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MOBIUS INVERSION
TOR THE RRUHAT ORDERING ON A WEYL GROUP

BY DAYA-NAND VERMA.

There is a natural partial-ordering, defined below, on any Coxeter group
with given Coxeter generators, under which the identity element is the
smallest. The group is finite if, and only if, there is a highest element,
which is then unique. With a handful of well-known exceptions finite
Coxeter groups arise as Weyl groups of semisimple Lie groups and Lie
algebras, and this partial-ordering then coincides with one arising from
what is known as the Bruhat decomposition [3] for the corresponding
semisimple Lie group.

In connection with an attempt to give an ad hoc proof of « Kostant's
formula » (for the weight-multiplicities of finite-dimensional representa-
tions of semi-simple Lie groups and Lie algebras) — in fact, in an attempt
to « explain away » the alternating nature of the summation on the Weyl
group — it was conjectured in [3] that the Mdbius function, defined and
explained below, of this partial-ordering on a Weyl group, has an attracti-
vely simple form. In this note it is proved that the conjectured formula
for such Mobius function holds not only for Weyl groups, but also for
arbitrary Coxeter groups, finite or infinite. We prove this only for the
finitely generated groups, but the passage to arbitrary Coxeter groups is
trivial.

A group W with generators Ri, R^, . . ., Ri is said to be Coxeter on
these generators if each R^ has order 2 and every relation on these gene-

rators is a consequence of the « I {I -)- 1) relations

(R.Ry)01-111^ =id. (t^j),
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394 D.-N. VERMA.

where order is the order of an element o-eW, being either a positive
integer oroo, and where cT is taken to mean the identity element id. eW
for every o-eW. Refer to [1] as the standard text on Coxeter groups.

Let <& be the set of all conjugates of the (distinguished Coxeter) gene-
rators of W, under elements of W. For creW let ; (cr), called the length
ofo- (always relative to the distinguished Coxeter generators Ri, Ra, ..., R/),
denote the smallest integer k such that cr == R^ R .̂ . . . R^ for some
sequence i\, . . ., i/, drawn from the set { 1, 2, . . . , ? } . (We reserve the
letters i, /, possibly subscripted, to range in this set.) Clearly I (o- R^)
is either I (o-) 4- 1 or ( (a)— 1.

For cr, T € W, we say o- -^ T (and T ̂  cr) iff there exists a sequence of
elements Sj, 83, . . . , S/,€^> such that

T === <7 81.82 ... S :̂

and
Z (cr Si ... Sy) > Z (o- Si ... Sy-i) for 1 ̂  q ̂  k.

(Of course, for q=i the product o- Si . . . S,y_i is interpreted to mean
simply cr.) Clearly -^ is a partial-ordering, such that the set { ^G W[ o" -^T }
is finite for all T € W.

By the Mobius function of a partial-ordered set S, satisfying the fini-
teness condition : { o ' € S [ G ' - ^ } is a finite set for every TGS, one means
an integer-valued function ^ : S x S — Z with two arguments in S such
that for arbitrary o-, TGS,

^ ^ (0-, X) = 3 (<7, T),

(J "^ X -^ T

where o (cr, T) equals 1 if o- == T and 0 otherwise. This function is unique
and is equally well defined by the (equivalent) condition that

'V ^ (x, r) == ^ (<7, r) for all o", T e S.
<7-^X^<T

It has the property that if f is any function on S with values in any abelian
group, and g is the partial-sum function

9^-^f^
a-<7.
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then f can be expressed in terms of g by

/'(^-S^^)^)-
%-<-

See ([2], p. 344) for further details.

THEOREM. — The Mohius function [J. on a Coxeter group (with the above
mentioned partial-ordering in terms of the distinguished Coxeter generators}
is given by

^. (<7, T) == (—— 1)W+W.

