ \tau_j$, $j = 1, 2, 3, 4$, defines a bijection between $S_d^{(1)}$ and $S_d^{(0)}$, and since τ_j are even permutations we get
\[
P(l) = \sum_{\sigma \in S_d^{(1)}} \text{sign} \sigma P_{\sigma}(l).
\]
Now for $\sigma \in S_d^{(1)}$ we have
\[
\sum_{i=1}^{d} \prod_{j \neq i, \rho, d-1, d} (\sigma(\rho), \sigma(d)) \prod_{i=1, d, \rho, d-1, d} (\sigma(\rho), \sigma(d)) = 0,
\]
and a direct computation shows that
\[
\sum_{i=1}^{d} \prod_{j \neq i, \rho, d-1, d} (\sigma(\rho), \sigma(d)) = 0
\]
for all $l \in g'$. This shows that $P = 0$, and therefore we have
\[
Q(l) = | \sum_{\sigma \in S_d^{(1)}} \text{sign} \sigma P_{\sigma}(l) |.
\]

But we clearly have that $P_{\sigma}(l)$ only depends on the restriction of l to \mathfrak{h} if $\sigma \in S_d^{(5)}$, because all $[Y_r, Y_{\sigma(r)}]$, $r = 1, \ldots, d$, then belong to \mathfrak{h} (we use here that \mathfrak{h} is a subalgebra and that \mathfrak{h}_0 is an ideal). This proves our claim and ends (i).

(ii) We now apply (i) to the same Jordan-Hölder sequence f_ρ but to another basis $Z'_j \in f_j \setminus f_{j-1}$ (whereby \mathfrak{h}_0 and therefore m are not changed), and we get similarly that $d\pi_0(u'_e) = Q'_e(g)I$, where Q'_e, u'_e are the objects associated with this new basis. Setting in particular $Z'_j = \text{Ad}(s)Z_j$, we get $u'_e = \text{Ad}(s)u_e$, and $Q'_e(l) = Q_e(s^{-1}l)$ for $s \in G$, and therefore $d\pi_0(\text{Ad}(s)u_e) = Q_e(s^{-1}g)I = |\Lambda(s)|^2 Q_e(g)I$.

Now since $Z_1, Z_2, Z_3 \in \mathfrak{m}$ it follows that $\mathfrak{n}_f \subset \mathfrak{m}$ and from this we get that
\[
(m_{r_0})_e = (n_{r_0})_e \oplus \mathbb{C} Z_2 \oplus \mathbb{C} \bar{Z}_2.
\]

It follows that a polarization in m at f_0 is also a polarization in n at f, hence $\pi = \text{ind}_{M^N}^{N} \pi_0$.

Let then φ be a differentiable vector in $L(N, \pi_0)$, the space of the induced representation $\pi = \text{ind}_{M^N}^{N} \pi_0$. We have $d\pi_0(u_e)\varphi(s) = d\pi_0(\text{Ad}(s^{-1})u_e)\varphi(s) = Q_e(g)\varphi(s)$, $s \in N$, so $d\pi_0(u_e) = Q_e(g)I$. This ends case (c11).
Case (c12): (i) As in case (c11) we start by showing that \(u_e \in U(m) \) and that \(d \pi_0(u_e) = Q_e(g)I \), and we can assume that \(\langle g, Z_2 \rangle = 0 \).

Since \(\{ f_3, f_2 \} = f_1 \) we have that \(Z_2, Z_3 \notin h_C \). Therefore \(g_C = CZ_2 \oplus CZ_3 \oplus h_C \). Just like in case (c11) we see that \(Z_2, Z_3 \notin h_C \). Define \(\hat{Z}_1 = Z_1, \hat{Z}_j = Z_{j+2} + a_j Z_2 + b_j Z_3 \) for \(2 \leq j \leq m-2 \), \(\hat{Z}_{m-1} = Z_2, \hat{Z}_m = Z_3 \), where \(a_2, \ldots, a_m, b_2, \ldots, b_m \) have been picked such that \(\hat{Z}_e \in h_C, 1 \leq j \leq m-2 \). Clearly \(\hat{Z}_1, \ldots, \hat{Z}_m \) is a basis for \(g_C \). Set \(\hat{f}_j = CZ_1 \oplus \ldots \oplus CZ_j \). We have that \(\hat{f}_1 = f_1 \) and \(\hat{f}_j \oplus CZ_2 \oplus CZ_3 = f_j+2 \) for \(1 \leq j < m-2 \). Also \(f_{m-2} = h_C, f_m = g_C \). We thus have

\[
\begin{align*}
\hat{f}_1 &= f_1, \\
\hat{f}_j &= f_{j+2} \oplus h_C \quad \text{for } 1 \leq j \leq m-2, \\
\hat{f}_m &= g_C.
\end{align*}
\]

From this it follows that \(h_C = \hat{f}_{m-2} \Rightarrow \ldots \Rightarrow \hat{f}_1 \Rightarrow \hat{f}_0 = \{ 0 \} \) is a Jordan-Hölder sequence for \(h_C \). We claim it is of class (b). But this follows easily from the fact that \(\hat{f}_1 = f_1 \).

