Weil-Châtelet groups over local fields : addendum

Annales scientifiques de l’É.N.S. 4e série, tome 5, n° 2 (1972), p. 261-264

<http://www.numdam.org/item?id=ASENS_1972_4_5_2_261_0>
WEIL-CHÂTELET GROUPS
OVER LOCAL FIELDS : ADDENDUM

BY JAMES S. MILNE

By using the structure theorems for the Néron minimal model of an abelian variety with semi-stable reduction, as presented in [2], it is possible to complete the proof of the following theorem. (Notations are as in [3].)

Theorem. — *Let A be an abelian variety over a local field K (with finite residue field) and let \hat{A} be the dual abelian variety. Then the pairings*

$$H^r(K, A) \times H^{1-r}(K, \hat{A}) \to H^2(K, G_m) \cong \mathbb{Q}/\mathbb{Z},$$

as defined by Tate [4], are non-degenerate for all r.

After [3], we need only consider the case where K has characteristic $p \neq 0$. Also we have only to prove that the map

$$\theta_K(A)_p : H^1(K, A)_p \to (\hat{A}(K)^0)^*$$

is injective, and it suffices to do this after making a finite separable field extension. Thus we may assume that A and \hat{A} have semi-stable reduction ([2], § 3.6) and that

$$A_p(K) = A_p(\overline{K}), \quad \hat{A}_p(K) = \hat{A}_p(\overline{K}).$$
Let \mathfrak{C} be the Néron minimal model of A over R. The Raynaud group \mathfrak{C}° of \mathfrak{C} over R is a smooth group scheme over R such that: (a) there are canonical isomorphisms $\mathfrak{C} \xrightarrow{\sim} \mathfrak{C}^\circ$ and $\mathfrak{C}^\circ \cong \mathfrak{C}^\circ_0$ (where \mathfrak{C} denotes the formal completion of a scheme \mathfrak{C} of \mathfrak{C} over R) and (b) there is an exact sequence $0 \to \mathfrak{C} \to \mathfrak{C}^\circ \to \mathfrak{C}^\circ_0 \to 0$ in which \mathfrak{C} is an abelian scheme and \mathfrak{C} is a torus ([2], § 7.2). $\mathfrak{C} = (\mathfrak{C}^\circ)^p$ is identified through the isomorphism in (a) with the maximal finite flat subgroup scheme of the quasi-finite group scheme \mathfrak{C}°. If we write $B = \mathfrak{C} \otimes_R K$, $N = \mathfrak{C} \otimes_R K$, ... , then we get a filtration $A_p = \mathfrak{C}_p \otimes_R K \supset N \supset T_p \supset 0$ of A_p in which $N/T_p \cong B_p$.

Let $\mathfrak{C}', \mathfrak{C}^\prime, \mathfrak{C}^\prime', ...$ be the schemes corresponding, as above, to \mathfrak{A}. The canonical non-degenerate pairing $A_p \times \mathfrak{A}_p \to G_m$ respects the filtrations on A_p and \mathfrak{A}_p, i.e. N and T_p are the exact annihilators of T_p' and N' respectively. Indeed, the induced pairing $N \times N' \to G_m$ has a canonical extension to a pairing $\mathfrak{C}_p \times \mathfrak{C}_p' \to G_{m,p}$ ([2], § 1.4). This pairing is trivial on \mathfrak{C}_p and \mathfrak{C}_p' and the quotient pairing $\mathfrak{C}_p \times \mathfrak{C}_p' \to G_{m,p}$ is the non-degenerate pairing defined by a Poincaré divisorial correspondence on $(\mathfrak{C}, \mathfrak{C}^\prime)$ ([2], § 7.4, 7.5). This shows that T_p (resp. T_p') is the left (resp. right) kernel in the pairing $N \times N' \to G_m$. The pairing $A_p/T_p \times N' \to G_m$ is right non-degenerate. But A_p/T_p has rank $p^{2n-\mu}$ where $n = \dim (A)$ and $\mu = \dim (\mathfrak{C})$ and N' has rank $p^{\mu+2z}$, where $z = \dim (\mathfrak{C})$ (cf. [2], § 2.2.7). This shows that the pairing is also left non-degenerate (because $n = \mu + z$), which completes the proof of our assertion.

