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SPECIAL VALUES OF ZETA FUNCTIONS
ATTACHED TO SIEGEL MODULAR FORMS

By MICHAEL HARRIS (*)

Introduction

Let j be a cusp form of even weight k for the full Siegel modular group of degree n e 4 Z; let
v|/ be a primitive Dirichlet character of conductor m; for simplicity we assume
v|/ ( — 1) = 1. When j is an eigenform for all the associated Hecke operators, Andrianov and
Kalinin have recently shown that, under certain restrictive conditions, a certain Dirichlet
series with Euler product L(/, s, v|/) attached to j and \|/ can be extended to a meromorphic
function on the entire complex s plane which (under still more restrictive hypotheses) satisfies
a functional equation of the usual type (c/. [2]; their results are summarized in paragraph 5
below). We assume that the Fourier coefficients of j are algebraic numbers. The last
Theorem of the present paper states that if A;>2n+ 1, then, at each of the critical points
(essentially in the sense ofDeligne's paper [7]) ofL(y, s, \|/), at which L (j, s, \|/) has no pole (1),
the value of L (j, s, \|/) is an algebraic multiple of ̂  < j, j >^, where d is an integer depending
only on k, s, and n, and < , \ is the Petersson inner product for modular forms of
weight k. The proof gives an effective method for determining the field in which the
algebraic number L(j, s, VI/VT^O,^)^ lies.

The main object of this paper, however, is not to prove this Theorem, but rather to explain
how the differential operators, originally introduced by Maa°, which have arisen in recent
work ofShimura and Katz, as well as in the Andrianov-Kalinin paper, can be interpreted in
terms both of representation theory and of algebraic geometry, and how these interpretations
can be used to prove algebraicity Theorems of which the one mentioned in the last paragraph
is a particular example. Other examples are the Theorems of Shimura on Rankin-Selberg
type zeta functions for Hilbert modular forms ([34], [35], [37]) on which the arguments of this
paper are loosely modeled (c/. [14]), and that ofSturm and Zagier ([46], [47]) on the symmetric
square of the standard zeta function attached to a classical cusp form.

( : ; : ) Research par t ia l ly supported by NSF Grant MCS77-04951.
( i ) When k^>n there are many such points.
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78 M. HARRIS

What is common to all the results mentioned above is that, in each case, the special value of
the zeta function is equal, up to a scalar in K^ multiplied by a power of 71, to a Petersson inner
product of the form < j, h^. 5 (h^) \. Here ̂  and h^ are holomorphic modular forms of
weights / and X respectively, and 5 is a differential operator which takes modular forms of
\Y^eight X, to (nonholomorphic) modular forms of weight k — I . Our basic argument consists
in showing that:

O^i.s^X-OJo;^

where JQ is holomorphic of weight k with Fourier coefficients in the field generated over Q by
the Fourier coefficients of h^ and h^. This is done in three steps:

0 . 1 . The forms /. / ? i . and h^ correspond respectively to functions (p, (pi, and (p2 on the
group G=Sp(2^ ,R) which transform under the maximal compact subgroup:

^id) A )eG A+Bf urn^r^,[ \B A / J

by the formulas:

c p f ^ . f ^ . B ) )=de t (A+BO- f e (p^) ,
\ V 0 A //

cpif^.f^ .^^de^A+Bfpq)^),
\ \15 A //

^ ( ^ ' ( t ^^eUA+BO-^/) ,^eG, ( A " . ^ K ,\ \ B A / / \ B A /

and, if F=Sp(2n,Z)c=G and dg is the standard Haar measure on G:

1 f ———————— dej
Q,^.5(^)>fc= (p.(pi .D(p2^=((p, (pl.Dq)^),

vol (F\G) Jr^G

where D is a certain left-invariant operator on G.

0.2. We may write (pi. Dcp^ as a finite sum ofeigenfunctions q^0 for Z (g^), the center of the
universal enveloping algebra of the complexified Lie algebra of G. Now (p is an
eigenfunction for Z(c^) with character ^o; if the character ̂  ofZ(g^) corresponds to q/0, it
follows from self-adjointness properties of Z(g^) that:

</, ̂ .§(^)\=(^ cpi.D(p,)=((p, (p<°)).