Write \(e = \{ j_1 < \ldots < j_d \} \), and define the set \(\hat{J}_e = \{ \hat{j}_1 < \ldots < \hat{j}_d \} \) by setting \(\hat{j}_h = j_h+2-2 \) for \(1 \leq h \leq d-2, \hat{j}_d-1 = m-1, \hat{j}_d = m \). We then have
\[
\begin{align*}
\hat{Z}_{j_h} &= Z_{j_h+2} + a_{j_h} Z_2 + b_{j_h} Z_3 \quad \text{for } 1 \leq h \leq d-2, \\
\hat{Z}_{j_d-1} &= Z_{j_d}, \\
\hat{Z}_{j_d} &= Z_{j_d}.
\end{align*}
\]

Therefore, letting \(C = [c_{rs}]_{1 \leq r, s \leq d} \) be the \(d \times d \)-matrix:

\[
C = \begin{bmatrix}
a_{j_1} & \ldots & a_{j_d} \\
b_{j_1} & \ldots & b_{j_d} \\
1 & \ldots & 1
\end{bmatrix},
\]

where the empty entries are zero, we have \(\hat{Z}_{j_h} = \Sigma_{r=1}^d c_{rs} Z_{j_r} \), and \(\hat{M}_e(l) = CM_e(l)C \), where \(M_e(l) \) is the matrix \([B_{rl} \hat{Z}_{j_r} \hat{Z}_{j_{(r)}}]_{1 \leq r, s \leq d} \). Now \(\det C = 1 \), and therefore we have for \(l \in g' \) with \(\langle l, Z_2 \rangle = 0 \):

\[
Q_e(l) = \left| \det \hat{M}_e(l) \right| = \left| \sum_{\sigma \in S^*_d} \text{sign } \sigma \left| \langle l, [\hat{Z}_{j_{(r)}}, \hat{Z}_{j_{(r)}}] \rangle \right| \right| \left| \langle l, [\hat{Z}_{m-1}, \hat{Z}_m] \rangle \right|^2 \left| \sum_{\sigma \in S^*_d} \text{sign } \sigma \left| \langle l, [\hat{Z}_{j_{(r)}}, \hat{Z}_{j_{(r)}}] \rangle \right| \right| \left| \langle l, [\hat{Z}_{j_{(d-2)}}, \hat{Z}_{j_{(d-2)}}] \rangle \right|,
\]

where \(S^*_d \) is the set of permutations \(\sigma \) in \(S_d \) such that \(\sigma(d-1) = d, \sigma(d) = d-1 \).

Set \(g_0 = g \mid h \), and let \(\hat{f}_0, \hat{f}_1, \ldots, \hat{f}_m \) designate the objects defined relative to the Jordan-Hölder sequence \(\hat{f}_0 = \hat{f}_1 \leq \ldots \leq \hat{f}_{m-2} = h_C \). Since clearly \(g_C \in h_C \) and \(\hat{f}_0 = g_0 \in g_0 \), we find that \(1 \notin \hat{f}_0 \), and for \(4 \leq j \leq m \) we have

\[
\hat{J}_j \Rightarrow Z_j \in [l_{j-1} + (g_0)]_C \Rightarrow Z_j \in \hat{f}_{j-3} + CZ_2 + CZ_3 + (g_0)_C \Rightarrow Z_{j-2} \in f_{j-3} + (g_0)_C \Rightarrow j - 2 \notin \hat{f}_0.
\]
so $j \in I_q \iff j-2 \in \mathcal{J}_{E_0}$. Therefore, if $\mathcal{J}_{E_0} = \{ j_1 < \ldots < j_{d-2} \}$ we find that $\mathcal{J}_{E_0} + 2 = j_{k+2}$ for $1 \leq h \leq d-2$, and comparing with the definition of \mathcal{J}_h we find that $\mathcal{J}_{E_0} = \mathcal{J}_h$ for $1 \leq h \leq d-2$. Using this we get for $l \in \mathfrak{h}$:

$$Q_{\varphi}(l) = | \det [B_{l,\mathcal{J}_{E_0}}(Z_{j_{\mathcal{J}_{E_0}}})]_{1 \leq h, s \leq d-2} |$$

and comparing with what we saw above we find for $l \in \mathfrak{g}'$ with $\langle l, Z_2 \rangle = 0$:

$$Q_{\varphi}(l) = | \langle l, \{ Z_m, Z_{m-1} \} \rangle |^2 Q_{\varphi}(l_0),$$

where $l_0 = l | \mathfrak{h}$. We then claim that $Q_{\varphi}(l)$ only depends on the restriction of l to \mathfrak{h}. Assuming for a moment this to be true, we find that the formula (*) is valid for all $l \in \mathfrak{g}'$. The conclusion of this is that $\mathfrak{t} Q_{\varphi}(l) = - \langle l, W \rangle \langle l, W \rangle \mathfrak{t} Q_{\varphi}(l_0)$, where $W = [Z_m, Z_{m-1}] = [Z_2, Z_3] \in \mathfrak{e}_{\mathfrak{f}_1}$, and therefore that $\mathfrak{u}_c = - \mathfrak{W} \mathfrak{u}_{\mathfrak{q}_0}$.