Consider the commutative diagram:

$$
\begin{array}{ccc}
\mathfrak{C}^\circ (R)^{(p)} & \longrightarrow & H^1 (R, \mathfrak{C}^\circ) \\
\downarrow & & \downarrow \\
A (K)^{(p)} & \longrightarrow & H^1 (K, A_p)
\end{array}
$$

in which the horizontal maps are boundary maps in the cohomology sequences for multiplication by p on A and \mathfrak{C}. $H^1 (R, \mathfrak{C}^\circ_p) \cong H^1 (R, \mathfrak{C})$ because $\mathfrak{C}^\circ_p/\mathfrak{C}$ is smooth over R with zero special fibre and so has zero cohomology groups ([1], § 11.7) (including in dimension 0). The top arrow is an isomorphism because $H^1 (R, \mathfrak{C}^\circ_p) = 0$ (loc. cit). The cokernel of the left vertical arrow is $\Phi_\circ (k)^{(p)}$, where Φ_\circ is the group of connected components of $\mathfrak{C} \otimes_R k$ (cf. [2], § 11.1). Using all of this, one can extract from the top diagram on p. 275 of [3] (with $m = p$) an exact commutative
diagram:

\[
\begin{array}{c}
0 \longrightarrow \Phi (k)^{\rho} \longrightarrow H^1 (K, \Lambda_p) / H^1 (R, \Lambda) \longrightarrow H^1 (K, \Lambda_p) \longrightarrow 0 \\
\downarrow \psi_1 \downarrow \psi_1 \downarrow \psi_1 \\
0 \longrightarrow H^1 (R, \Lambda') / \Lambda (R)^{\rho} \longrightarrow \Lambda (R)^{\rho} \longrightarrow 0
\end{array}
\]

It is easy to see that \(\psi_1 \) is an isomorphism if and only if

\[[\ker \psi_1] = [\Lambda (K)^{\rho} / \Lambda (R)^{\rho}] \],

i.e. \([\ker \psi_1] = [\Phi (k)^{\rho}] \).

We shall show that

\[[\ker \psi_1] = p^{\alpha}, \quad [\Phi (k)^{\rho}] = p^{\alpha} = [\Phi (k)^{\rho}], \]

and as \([\ker \psi_2] [\Phi (k)^{\rho}] = [\ker \psi_1] \), this completes the proof.

Consider first the situation: \(\Lambda \) is a finite group scheme over \(K \) and \(\Lambda \) and \(\Lambda' \) are finite flat group schemes over \(R \) with given embeddings \(N \to M, \Lambda' \to \Lambda \). If \(\Lambda = \mathcal{O}_p \) for some abelian scheme \(\mathcal{O} \) over \(R \) and \(M = \Lambda', \Lambda' = \hat{\Lambda}, \) then

\[\psi : H^1 (K, M) / H^1 (R, \Lambda) \to H^1 (R, \Lambda')^*, \]

the map defined by the cup-product pairing

\[H^1 (K, M) \times H^1 (K, \hat{\Lambda}) \to H^1 (K, \hat{\Lambda}), \]

is an isomorphism \([3]\). If \(\Lambda = \mu_p, M = N, \) and \(\Lambda' = 0 \), then \([\ker \psi] = p \) because \([3]\)

\[H^1 (K, \mu_p) / H^1 (R, \mu_p) \cong H^1 (R, \mathbb{Z}/p \mathbb{Z})^* \cong H^1 (k, \mathbb{Z}/p \mathbb{Z})^*. \]

If \(M = \mathbb{Z}/p \mathbb{Z}, \Lambda = 0, \) and \(\Lambda' = \mu_p \), then \([\ker \psi] = p \) because \([3]\)

\[\ker \psi = H^1 (R, \mathbb{Z}/p \mathbb{Z}). \]

It follows from this, and the above discussion of the structures of \(\Lambda_p \) and \(\hat{\Lambda}_p \), that \([\ker \psi_1] = p^{\alpha \rho}. \)

Finally, let \(\Phi = \Lambda_\rho / \Lambda_\rho^0. \) It is a finite étale group scheme over \(R \) such that \(\Phi \otimes_k k = \Phi_v \), and there is an exact sequence

\[0 \to \Lambda \to \Lambda_\rho \to \Phi \to 0. \]

\(\Lambda_\rho^0 (R) \cong \Lambda_\rho (R) \), because \(\Lambda_\rho^0 \) and \(\Lambda_\rho \) differ only by a scheme with empty special fibre, and \(\Lambda_\rho (R) \cong \Lambda_\rho (K). \) It follows that \(\Phi (K) = \Lambda_\rho (K) / N (K) \) has \(\alpha \rho \) elements. But

\[\Phi (K) \cong \Phi (R) \cong \Phi_v (k) \quad \text{and so} \quad [\Phi (k)^{\rho}] = [\Phi_v (k)] = p^{\rho}. \]
REFERENCES

(Manuscrit reçu le 2 novembre 1971.)

J. S. Milne,
University of Michigan,
and King's College, London.