0.3. Finally, (p(o) corresponds (as in step 1) to a holomorphic modular form JQ with the
required rationality properties, and:

((p.cp^OJo),.
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SPECIAL VALUES OF ZETA FUNCTIONS 79

Of these steps, the first is completely standard. The second depends on the
decomposition of tensor products of "limits ofholomorphic discrete series representations."
as investigated, tor example, by Jakobsen and Vergne in [16]. That §, which is initially
defined in terms of the MaaB operators, "comes from" the universal enveloping algebra
follows directly from the transformation property of 5. The third step is based on an idea of
Katz in [18]: We interpret the MaaB operators in terms of the Gauss-Manin connection on the
relative algebraic de Rham cohomology of the universal family of abelian varieties over the
Siegel upper half space. The rationality result is a consequence of this interpretation and the
"^-expansion principle", Theorem 4.9. It should be mentioned that this part of the
argument doesn't seem to work when either h^ or h^ is not of integral weight, as in the Sturm-
Zagier example. However, in the one-dimensional case the differential operators are so
explicit that the Fourier coefficients of JQ can be shown directly to have the right rationality
properties.

Several possible extensions of this theory should be noted:

0.4. Manin and Panchishkin have obtained results similar to those of Shimura ([34], [35])
by a different method, one which allows the estimation of how the p-adic absolute value of the
"algebraic part" of the value of the Rankin-Selberg zeta function D(s,/^, g) varies as /%,
runs over the set of twists of / by Dirichlet characters ^ of p-power conductor
(c/. [24]). Since the enveloping algebra and the moduli space both have Z-integral structures
(as well as Q-rational structures), it is possible that such results can be deduced by the
methods of this paper.

0.5. The techniques used here are valid, in principle, for a very general class of modular
forms; paragraph 7 contains a list of axioms which is probably sufficient to prove analogues of
our Theorem 7.1. Of course, the zeta functions have yet to be defined in this degree of
generality. The next candidates are the zeta functions attached by Shintani to holomorphic
cusp forms for groups of type U(2, 1) [39].

In the course of this paper, a number of artificially restrictive conditions are imposed upon
our modular form. Some of these have no other motivation than the desire to avoid
cluttering the final result with irrelevant notation. Others are required by the methods of
Andrianov-Kalinin, in particular by the absence of detailed information on the analytic
properties ofEisenstein series in the most general relevant case. It is enough to mention that
most of the arguments in the body of the text depend entirely upon formal properties of the
modular forms and differential operators in question, and that extensions of this method to
higher level (for example) involve no new ideas.

The outline of this paper is as follows: paragraphs 1 and 2, which contain nothing original,
review the theory of Siegel modular forms in the languages of [40] or [23], and [5] or [13],
respectively. In paragraph 3 some scattered facts about tensor products of analytic
continuations of discrete series representations are collected, and step 0.2 above is carried
out. The principal novelty here is the use of a Q-rational structure on the enveloping
algebra. In paragraph 4 Siegel modular forms are investigated from the point of view of
algebraic geometry; the Gauss-Manin connection is investigated, along the lines of [19], and a
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80 M. HARRIS

version of the '^-expansion principle" is proved. Section 5 is a resume of the theory of
Andrianov and Kalinin. The various differential operators introduced in the previous
sections are compared in paragraph 6; paragraph 7 applies this work to derive the Theorem
on special values alluded to above, and concludes with an axiomatic summary of what has
gone before, with a view to future generalization. An appendix sketches two proofs of the
most general ^-expansion principle.

My acknowledgments are of two sorts. It goes without saying that this work depends on
the previous efforts of many people, but a few should be mentioned specifically. The
Theorem on special values should be regarded in the context ofDeligne's conjecture [7] on the
relations between special values of zeta functions and periods of integrals. Since I don't
really understand what "motive" is attached to the zeta functions in question here, I can only
say that Corollary 7.3 is not clearly inconsistent with Deligne's conjecture. More
specifically, Theorem 7.1 and its proof are heavily indebted to the techniques introduced by
Shimura in [34]. Shimura's work in other contexts plays an important role in paragraph 4,
which is largely formulated, however, in a language based on that of Katz ([18], [19]). Of
course, were it not for the work of Andrianov and Kalinin, the title of this paper would have
been vacuous.

