Comments on a paper of Brown and Guivarc’h : “Espaces de Poisson des groupes de Lie”

Annales scientifiques de l’É.N.S. 4e série, tome 8, n° 3 (1975), p. 379-381

<http://www.numdam.org/item?id=ASENS_1975_4_8_3_379_0>
COMMENTS ON A PAPER OF BROWN AND GUIVARC'H

BY CALVIN C. MOORE (1) AND JONATHAN ROSENBERG (2)

In a recent paper [2], Brown and Guivarc'h announce a proof of the following conjecture from [1]: Let G be a connected Lie group with radical R such that G/R has finite center; then G is type T in the sense of [1] if and only if the eigenvalues of \(\text{ad} (X) \) restricted to the Lie algebra \(\mathfrak{z}(R) \) of R are purely imaginary for every X in the Lie algebra \(\mathfrak{z}(G) \) of G. The proof given, however, has a gap in it, and in particular the crucial Proposition 4 is clearly false as stated. The difficulty occurs in the next to last sentence of the proof of this Proposition for it is surely possible for G \(\cap \) V to leave invariant a compact set in \(\mathfrak{g}p(V) \), for instance a one point set consisting of an affine subspace containing G \(\cap \) V. We shall show how the difficulty can be repaired by modifying both Propositions 4 and 5; in the end, the modified version is a bit more direct than the original version. We also show that the condition in the theorem that G/R have finite center is necessary; in fact, we show that the universal covering group of SL \(_2(R) \) fails to have property T.

Specifically, Proposition 4 should be modified to read as follows:

Proposition 4. — Let G be a connected Lie group contained in the affine group of a vector space V. If G \(\supseteq \) V, and if G is type T, then G is type R.

Proof. — The given proof applies directly except that the affine Grassmann manifold \(\mathfrak{g}r(V) \) (use some letter other than p) must be chosen so that 0 < r < dim V which is possible by the proof of Proposition 3. The next to last sentence of the proof must be changed; the point is that if a compact subset C of \(\mathfrak{g}r(V) \) is invariant under a subspace \(V' \) of V, then C must consist of affine subspaces parallel to \(V' \). In particular, if \(V' = V \), we have an impossibility since r < dim V. This completes the proof.

Now Proposition 5 has to be strengthened as follows:

Proposition 5. — Let G be a connected Lie group with radical R (which is non-compact) and nil-radical N. Then there exists a homomorphism h of G onto a group h (G) such that

(1) Supported in part by NSF Grant MPS-74-19876.

(2) Supported by an NSF Graduate Fellowship. MOS (1970) Subject Classification. 22A10, 60J45.
the kernel of \(h \) operates unipotently on \(\mathcal{L}(R) \) and such that either: (i) \(h(G) \subseteq \text{GA}(V) \) for some vector space \(V \) and \(h(N) \supseteq V \), or else, (ii) \(h(G) \) is a solvable group.

Proof. — Exactly as in the paper, one reduces to the case when \(N \) is a vector group. Let \(\mathcal{P} \) be a Levi factor for \(\mathcal{L}(G) \) so that \(\mathcal{L}(G) = \mathcal{L}(R) + \mathcal{P} \). Now let \(\mathcal{L}(N_0) \) be the subspace of \(\mathcal{L}(N) \) where \(\mathcal{P} \) acts trivially and let \(N_0 \) be the corresponding vector subgroup of \(N \). If \(N = N_0 \), then as \(\mathcal{P} \) acts trivially on \(\mathcal{L}(R)/\mathcal{L}(N) \) and as \(\mathcal{P} \) is semisimple, \(\mathcal{P} \) acts trivially on \(\mathcal{L}(R) \) so that \(\mathcal{L}(G) \) is the Lie algebra direct sum of \(\mathcal{L}(R) \) and \(\mathcal{P} \). The commutator subalgebra of \(\mathcal{L}(G) \) is \([\mathcal{L}(R),\mathcal{L}(R)] + \mathcal{P} = \mathcal{L}(N) + \mathcal{P} \) which acts nilpotently on the radical \(\mathcal{L}(R) \). Hence, the commutator subgroup \([G,G] \) of \(G \) acts unipotently on \(\mathcal{L}(R) \) and hence so does its closure \(G_i \). In this case, we choose \(h \) to be the projection of \(G \) onto \(G/G_i \) and (ii) holds.