Remark. — It is clear that this is equivalent to saying that o- ^z T implies

^ (— iyw= 0. (C/*. [3], Conjecture 2.)
CT^X-<T

In other words, calling an element x € W even or odd according as
I (x) is even or odd, we have to show that every non-trivial interval in
W (i. e. { xeW | cr -^ x -< T } with cr ̂  r) has as many even elements as
odd elements.

LEMMA. — J/*a, [3eW are such that for some j

a' == a Ry -̂  a and ^ ' == (3 R; ̂  (3,

^/ien the following three statements are equivalent :

a - < P , a^S and ^-<^.

Proof. — That the middle statement a'-^ [ii is implied by the others
is trivial from the transitivity of the partial-ordering.

To prove that a' -< 8 implies a -̂  ̂  start with p == a' Si 83 . . . S/c satis-
fying ; (a' S, . . . S,) > ; (a' S, . . . S^i) for i ̂  q ̂  k.

Let t be such that 1 ̂ - t ^- k,

Z ( a ' S i . . . S^Ry) > Z ( a / S l . . . Sy) for 1^^^ /—1,

and
Z (a^ Si . . . S, Ry) < Z (a' Si . . . S,).

Clearly such t exists uniquely. We have two cases to consider.

Case 1 : Si== R/. — Denoting the conjugate Ry SRy of SG^E) under
the (fixed) generator R/ simply by S, we claim that the sequence of elements
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Si, . . . , S ^ _ i , S<+i, . . . , S A satisfies the necessary conditions in the defi-
nition of a -^ ̂  i. e.

p = a Si . .. S<-i S^+i . . . Sk,
(*) with Z ( a §1 .. . S,,)> Z ( a S i . . . S,-i) for l ^ r ^ Z — 1 ,

and Z (a Si... S<-i Sm ... Sy) > Z (a Si... S,_, S,+i... Sy-i) for t+l^q^k.

Since
a Si . . . §r == a/ Si . .. Sr R/ and a Si . . . S^-i S<+i . . . Sy == a' Si . . . Sy,

the top and bottom assertions of (*) are clear. To verify the middle
assertion, note that

and
I (^ S, . . . Sr R/) = I (^ Si . . . S.) + 1

I ( ^ ' Si . . . S.-i R;) = Z (^ Sz . . . S,-,) + 1,

so that the part I (a' Si . . . Sr) > I {^' Si . . . S,_i) in the hypothesis a'-^ ^
gives

Z (a S, . . . S.) = Z (a' Si . . . S. Ry) > Z (a^ S, . . . S/.-i Ry) = Z (a Si . . . §,-,)

as desired.

Ca5^ 2 : St 7^ R/. — Here we claim that the sequence of elements
Si, . . . , St, Rj, S^+i, . . . , SAG^ satisfies the following conditions giving
a ^ P :

P = a §1 . . . St Ry S/+i . . . S^-,

Z (a Si . . . ' S.) > Z (a Si . . . S,-i) for i ̂  r^ Z,

Z (a Si . . . S, R;) > Z (a Si . . . S,)
and

Z (a Si ... S< Ry S^i . . . Sy) > Z (a Si ... §/ R; S/+i ... Sy-i) for t+l^q^k.

The proof of this is exactly analogous to that in Case 1. This completes
demonstration of a' -^ ^ implies a -^ P. To show that a' -^ [B implies
a' -^ P', start with ? = a' Si 82 . . . S/, as before, and this time find the
unique s, 1 ̂  s ^_ k, such that

Z (a' Si ... S.-i R;) > Z (̂  Si ... S,s-i)

and
Z^Si . . . SyR;)< Z ( a ' S i . . . Sy) for s^q^k.
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In case Ss = R/? the sequence of elements Si, . . ., S^-i, S^+i, . . . 5 S^e^
does the trick of satisfying

^' == a' Si ... SA—I S,s-n . . . SA:,

Z (a' S, . . . S..-i S.+i . . . Sy) > Z (a' Si . .. S.-i S..-M ... S^-i) for s +l^q^k,

from which we get a' -^ ^'; and in case S, 7^ R^ the sequence Sj . . . Ss-i,
R/, S,, . . . , S/, from <& does a similar trick.