In the course of writing this paper, I have benefited from conversations with a number of
mathematicians, whom I take this opportunity to thank. A remark of D. Kazhdan directed
my attention initially to the significance of the canonical differential operators of
paragraph 6. The derivation of Corollary 7.3 from Corollary 7.2 is based on a suggestion
ofG. Shimura. In preparing the final version of this paper, I was grateful for the suggestions
of A. Mayer, J.-P. Serre, M. Vergne, and especially B. Mazur, who has encouraged me in this
project since its inception. Most especially, I am grateful to H. P. Jakobsen, who patiently
explained the theory of holomorphic representations to me; without his explanations, the
theory of paragraph 3, and this paper, would never have come into being.

Notation

The symbols Z, Q, R, and C have their usual meaning, as does GL(n, R) for any ring R;
M (n, R) is the algebra of n x n matrices with coefficients in R. The identity matrix is
denoted I; its dimension will always be evident. The 2n x 2n matrix J is given by:

j - f ° l}-l-i or
then, for any ring R, Sp (2 n, R) is the group of matrices g e M (2 n, R) such that g J g ' = J: Here
g ' is the transpose of g. When such a g is written:

/A B\
^[c D ) '

A, B, C, and D will always denote n x n matrices. The determinant (resp. trace) of an n x n
matrix g is written det ^(resp. Tr^).
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SPECIAL VALUES OF ZETA FUNCTIONS 81

The notation e(z) denotes ^27Ilz, for any complex number z. When G is a real matrix
group and X is an element of its Lie algebra, then exp(X) is the corresponding element
of G. Lie algebras are usually denoted by Gothic lower case letters.

If Y is a real symmetric square matrix, we write Y>0 (resp. Y^O) to indicate that Y is
positive definite (resp. semidefmite).

If V is a vector space over a field L of characteristic zero, we write either V®" or (g) {'V to
denote the n-fold tensor product of V with itself; in the former case, the field is
understood. The notation Sym "V denotes the n-fold symmetric tensor product ofV with
itself; A"V the n-th exterior power of V. We let V ( x ) o=Sym ( )V=AOV=L. If X^ and
X^eV, then define:

XioX^-^Xi^X^+X^X^eSyn^V;

similarly for higher symmetric powers. The symmetric algebra on V is
CO

S(V)= ® Sym"(V). In general, n can be a negative integer in the above notation; thus
n=0

V®-", for n>0, denotes (V*)0", where V* is the dual space to V.
IfX is a real manifold and V a complex vector space, C^ (X, V) is the space o f C / V-valued

functions on X. If X has a measure, then vol X is the volume of X with respect to that
measure (usually implicit). If X is a complex manifold, or an algebraic variety, then (9^ is its
structure sheaf.

We denote by ̂  a primitive N-th root of unity, for any integer N>0.
In paragraph 4, by a "section of the sheaf y we ordinarily mean a section of//' over some

open set, when the open set is not invoked explicitly.
IfG is a group, a representation ofGis denoted (p, Vp), where Vp is a vector space and p is a

homomorphism from G to the group of automorphisms of Vp.
The symbol 5^ is the Kronecker delta.

The field of all algebraic numbers, regarded as a subfield of C, is denoted Q.

1. Review of Siegel modular forms

The basic references for this section are [23], [31], and [2].

1.0. We denote by (3^ the Siegel upper half-space of degree n :

(S^= { Z = X + i Y e M ( n , C)|X, YeM(n, R), X=X^ Y=Y t , Y>0}.

The group G==Sp(2n, R) acts on S^ in the usual way: If g=( )eG, ZeS^, then:
\C Dy

^(Z)=(AZ+B)(CZ+D)-1 .