Let us then prove our claim: if all $Z_{j_r}, 1 \leq r \leq d-2$ belong to $(h_{0\mathfrak{c}})$, then the result is clear (since h_0 is an ideal). Suppose then that there exists $1 \leq r \leq d-2$ such that $Z_{j_r} \notin (h_{0\mathfrak{c}})$, and let p be the smallest such number r. We then have $h_{\mathfrak{c}} = C \mathbb{Z}_{j_p} + (h_{0\mathfrak{c}})$, and $g_{\mathfrak{c}} = C Z_{j_p} + \ker \alpha_2$. Set $Y_r = Z_{j_p} + c_r Z_{j_r}, r = 1, \ldots, d$, where c_r is defined such that $Y_r \in \ker \alpha_2$ for $r \neq p$ and where $c_p = 0$. We then have $Y_r \in (h_{0\mathfrak{c}})$ for all $1 \leq r \leq d-2, r \neq p$, while $Y_p \in (h_{\mathfrak{c}})$. Letting $C = [c_{rs}]_{1 \leq r, s \leq d}$ be the $d \times d$-matrix given by:

$$C = \begin{bmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & \cdots c_{p+1} \cdots \ cd_{-2} \ 0 \ 0 \\
& & & 1 \\
& & & & \ddots \\
& & & & & 1
\end{bmatrix}$$

the empty entries meaning zero, we have $Y_s = \sum_{r=1}^d c_{rs} Z_{j_r}$, so, setting $N(l) = [B_l(Y_r, Y_s)]_{1 \leq r, s \leq d}$ we get $N(l) = C M_d(l) C$, from which $Q_{\varphi}(l) = \det M_d(l) = \det C = \det N(l)$. Therefore $Q_{\varphi}(l) = \sum_{\sigma} \det \sigma P_{\varphi}(l)$, where we have set $P_{\varphi}(l) = \langle l, [Y_1, Y_{0\mathfrak{c}}] \rangle \ldots \langle l, [Y_p, Y_{0\mathfrak{c}}] \rangle$. Define then the following subsets of S_d:

$$S_{d}^{1} = \{ \sigma | (d-1) = \rho \wedge (d) = d-1 \wedge (\rho) = d \},$$

$$S_{d}^{2} = \{ \sigma | (d-1) = d \wedge (d) = \rho \wedge (\rho) = d-1 \},$$

$$S_{d}^{3} = \{ \sigma | (d-1) = \rho \wedge (d) \neq \rho \},$$

$$S_{d}^{4} = S_{d}^{1} \cup S_{d}^{2} \cup S_{d}^{3}.$$
We then assert that: \(\sigma \in S_d^3 \Rightarrow P_\sigma = 0 \). In fact, observe first that since:
\[
[Y_d, Y_\sigma] + 0 \Rightarrow \sigma = \rho \vee \sigma = \rho
\]
and since:
\[
[Y_d, Y_\sigma] + 0 \Rightarrow \sigma = \rho \vee \sigma = \rho \vee \sigma = \rho,
\]
we have:
\[
P_\sigma \neq 0 \Rightarrow (\sigma(d - 1) = d \vee \sigma(d - 1) = \rho) \wedge (\sigma(d) = d - 1 \vee \sigma(d) = \rho).
\]
Moreover, if \(\sigma \notin \{ \rho, d - 1, d \} \), then:
\[
[Y_n, Y_\sigma] + 0 \Rightarrow \sigma(r) \neq d - 1 \wedge \sigma(r) \neq d,
\]
and:
\[
P_\sigma \neq 0 \Rightarrow (d = \sigma(d - 1) \vee d = \sigma(\rho)) \wedge (d - 1 = \sigma(d) \vee d - 1 = \sigma(\rho)).
\]
Therefore, if \(P_\sigma \neq 0 \) and \(\sigma \notin S_d^3 \) with e. g. \(\sigma(d - 1) = \rho \), then \(\sigma(d) = d - 1 \) and \(\sigma(\rho) = d \), and therefore \(\sigma \in S_d^3 \). Similarly, if \(\sigma \notin S_d^3 \) with \(\sigma(d) = \rho \), then \(P_\sigma \neq 0 \Rightarrow \sigma \in S_d^3 \). This shows our assertion.