Q. E. D.

Proof of the Theorem. — Let cr, T be distinct elements of W. We shall
prove by induction on I (cr) 4- I (^)? that the interval { x e W | 0' -^ x -^ T { has
as many even elements as odd elements. Since a ^z T, the smallest
value of I (0') + I (r) is i, and occurs fit and) only if o" == id. and T === R^
(for some i € : { 1, 2, . . . , ? } ) , and the corresponding interval has no other
element. This is the starting step of the induction.

Now for the induction step, we fix distinct a" and ^ satisfying a -^ T.
Since T 7^ id., there exists / such that T' == T R/-< T. We have to consider
two possibilities :

Case 1 : a" '=== o-Ry ̂  cr. — In this case we claim that x € W satisfies
(T "̂  x "̂  T 1^ ^d only if x' == x Ry satisfies cr -^ x' -^ T. Because of the
symmetry of the situation we need only prove this claim when x' -^ x.
Suppose o- -^ x -^ T, so that x' -^ x -^ T. Applying the Lemma to the
situation a == a', [j == x (thus a' === cr, [j' === y/), we find that our hypo-
thesis GT -^ x gives the conclusion cr -^ y/, whence cr •̂  // ^ T is proved.
Assume conversely cr -< x' -^ T, so that cr -^ x' -^ x. Taking a == x, (B == T
in the Lemma our hypothesis x' -^ T gives x -^ T, whence ^ ^ ^ - ^ ^ is
obtained. Having proved our claim, it is clear now that the interval
between cr and T has as many even elements as odd. (The parity of x
and x' are necessarily opposite.)

Case 2 : ^ / == cr Ry -< cr. — Since the interval { x | cr -^ x ̂  T } is contained
in the interval { x ^ ' ^ x - ^ ^ t , which by our induction hypothesis has
as many even elements as odd, it will suffice to show that the compli-
mentary set

S^^WIcr^x-^T, c r - K x }

has as many even elements as odd. We claim that

(* *) S ^ i z e W i c r ^ z ^ T ' , ^ - K x j .
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To see this first note that x€S implies .x -^ x' == x Ry. For if x -K x'
then x' -^ x and we can apply the Lemma with a == cr and [B == x, and
then cr' -^ x would give cr -^ x contradicting x€S. So, having proved
that x' ̂  x holds for every x€ES, we apply the Lemma once again with
a = x' and j3 == T, and obtain x ̂  T implies x -^ T'. This establishes
our claim (**). Since the right side of (* *) is the complement of the
interval { x a- -^ x -^ T' } in the larger interval [ x [ cr' -^ x -^ T' }, each of
which has as many even elements as odd (by the induction hypothesis),
we find that the set S also has this property.

Q. E. D.

This completes, in particular, the proof of Conjecture 2 of f3j.

PROBLEM. — Let J be a subset of { i, 2, . . . , ? { , and Wj the subgroup
of W generated by { Rj | /€J j. Consider the subset

W == { ( 7 € W | 7 ( c r R y ) > Z(cr) for j € J j

of distinguished coset representatives of Wj in W. Give a suitable
(closed) formula for the Mobius function of WJ (with the partial-ordering
induced from that of W), in such a way that our Theorem above becomes
its particular case for J == empty set.

Just as the partial-ordering of W is related to that of the Bruhat cells
in the decomposition of the flag manifold G/B (where G is a complex
semisimple Lie group and B its Borel subgroup), that of W^ is related
to the partial-ordering on the cellular decomposition of G/P for the para-
bolic subgroup P of G corresponding to the set J.

Unfortunately this author has no conjecture to offer on the Mobius
function of W^.
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