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



82 M. HARRIS

I . O . I . The point f l belongs to S^; the map g\—^g{i\\ geG, induces an isomorphism:

G/K ̂  £,,

where K is the subgroup of G whose elements are matrices of the form ( ]. The
\B A /

group K is a maximal compact subgroup ofG, and is canonically identified with the unitary
group U(^) by the map:

(^ A")^8--

1.0.3. For any g = ( ) e G, Z e Sy,, we define the canonical automorphy jactor:

J (^Z)==CZ+DeGL(^ C).

If p : GL(n, C) -> GL(Vp) is a representation on some finite dimensional complex vector
space Vp, we let Jp(^, Z)=p(J(^, Z)). For any p, Jp satisfies the cocycle condition:

1.0.4. Jp(^ ̂  Z)=Jp(^i , 92 ZMp(^ Z).

We note that, for keK, the map 1.0.2 identifies k with J ( k , i\).

1.0.5. Given a point Z = X + i Y e 6 ^ , it is sometimes useful to know an explicit
representative for Z in G under the isomorphism G/Kc^ Q^. We let Y^2 be the positive-
definite symmetric matrix obtained by taking square roots of the eigenvalues of Y satisfying
(Yi/2)2^Y;then:

d^f/Y^2 XY-^
Qz-\^ o Y- 1 / 2 )

is a representative for Z in G.

1.1. Let F <= Sp(2 n, Z) be a subgroup of finite index. A Siegel modular jorm of weight k
jor F is a holomorphic function j : 6^ -> C such that:

I . I . I . /(yZMdet^Z^Z), yeF.

When n= 1 one adds the usual conditions of holomorphy at the cusps, which is automatic
when n > 1.

More generally, if p : GL(n, C)^GL(Vp) is a holomorphic representation, a Siegel
modular form of type p for F is a holomorphrc function/ : (5^ -> V such that:

1 - 1 ' 2 - / (yZ)=Jp(y,Z)/(Z) , yeF.
If / is a C^-function satisfying I . I . I (resp. 1.1.2), we say / is a C^ modular form (2) of

(2) This is in contradiction with the usual terminology, which imposes a growth condition at infinity. In
practice, this standard hypothesis will be satisfied, and this will be indicated. For holomorphic /, n = l , this
hypothesis is part of the definition.
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SPECIAL VALUES OF ZETA FUNCTIONS 83

weight k (resp. of type p) for r. The set of Siegel modular forms of weight k (resp. type p)
for r is denoted G^F) (resp. Gp(F)]; the C00 modular forms are denoted G^ (F), G^° (F).

We define, for any integer N, the subgroup F (N) <= Sp (2 n, Z) of matrices congruent to the
identity modulo N; ihejull modular group is r(l)==Sp(2 n, Z).

1.2. LetMeZ. We define:

^ = { N = N t e M ( n , Q ) | N ^ O , T r ( N N ' ) e Z , V N ' = N ' t e M ( ^ z , Z), N'=0(mod M)}.

Any/ eGp (F(M)) has a Fourier expansion:

1.2.1. ^ = I a(NMTr(NZ)), a(N)eVp;
N6^

moreover ^(ANA')=a(A) for any AeSL(n, Z). I fa (N)^0 implies that N>0, then/is a
CMSJ? /orm; the set of all cusp forms of weight k (resp. type p) for F(M) is denoted
S,(r(M))[resp.Sp(r(M))].

If/ i eSfe(r(M))j2^G? (HM)), we define the Petersson inner product of/i and/^ to be:

1.2.2. <y,^>^^^^(Z)y7(Z)(detY)-^^.

whenever this integral converges absolutely; here Q) is a fundamental domain for F (M) in ©„,
X and Y are the standard coordinates on ©„, and dX ̂ Y/(det Y)^1 is the G-invariant
volume form on ©„.