We next assert that \(P(l) = \sum_{\alpha \in S_d^3} \text{sign } \alpha P(l) = 0 \), where \(S'_d = S_d^{(1)} \cup S_d^{(2)} \). To see this, define the permutation \(\tau \) in \(S_q \) by \(\tau(\rho) = d \), \(\tau(d - 1) = \rho \), \(\tau(d) = d - 1 \), all other elements left fixed. It is then immediate to verify that the map \(\sigma \to \alpha \circ \tau \) defines a bijection between \(S_q^{(1)} \) and \(S'_d \), and since \(\tau \) is an even permutation we get \(P(l) = \sum_{\alpha \in S_q^{(1)}} \text{sign } \alpha P(l) + P_{\alpha \circ \tau}(l) \). Now for \(\sigma \in S_d^3 \) we have
\[
P_{\sigma \circ \tau}(l) = \prod_{i=0}^{d-1, d} \langle l, [Y_p, Y_{\alpha(i)}] \rangle + \prod_{i=0}^{d-1, d} \langle l, [Y_\sigma, Y_{\alpha(i)}] \rangle,
\]
and
\[
\prod_{i=0}^{d-1, d} \langle l, [Y_p, Y_{\alpha(i)}] \rangle = \langle l, [Y_p, Y_d] \rangle \langle l, [Y_{d-1}, Y_\rho] \rangle \langle l, [Y_\sigma, Y_{d-1}] \rangle \langle l, [Y_d, Y_\rho] \rangle = 0.
\]
This shows that \(P \equiv 0 \), and therefore we have
\[
Q_{\alpha}(l) = \left(\sum_{\alpha \in S_d^3} \text{sign } \alpha P(l) \right)^2,
\]
and since \(P_\alpha(l) \) only depends on the restriction of \(l \) to \(h \) when \(\sigma \in S_d^3 \) we have proved our assertion.

Now if \(m \) is the nilradical of \(h \) it follows from the induction hypothesis that \(d\pi_0(u_{\rho}) = Q_{\rho}(g_0)I \), and since \(d\pi_0(W) = l \langle f_0, W \rangle \), and \(u_\rho = -W\overline{W}u_\rho \) we get that
\[
d\pi_0(u_\rho) = \left(\langle f_0, W \rangle \right)^2 Q_{\rho}(g_0)I = Q_{\rho}(g)I,
\]
and this proves (i) in this case.

Suppose then that \(m \) is not the nilradical \(m_1 \) of \(h \). Then \(m = h_0 \cap m_1 \), and \(\dim m_1/m = 1 \). Setting \(M_1 = \exp m_1 \) we now face two possibilities (1) either \(\pi_\rho \) extends to an irreducible representation \(\pi'_0 \) of \(M_1 \), and (2) \(\text{ind}_{M_1/M} \pi_\rho = \pi'_0 \) is an irreducible representation of \(M_1 \). In the first case we obviously get as above that \(d\pi'_0(u_\rho) = Q_{\rho}(g)I \), and therefore \(d\pi'_0(u_\rho) = Q_{\rho}(g)I \).

In the second case we have \(\pi'_0 \mid M = \int_{M_1/M} s \pi_\rho ds \), and therefore we get by the induction
hypothesis that \(Q(e(g))I = d\pi_0(u_e) = \int_{M_1/M} d(s\pi_0(u_e))ds \), from which \(d(s\pi_0(u_e)) = Q(e(g))I \) for almost all \(s \), hence for all \(s \) by continuity. This shows that \(d\pi_0(u_e) = Q(e(g))I \), and ends (i).

(ii) Just like in case (c1) (ii) we conclude from (i) that

\[d\pi_0(Ad(s)u_e) = Q(e(s^{-1}g))I = |\Lambda_n(s)|^2 Q(e(g))I \text{ for all } s \in G. \]

Now since \(Z_2, Z_3 \in \mathbb{C} \), and since \([m, Z_2] = [m, Z_3] = 0\) we see at once that \(m_{\pi_0} = \pi_f \). Suppose then that \(p \) is a polarization in \(m \) at \(f_0 \). Then, writing \(Z_2 = X_2 + iY_2, p_1 = p \oplus \mathbb{R}Y_2 \) is a polarization in \(n \) at \(f \), and therefore \(\pi = \text{ind}_{p_1N} \eta_1 \), where \(\eta_1 \) is the unitary character on \(p_1 = \exp p_1 \) corresponding to \(f \mid p_1 \). Similarly \(\pi_0 = \text{ind}_{pM} \eta_1 \), where \(P = \exp p, \eta_1 = \eta_1 \mid P \). We then set \(n_1 = \mathbb{R}Y_2 \), and note that \(n_1 \) is a direct product of \(m \) and \(\mathbb{R}Y_2 \). Let \(\pi_1 \) be the irreducible representation of \(N_1 = \exp n_1 \) with \(\pi_1 \mid M = \pi_0 \),

\[\pi_1(\exp iY_2) = e^{i\langle f, Y_2 \rangle}. \]

Then \(\pi = \text{ind}_{p_1N} \eta_1 = \text{ind}_{N_1N} (\text{ind}_{p_1N} \eta_1) = \text{ind}_{N_1N} \pi_1 \). Now noting that \(N_1 \) is a normal subgroup in \(N \) and that clearly \(d\pi_1(Ad(s)u_e) = Q(e(g))I \) for \(s \in N \), we can end this case just like case (c1) (ii). This ends case (c2).