Now if \(N_0 \neq N \), we note that \(N_0 \) is a normal subgroup of \(G \) since \(N \) is abelian and since \(\mathcal{L}(R/N) \) is central in \(\mathcal{L}(G/N) \). Since \(\mathcal{P} \) is semisimple and acts trivially on \(\mathcal{L}(R)/\mathcal{L}(N) \), we may find a subspace \(\mathcal{A} \) of \(\mathcal{L}(R) \) complementary to \(\mathcal{L}(N) \) which is centralized by \(\mathcal{P} \). Since \([\mathcal{A},\mathcal{A}] \) is also centralized by \(\mathcal{P} \), it is contained in \(\mathcal{L}(N_0) \). Dividing out by \(N_0 \), let \(G' = G/N_0 \), \(R' = R/N_0 \), \(N' = N/N_0 \), and let \(\mathcal{A}' \simeq \mathcal{A} \), \(\mathcal{P}' \simeq \mathcal{P} \) be the images of \(\mathcal{A} \) and \(\mathcal{P} \) in \(\mathcal{L}(G') \). (Note that \(R' \) is the radical of \(G' \), but that \(N' \) may be smaller than the nil-radical of \(G' \).) Then \(\mathcal{A}' \) is an abelian subalgebra and \(\mathcal{P}' + \mathcal{A}' \) is a complement to \(\mathcal{L}(N') \) so that \(\mathcal{L}(G') \) is the semi-direct product of \(\mathcal{L}(N') \) and \(\mathcal{P}' + \mathcal{A}' \). Now let \(H \) be the connected subgroup of \(G \) with Lie algebra \(\mathcal{P}' + \mathcal{A}' \), and let \(H \) be its closure. Then \(\overline{H} \cap N' \) consists of elements \(n \) such that \(\text{Ad}(n) \) is trivial on \(\mathcal{L}(N') \) and on \(\mathcal{L}(G')/\mathcal{L}(N') \) which stabilize \(\mathcal{P}' + \mathcal{A}' \). That implies that \(\text{Ad}(n) \) is the identity, or in other words, that \(n \) is in the center of \(G' \). However, by the construction of \(N_0 \), and semi-simplicity of \(\mathcal{P}' \), this implies that \(n = e \). Thus, \(\overline{H} \cap N' = \{ e \} \) so \(H = \overline{H} \) is closed and \(G' \) is the semi-direct product of \(N' \) and \(H \).

We choose our vector space \(V \) to be \(N' \); for \(g \in G \), let \(g' \) be its image in \(G' \) and write \(g' = \tau(g) \rho(g) \) with \(\tau(g) \in V \), and \(\rho(g) \in H \). Now we let \(h(g)v = g'vg'^{-1} + \tau(g) \) for \(v \in V \); then \(h \) is a homomorphism of \(G \) into \(\text{GA}(V) \). Moreover \(h(N) = V \) and the kernel of \(h \) consists of elements \(g \in G \) whose projection in \(G' \) lies in \(H \) and which act trivially on \(V \). Thus the kernel surely acts unipotently on \(\mathcal{L}(R) \) and (i) holds. Proposition 5' is proved.

The proof of the main theorem now proceeds as in [2] if \(h \) satisfies (i) and is trivial if \(h \) satisfies (ii).

We turn now to the second point about necessity of the condition that \(G/R \) have finite center. Let \(G \) be semisimple with center \(Z \). By Proposition V.1 of [1] \(G \) will fail to have property \(T \) if and only if there is an open semigroup \(S \) in \(G \) such that \(S S^{-1} \cap Z \) has infinite index in \(Z \). Now let \(G \) be universal covering group of \(G_0 = \text{SL}_2(R) \), so that \(Z = \mathbb{Z} \), the integers, and let \(S_0 \) be the open semigroup of \(\text{SL}_2(R) \) consisting of matrices with all entries strictly positive. It is known that \(S_0 S_0^{-1} \) meets the center of \(G_0 \) in only one point. Now on page 46 of [3], there is constructed a very explicit cross section \(: G_0 \to G \) for the group extension so that the corresponding cocycle \(b \) from \(G_0 \times G_0 \) into \(Z \) defined
by \(s(g)s(h) = b(g, h)s(gh) \) is explicitly computable. The cross section \(s \) is continuous and hence a homeomorphism on a dense open set \(D \), specifically, the dense double coset of the triangular subgroup of \(G_0 \). It is clear that \(S_0 \subset D \), and a direct calculation using the formulas on page 46 of [3] shows that the cocycle is trivial on \(S_0 \times S_0 \) and that \(s(g^{-1}) = s(g)^{-1} \) for \(g \in S_0 \). It follows that \(s \) is a homomorphism on \(S_0 \) and that \(S = s(S_0) \) is an open semigroup in \(G \), and that \(SS^{-1} \cap Z = \{ e \} \). Thus \(G \) fails to have property T.

REFERENCES

(Manuscrit reçu le 17 mai 1975.)

Calvin C. Moore
and
Jonathan Rosenberg,
Department of Mathematics,
University of California,
Berkeley, California 94720,
U.S.A.