1.4. We now introduce some specific Siegel modular forms which arise in Andrianov's
theory. First, let Ne^i, N>0 and let ^ be a primitive Dirichlet character modulo some
positive integer m. We define the theta-series attached to N and ^:

1.4.1. Q^(Z, x)= Z X (det (M)MTr(MNM tZ))
MeM(n,Z)

this is a modular form of weight n / 2 for F (2 det (2 N) m2) (c/. [I], §5).
Let m be as above; let:

ro(m)=J(^ ^er( l ) |C==0(modm)l ;

^-{(^ ^6^(•)}•
For any feeZ, seC, and any (not necessarily primitive) character ^ modulo m, we define
(formally) the Eisenstein series:

I . Q i. ^ ^ v A^^ ^-^(Y))(ciet Y)-1.4.2. E,(Z,5,x)= Z de t ( J (y ,Z) ) . . . ^.2^
Yer,\ro(w) I061 J u ^ ^^1

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



84 M. HARRIS

where:

Z = X + f Y , ^(y)=det(D) if ^ ( A B}.
\^ u /

This Eisenstein series converges absolutely when A:+Re ( 2 . s ) > / ? + 1 to an element of
def

G f c { r { m ) ) . When s=0 and ^ > n + l , /c even, E/, ( Z , / ) = E ^ (Z, 0, 7) belongs
to G^(r(m)), and its Fourier coefficients are rational if m=l , cyclotomic in general ([40],
[51]).

For any k, ̂ , E^ (Z, s, ^) can be continued to a meromorphic function in s which satisfies a
functional equation i f m = = l ([2]; Prop. 3.2). The poles o f E ^ ( Z , s , ^ ) have yet to be
completely determined (but cj. Prop. 3.2 of [2]); in any event, we will mainly be concerned
with those s for which the defining series converges.

1.5. The E^(Z, s, ^) for different (fe, s), are connected with one another by a differential
operator which was first introduced by MaaB in [22], and which will reappear in various
guises throughout this paper.

Let d / d Z be the matrix (((1 +5^)/2).(5/^Z^.)), where the subscript ij refers to the matrix
entry in S^. For any oceR, a ^ 0, we define a differential operator on S^, following
Maap, [23] :

1.5.1. M„=MJZ)=det(Z-Z) ( ("+ l ) / 2 )- adetf-^-)det(Z-Z) a- ( ("- l ) / 2) .
\dZ]

We now define:

S^SJZ^f-^Y^detY)-^.
V 471 /

It follows immediately from the results of MaaB on M^ in [23], § 19, that if:

£"(a)=a(a-10•••(a-MiA)'
1-5.2. 5^(Z, s, 30=^"^E^(Z, s-1, x)

and, if we write:

(j\g,){Z)=det^(g,Z))-'J(gZ), geG, /eC°°(S^C),
that:

1.5.3. 8jyi0j=(8«y)1^2, /eC°°(^,C), geG.

In particular, for k e Z, §^ induces a map:

5,: Gnr)^G^(r)

for any subgroup F <= F(l) of finite index.
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SPECIAL VALUES OF ZETA FUNCTIONS 85

1.6. For any holomorphic representation (p, Vp) of GL(n,C), we define the
G-homogeneous vector bundle <^p over 6,,:

1.6.1. ^p = S^ x Vp, with G action defined by:

^(Z,F)=^(Z),Jp(^,Z)u); ^eG, Ze^, reVp.

That this is indeed a G-action follows from the cocycle condition 1.0.4. For any subgroup
r <= G, <^p descends to a bundle denoted <^p(r), over F\S^. Then there are
isomorphisms, assuming F acts without fixed points on S,:

i.-. H^e..,,n,̂ ;̂ }̂ <r,

..6.3. H.,r̂ 6.,/,n)S{G•0^7J^^^^
Here it is assumed that r is of finite index in r (1); when n = 1 we impose the usual cuspidal

condition on the left-hand side in 1.6.3.
When p=det\ we write (^, <^(r) instead of^p, ^p(F).

1.6.4. By the very definition of <f , we see that each vector ve\ gives rise to a global
"constant" section v of <^p over 6^: At every point Ze£^, ?(Z)=(Z, v) in the
trivialization 1.6.1.