Case (c2): (i) Since \(f_1 = \bar{f}_1 \) we can clearly assume that \(Z_1 = X_1 \in g \). A standard argument shows that \(\lambda_2 \) must be a real root in this case, so \(\lambda_2 = \alpha_2 \). We claim that it is no loss of generality to assume that \(\gamma_2 \equiv 0 \). In fact, let \(a_1, a_2, b \) be real numbers, not all equal to zero, such that \(0 = a_1\gamma_1 + a_2\gamma_2 + b\alpha_2 \). Then \((a_1, a_2) \neq (0, 0) \), since \(\alpha_2 \neq 0 \), and we can assume that \(a_1^2 + a_2^2 = 1 \). Replacing \(Z_2 \) by \(Z_2' = (a_2 + ia)Z_2 - bZ_4 \) does not change \(Q_e \), and it is trivial to verify that \([X, X_2'] = \lambda_2(X)Z_2' + \gamma_1(X)Z_1 \), where \(\gamma_1 = a_2\gamma_1 - a_1\gamma_2 \). This proves the claim. So, from now on we assume that \(Z_1 = X_1 \in g, \gamma = \gamma_1 \), and writing \(Z_2 = X_2 + iY_2 \) we then have

\[
[X, X_2] = \lambda_2(X)X_2 + \gamma(X)X_1 \\
[X, Y_2] = \lambda_2(X)Y_2.
\]

Set \(h = \ker \gamma \). It follows from the formula (2.2.2) that \(h \) is a subalgebra in \(g \), and its codimension is 1. Set \(h_0 = \ker \alpha_2 \mid h = \ker ad Z_2 \mid g \). \(h_0 \) is an ideal in \(g \) of codimension 2.

Let \(m \) be the nilradical of \(h_0 \). Since \(h_0 \) is an ideal we have that \(m = n \cap h_0 = n \cap h \). Observe that \(\dim n/m = 1 \). In fact, pick \(\text{Web} \mid h_0 \). We then have \(\gamma([X, W]) = \lambda_2(W)\gamma(X) \) for \(X \in g \). Choosing \(X \) such that \(\gamma(X) = 1 \) we get that \(\gamma([X, W]) = \lambda_2(W) \equiv 0 \), and this shows that \([X, W] \) is a basis in \(n \) (mod \(m \)).

Set \(f_0 = f \mid m = g \mid m \), and let \(\pi_0 \) be the irreducible representation of \(M = \exp m \) corresponding to \(M_{f_0} \).

(ii) We first show that \(u_e \in U(m) \), and that \(d\pi_0(u_e) = Q(e(g))I \). We start by noting that we can assume that \(\langle g, X_2 \rangle = 0 \); in fact, if necessary replace \(X_2 \) by \(X_2 - eX_1 \); this does not change \(e, Q_e \), etc. (it will change \(\gamma, h \), though, but does not affect \(h_0 \), rank \(\alpha_2, \gamma_1, \gamma_2 \) and the fact that \(\gamma_2 \equiv 0 \)).
Except for some obvious modifications we can now proceed just like in case (c11) (i).

(iii) Just like in case (c11) (ii) we conclude that \(dx(s) = \frac{1}{n} \Lambda(s, t) |^2 Q_x(s) \) for all \(s \in G \).

Now since \(X_1, X_2 \in \mathfrak{m} \) it follows that \(n_f \subset \mathfrak{m} \) and from this we get that \(m_f = m_f \oplus RX_2 \).

Therefore a polarization in \(m \) at \(s_f \) is also a polarization in \(m \) at \(s_f \), hence \(\pi = \text{ind}_M^N \pi_0 \).

We can then end this case just like we did in case (c11) (ii).

Case (c3): It is no loss of generality to assume that \(\gamma = 0 \). In fact, there exists real numbers \(a_1, a_2 \) such that \(\gamma_1 = a_1 \alpha_2, \gamma_2 = a_2 \alpha_2 \), and therefore \(\gamma_1 = a_1(1 + ik_2)^{-1} \lambda_2, \gamma_2 = a_2(1 + ik_2)^{-1} \lambda_2 \).

Replacing \(Z_2 \) by \(Z'_2 = Z_2 + (1 + ik_2)^{-1}(a_1 + ia_2)Z_1 \) does not change \(Q_\alpha \), etc., and we have \([X, Z'_2] = \lambda_2(X)Z'_2 \). This proves the assertion.