2. Lifting to the group

2.0. Let 9 be the Lie algebra of G, T that of K. We write the Cartan decomposition
g=f©p, where [f, p] c p, [p, p] <= k. Let 9c=9®RC; define tc, PC. etc.,
correspondingly. The adjoint action of K on gc induces a decomposition:

2.0.1. (k-fcep^P'
as follows: We identify K with U {n) as in 1.0.2. The inclusion U (n) -> GL (n, C) is called
the standard representation ofK, and is denoted. St: it extends to the identity representation

def

Kc=GL(yi,C) -> GL(n,C), also denoted St. The dual of St, denoted St*, takes the

matrix k = ( ) e K to the matrix A — B i e GL (n, C). Now 2.0.1 can be defined by
\B A /

requiring that, under the adjoint representation of K:

p^Sym^St*), p-^Sym^St).

We may represent p + c: gc <= M (2 n, C) [resp. p- c: M (2 n, C)] as the set of matrices of the
form:

2.0.2.
^ ( a ) - ! 0 ' l a ) , o^eM^C),

2 \ i a — a /

r r e s p . p _ ( a ) - f a ~^\ a^eM^, C)1.
2 \ -;a -a 7

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



86 M. HARRIS

If k is as above, then:

AdMp-^aO^aA-BOo^-B^))
Adk(p.W)=p_((A-{-Bi)ai(At-}-Bti)).

We note that p+ and p~ are Abelian Lie subalgebras of gc-

2.1.0. We identify fc with ^e set of matrices;

^-(^ ^)-
oc^-a, P^P, a,peM(n,C).

Let fp be the set ofpo(a, P) with a, p e M ( M , Q), as in 2.1.1; Let:

PQ (resp. p Q ) = = { p + ( a ) | a e M ( n , Q), a==a1} (resp. p- (a) |aeM(n, Q), 0=0'].

Then 9Q=^Q®p$©pQ is a Q-Lie algebra such that 9Q®QC=gc- Under the linear
transformation X -> CXC~1, where:

c=f- ^ I 1}[ ,1 ,I/
QQ is taken to the Lie algebra $p(2 n, Q) of Sp (2n, Q), embedded in the canonical way in
sp(2n,C).

2.2. Let (p, Vp) be any holomorphic representation of K^=GL(n, C);
p : Kc -> GL (Vp). If cp e C00 (G, Vp) satisfies:

2.2.1. (pte^pWcpto), keK, goG,

we say (p is of type p with respect to K. The space of all such (p is denoted C^ (G, Vp)p. If
p=det^ for some integer X, we say (p is of type X, and write V^, C00 (G, V^, etc., in place
of Vp, etc.

If yeC^.Vp), define:

2.2.2. ^te)=^,p(^)==Jp(^ il)-1/^!)), ^eG;

then (p^eC^ (G, Vp)p. Conversely, given any (peC^ (G, Vp)p, we may define.

2.2.3. ^(Z)=^p(Z)=Jp(^n)(p(^), Ze^,

where ^eG is any element such that g(il)==Z; evidently j^ is well defined. This
correspondence, denoted simply y<-^(p, is a one-to-one correspondence:

C-^.Vp^C^G.Vp)?.

| 4e SERIE - TOME 14 - 1981



SPECIAL VALUES OF ZETA FUNCTIONS 87

We make the following well-known observation:

2.2.4. Let r c= F(l) be a discrete subgroup of finite index. Then, \i) <-^(p:

jeG^(Y)^ (peC^rYG.V^,

where the latter condition signifies, in addition to 2.2.1, that (p (y g ) = (p (g) for all y e F, ̂  e G.
If (peC^ (G, V) for any complex vector space V, and if Xeg, we define:

2.2.5. X i , ^ > = d j ( g e x p ( t X ) ) \ ^ Q .
at

This action extends linearly to 9^, and to its enveloping algebra U(c^).
2.3. PROPOSITION. — The function f is holomorphic on S^ if and only (/'X * (p == 0/or all

X e p ~ (we r/ian say (p f5 o/holomorphic ^pe).
Proo/. - We first observe that this is essentially Lemma 5.7 of [4]; we sketch the proof

briefly.

By the product rule:

x*(p(^)=(x*(Jp(a, n^VtoO-i^+Jp^ iir^x*/^!)).
Now one can compute directly, using the methods of 6.2 below, that X * J p (a, i I) ~ " 1 = 0 for
all X e p " : One checks this first for p=St, then uses the chain rule for general p. It thus
suffices to check that:

2.3.1. /is holomorphic <=> Xi^f(g (i I)) = 0, for all X e p ~ we may as well assume Vp = C.
Let Xkj=p- (a^.), where a^eM(n, C) has zeroes in all'except the kj andjTc places, and

where the kj and jk entries are (l+§j^)/2:

( ^
2.3.2. a,, < \A k^ . /c, ;=l, . . . . n .

\2 /

-( 1 ) k = j .

Let D / be the symmetric n x n matrix whose kj entry is (1 + 8kj)/2 (8 j /5Z^), where Zj,jls ̂ e
coordinate in ©„.

Since an analogous computation will be carried out in paragraph 6 for p'^, the following
computation will be merely sketched. First, to verify the right hand assertion of 2.3.1, it is
enough to check the case g=g^ for Z = X + f Y (cj. 1.0.5). One then computes that:

2.3.3. -^X^.*/ (^zO'I)) = {kj coordinate of the matrix Y^2 DJ \112}.

Since Y^2 is an invertible matrix, 2.3.1, and consequently the proposition, follow
from 2.3.3.
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2.4. We mentioned in 1.6 that the elements ̂  eGp° (F) can be identified with global C00

sections j of the holomorphic vector bundle ^p(F) over r\6^. We may construct <^p in
another way: Let K act on the product G x V p by the formula:

2.4.1 . (g,v)k=(gk,p(krlv), geG, keK, reVp.

The quotient (GxVp) /K, with G acting on the first factor, is then easily seen to be
equivariantly equivalent to the homogeneous vector bundle ^p on (5^; r\GxVp/K is
equivalent to ^p(F). The formula 2.4.1 makes manifest the correspondence of 1.6.2
between (p e C^ (F\G, Vp)p and global sections ] e H°^ (F\^, <Tp (F)). Of course (p is of
holomorphic type if and only if ] is a holomorphic section (by Prop. 2.3). We summarize
our three one-to-one correspondences:

2.5. PROPOSITION . — Let r be a discrete subgroup of G, ojjinite index in F (1). There is a
one-to-one correspondence between:

(a) junctions jeG^(T) [resp.J eC^G, Vp)];
(b) Junctions (p e C- (P\G, Vp)p [resp, (p e C- (G, Vp)p];
(c) sections j eH°,(r\6^ ^p(F)) (resp., C^ sections j of <fp over SJ. This

correspondence is compatible with tensor products, direct sums, and duality. Finally j is
holomorphic <=> (p is of holomorphic type oj is holomorphic.

The correspondences are symbolized j ̂ ^.j ^-> j, ̂ ^ j ^ j ^(p, etc.

2.6. We now suppose r=-T(M), for some integer M>0. Let dg be the left-invariant
measure on G such that, for ally eL1 (G/K):

f - f . dXd^
^9= ^ZJ-TxT^TT-J G Je/(detYr1-

Let^eSjr), ^eG^(r), ^<->(pi. Then we have the formula, whenever the integrals
involved converge absolutely:

1 ( ___ ^
2-6.1. <JiJ2>k=—T7r^~r^ <Pi(60<P2^)^ =(<Pi . (P2)(L 2 inner product).voi(r\G) jp^G

This interpretation has the following advantage: The center Z (c^) of U (9^) is spanned over C
by elements ^ which are self-adjoint with respect to ( , ) (cf. [43], pp. 268-269): that is,

2.6 .2 . K*(pi, ̂ ^i. S*<P2). Y^i . (p2eL2(^\G).

2.6.3. LEMMA. — Suppose )^ is a (holomorphic) cuspjormjor F of weight kj^ ^-> (p^. Let
j^ eG^ (r),^ ̂ ^'2 sucn tnat ^'2 ls an automorphic jorm in the sense of Harish-Chandra [5];
i.e., (p2 is Z(Q^)-finite and slowly increasing at infinity. Suppose ^eZ(c^) satisfies
2.6.2. Then:

((;*(pl,(p2)=((pi, (;*(();).

46 SERIE - TOME 14 - 1981 - N° 2