Set \(\mathfrak{h} = \ker \gamma_2 \). Then \(\mathfrak{h} \) is an ideal in \(\mathfrak{g} \) of codimension 1, so \(\mathfrak{n} \subset \mathfrak{h} \). We can now proceed here much like in case (b), so we omit the details.

Case (d): Suppose we are not in case (a), (b) or (c).

We have \([X, Z_2] = \gamma(X)Z_1 \), where \(\gamma \neq 0 \) and \(\langle g, Z_1 \rangle = 0 \) (since otherwise we would be in case (a)), and also \(f_1 = f_1 \).

Writing \(\gamma = \gamma_1 + \gamma_2 \) we distinguish two subcases: (d1): \(\text{rank} (\gamma_1, \gamma_2) = 2 \) and (d2): \(\text{rank} (\gamma_1, \gamma_2) = 1 \).

Case (d1): Set \(\mathfrak{h} = \ker \gamma_1 \cap \ker \gamma_2 \). Then \(\mathfrak{h} \) is an ideal of codimension 2. We then distinguish two possibilities: case (d1): \([f_3, f_2] = 0 \) and case (d2): \([f_3, f_2] = f_1 \). We can then proceed here much like in case (c1) (the case at hand is easier, since here \(\mathfrak{h} \) is an ideal containing \(\{g, g\} \)). We omit the details.

Case (d2): Just like in case (c2) we see that we can assume that \(\gamma_2 = 0 \). Set \(\mathfrak{h} = \ker \gamma \). Then \(\mathfrak{h} \) is an ideal of codimension 1, and we can treat this case much like case (b). We also omit the details here. This ends the proof of Proposition 2.2.1.

2.3. — We shall now end the proof of Theorem 1.4.1. We use [4], 4.2.2 Théorème, p. 121 with \(\psi(l) = |P(l)| \). It follows from Lemma 2.1.1 that the condition of the theorem loc. cit. is satisfied. The conclusion is that the operator \(A\pi(\varphi)A \) is traceclass for all \(\varphi \in C_c^\infty(G) \), that \(\varphi \to \text{Tr} \left([A\pi(\varphi)A] \right) \) is a distribution (of positive type) on \(G \), and that

\[
\text{Tr} \left([A\pi(\varphi)A] \right) = \int_0^\infty (\sigma_e \cdot \varphi \circ \exp)^\wedge (l) Q_e(l) d\beta_0(l).
\]

Here we have also used Lemma 1.3.1.

Remark 2.3.1. — In [4], p. 248 and [5], p. 118 appear two different definitions of the function \(P_0 \) (cf. section 1.3). Here we use the one from [4] (which is the most natural one), while the 4.2.2. Théorème in [5] uses the definition of \(P_0 \) from [5]. There is no difficulty in proving 4.2.2. Théorème with the definition of \(P_0 \) from [4] when \(\psi \) has the property that \(\psi(l) \) only depends on the restriction of \(l \) to \(\{g, g\} \) which is the case here (cf. [5] 4.2.3. Remarque).

We shall then identify the operator \(A \): Set \(G_0 = \ker \chi_e \), let \(g_0 \) be the Lie algebra of \(G_0 \),

4° SÉRIE — TOME 17 — 1984 — N° 1
and let \(\pi_0 \) be the irreducible representation associated with \(g_0 = g \mid g_0 \). Then \(\pi = \text{ind}_{g_0 \uparrow G} \pi_0 \) and \(A \) is realized on \(L^2(G, \pi_0) \), the space of the induced representation \(\pi = \text{ind}_{g_0 \uparrow G} \pi_0 \), by \(Af(s) = \psi(s) f(s) = | P_e(sg) | f(s) \). Now it follows from Proposition 2.2.1 that \(d\pi_0(u_e) = Q_e(g) I \), and that \(d\pi_0(Ad(s)u_e) = Q_e(s^{-1} g) I \) which implies that we have for a differentiable vector \(f \in L^2(G, \pi_0) \):

\[
d\pi(u_e) f(s) = d\pi_0(Ad(s^{-1} u_e)) f(s) = Q_e(s) f(s) = | P_e(sg) |^2 f(s) = A^2 f(s),
\]

and thus \(d\pi(u_e) = A^2 \).

Now since \(A\pi(\varphi) \subset \pi(\chi^{-1} \varphi) A \) we have that \(A\pi(\varphi) A \subset A^2 \pi(\chi^{-1} \varphi) \), and therefore \([A\pi(\varphi) A] = [A^2 \pi(\chi^{-1} \varphi)]\) from which \([A^2 \pi(\chi^{-1} \varphi)]\), hence \([A^2 \pi(\varphi)]\), is traceclass for all \(\varphi \in C_0(G) \), and \(\text{Tr} ([A^2 \pi(\varphi)]) = \text{Tr} ([A\pi(\chi \varphi) A]) = \text{Tr} ([A\pi(\varphi) A]) \), the last equality being valid because the distribution \(\varphi \rightarrow \text{Tr} ([A\pi(\varphi) A]) \) is supported on \(G_0 \) (cf. [5], [6]). Observing finally that \([A^2 \pi(\varphi)] = \pi(u_e \ast \varphi)\), we have proved the theorem.

3. Examples

We shall give a few examples of the calculation of \(\delta, Q_e, u_e, \Omega_e \) for an exponential solvable Lie algebra \(\frak{g} \). If \(Z_1, \ldots, Z_m \) is a Jordan-Hölder basis for \(\frak{g}_C \) we denote by \(M(g) \), \(g \mapsto g' \), the skewsymmetric \(m \times m \)-matrix \([\langle g, [Z_i, Z_j] \rangle]_{i,j \in m} \) and we write \(\zeta_j = \langle g, Z_j \rangle \). The matrices \(M_j(g) \) are all submatrices of \(M(g) \). Note that \(Z = \sum_{j=1}^m \zeta_j Z_j \) belongs to \((\frak{g}_C)_C \) if and only if \(M(g) z = 0 \), where \(z = (z_1, \ldots, z_m) \). We write \(\delta = \{ e_1 < \ldots < e_r \} \).

3.1. — Let \(\frak{g} \) be the five dimensional real solvable Lie algebra with the following non-vanishing brackets: \([X_1, X_2] = X_1, [X_3, X_4] = -X_4, [X_5, X_3] = 2X_3, [X_5, X_2] = X_2, [X_4, X_3] = X_2, [X_4, X_2] = X_1\). Then \(X_1, \ldots, X_5 \) is a Jordan-Hölder basis for \(\frak{g} \), so \(\frak{g} \) is completely solvable. We set \(Z_j = X_j \) and \(\xi_j = \langle g, X_j \rangle = \zeta_j, j = 1, \ldots, 5 \).

We have

\[
M(g) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\xi_1 & -\xi_2 \\
0 & 0 & -\xi_2 & -2\xi_3 & 0 \\
0 & \xi_1 & \xi_2 & 0 & -\xi_4 \\
0 & \xi_2 & 2\xi_3 & \xi_4 & 0
\end{bmatrix}
\]

i) If \(\xi_2^2 - 2\xi_1 \xi_3 \neq 0 \), then \(g_8 = \mathbb{R} X_1 \) and therefore \(J_8 = \{ 2, 3, 4, 5 \} \).

ii) If \(\xi_2^2 - 2\xi_1 \xi_3 = 0 \) and \(\xi_1 \neq 0 \) then

\[
g_8 = \mathbb{R} X_1 \oplus \mathbb{R} (-\xi_2 X_2 + \xi_3 X_3) \oplus \mathbb{R} (-\xi_4 X_2 - \xi_2 X_4 + \xi_1 X_5), \quad J_8 = \{ 3, 5 \}.
\]

iii) If \(\xi_2^2 - 2\xi_1 \xi_3 = 0, \xi_1 = 0 \) and \(\xi_3 \neq 0 \), then \(g_8 = \mathbb{R} X_1 \oplus \mathbb{R} X_2 \oplus \mathbb{R} (-\xi_4 X_3 + 2\xi_3 X_4) \), \(J_8 = \{ 3, 5 \} \).
iv) If $\xi_2^2 - 2\xi_1\xi_3 = 0$, $\xi_1 = 0$, $\xi_3 = 0$ and $\xi_4 \neq 0$, then

$$ g_k = \mathbb{R}X_1 \oplus \mathbb{R}X_2 \oplus \mathbb{R}X_3, \quad J_k = \{4, 5\} $$

v) If $\xi_2^2 - 2\xi_1\xi_3 = 0$, $\xi_1 = 0$, $\xi_3 = 0$, $\xi_4 = 0$, then $g_k = g$, $J_k = \emptyset$.

We can then write down:

\[
\begin{align*}
\mathbf{e}_1 &= \{2, 3, 4, 5\}, & \mathbf{\Omega}_{\mathbf{e}_1} &= \{g \mid \xi_2^2 - 2\xi_1\xi_3 \neq 0\}, \\
\mathbf{e}_2 &= \{2, 4\}, & \mathbf{\Omega}_{\mathbf{e}_2} &= \{g \mid \xi_2^2 - 2\xi_1\xi_3 = 0, \xi_1 \neq 0\}, \\
\mathbf{e}_3 &= \{3, 5\}, & \mathbf{\Omega}_{\mathbf{e}_3} &= \{g \mid \xi_1 = \xi_2 = 0, \xi_3 \neq 0\}, \\
\mathbf{e}_4 &= \{4, 5\}, & \mathbf{\Omega}_{\mathbf{e}_4} &= \{g \mid \xi_1 = \xi_2 = \xi_3 = 0, \xi_4 \neq 0\}, \\
\mathbf{e}_5 &= \emptyset & \mathbf{\Omega}_{\mathbf{e}_5} &= \{g \mid \xi_1 = \xi_2 = \xi_3 = \xi_4 = 0\},
\end{align*}
\]

\[
\begin{align*}
Q_{\mathbf{e}_1}(g) &= (\xi_2^2 - 2\xi_1\xi_3)^2, & u_{\mathbf{e}_1} &= (X_2^2 - 2X_1X_3)^2, \\
Q_{\mathbf{e}_2}(g) &= \xi_2^2, & u_{\mathbf{e}_2} &= -X_1, \\
Q_{\mathbf{e}_3}(g) &= 4\xi_3^2, & u_{\mathbf{e}_3} &= -4X_3^2, \\
Q_{\mathbf{e}_4}(g) &= \xi_4^2, & u_{\mathbf{e}_4} &= -X_4, \\
Q_{\mathbf{e}_5}(g) &= 1, & u_{\mathbf{e}_5} &= 1.
\end{align*}
\]

3.2. — Let g be the six dimensional real exponential solvable Lie algebra having a basis X_1, \ldots, X_6 with the following non-vanishing brackets:

\[
\begin{align*}
[X_6, X_4] &= X_4 - X_5, & [X_6, X_2] &= X_1 + X_2, & [X_6, X_1] &= X_1 - X_2, & [X_5, X_4] &= X_3, & [X_5, X_3] &= X_2, \\
[X_4, X_3] &= X_1.
\end{align*}
\]

Set $Z_1 = X_1 - iX_2$, $Z_2 = X_1 + iX_2$, $Z_3 = X_3$, $Z_4 = X_4 - iX_5$, $Z_5 = X_4 + iX_5$, $Z_6 = X_6$. Then Z_1, \ldots, Z_6 is a Jordan-Hölder basis for g_b, and

\[
M(g) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & -(1 - i)\xi_1 \\
0 & 0 & 0 & 0 & 0 & -(1 + i)\xi_2 \\
0 & 0 & 0 & -\xi_1 & -\xi_2 & 0 \\
0 & 0 & \xi_1 & 0 & -2i\xi_3 & -(1 - i)\xi_4 \\
0 & 0 & \xi_2 & 2i\xi_3 & 0 & -(1 + i)\xi_5 \\
(1 - i)\xi_1 & (1 + i)\xi_2 & 0 & (1 - i)\xi_4 & (1 + i)\xi_5 & 0
\end{bmatrix}
\]

Writing $\xi_j = \langle g, X_j \rangle$, $j = 1, \ldots, 6$, we have $\xi_1 = \xi_1 - i\xi_2$, $\xi_2 = \xi_1 + i\xi_2$, $\xi_3 = \xi_3$, $\xi_4 = \xi_4 - i\xi_5$, $\xi_5 = \xi_4 + i\xi_5$, $\xi_6 = \xi_6$.

i) If $\xi_1 \neq 0$, then $J_g = \{1, 3, 4, 6\}$.

ii) If $\xi_1 = 0 (\Rightarrow \xi_2 = 0)$, $\xi_3 \neq 0$, then $J_g = \{4, 5\}$.

iii) If $\xi_1 = 0$, $\xi_3 = 0$, $\xi_4 \neq 0$, then $J_g = \{4, 6\}$.

iv) If $\xi_1 = 0$, $\xi_3 = 0$, $\xi_4 = 0 (\Rightarrow \xi_5 = 0)$, then $J_g = \emptyset$.

4e série — tome 17 — 1984 — n° 1
We can then write down:

\[e_1 = \{1, 3, 4, 6\}, \quad \Omega_{e_1} = \{g \mid \xi_1^2 + \xi_2^2 + 0\}, \]
\[e_2 = \{4, 5\}, \quad \Omega_{e_2} = \{g \mid \xi_1^2 + \xi_2^2 = 0, \xi_3 + 0\}, \]
\[e_3 = \{4, 6\}, \quad \Omega_{e_3} = \{g \mid \xi_1^2 + \xi_2^2 = 0, \xi_3 = 0, \xi_4 + \xi_5 + 0\}, \]
\[e_4 = \emptyset, \quad \Omega_{e_4} = \{g \mid \xi_1 = \xi_2 = \xi_3 = \xi_4 = \xi_5 = 0\}, \]
\[Q_{e_1}(g) = 2(\xi_1^2 + \xi_2^2), \quad u_{e_1} = 2(X_1^2 + X_2^2)^2, \]
\[Q_{e_2}(g) = 4\xi_3^2, \quad u_{e_2} = -4X_3^2, \]
\[Q_{e_3}(g) = 2(\xi_4^2 + \xi_5^2), \quad u_{e_3} = -2(X_4^2 + X_5^2), \]
\[Q_{e_4}(g) = 1, \quad u_{e_4} = 1. \]

REFERENCES

(Manuscrit reçu le 22 juin 1982, révisé le 9 mai 1983).