F. UTZET

On a non symmetric operation for two-parameter martingales

Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 87, série Probabilités et applications, n° 4 (1985), p. 113-130

<http://www.numdam.org/item?id=ASCFPA_1985__87_4_113_0>
ON A NON SYMMETRIC OPERATION FOR
TWO-PARAMETER MARTINGALES

F. UTZET

ABSTRACT: In this paper we define a martingale \(M^*N \) such that by symmetrization provides the martingale \(\widetilde{MN} \) which takes part in the multi-dimensional Itô formula for continuous two-parameter martingales.

0. INTRODUCTION

In the compact version of Itô formula (see [3], [8]) for a continuous two-parameter \(L^4 \)-martingale \(M \), a new martingale \(\tilde{M} \) is involved. By polarization, we can define \(\tilde{MN} \), and this martingale takes part in the multi-dimensional Itô formula (see [8]). In this work, we define a martingale \(M^*N \) (\(M \) and \(N \) continuous \(L^p \)-martingales, \(p \geq 2 \)). Roughly speaking, \(M^*N \) is the limit of sums like \(\sum_{i,j} M(\Delta_{ij}^1)N(\Delta_{ij}^2) \). Then, \[
\tilde{MN} = \frac{1}{2} M^*N + \frac{1}{2} N^*M.
\]

We prove a convergence in \(H^{p/2} \) for \(M^*N \) which is very useful to compute \(M^*N \) and \(\tilde{M} \) in several cases. We also compute the quadratic variation of \(M^*N \).

We should point out that the martingale \(\tilde{M} \), written \(J_M \), for a continuous, strong \(L^4 \)-martingale, was defined by Cairoli-Walsh [2]. The martingale \(M^*N \), written \(J_{MN} \), for two
continuous L^4-martingales appeared in Guyon-Prum [4], where it was defined by a double stochastic integral of a corner function.

1. NOTATIONS AND DEFINITIONS

We consider on \mathbb{R}_+^2 the usual partial ordering $(s,t) \leq (s',t')$ if $s \leq s'$ and $t \leq t'$; we will write $(s,t) < (s',t')$ if $s < s'$ and $t < t'$. For $z, z' \in \mathbb{R}_+^2$, $z < z'$, $[z,z']$ will be the set

$$\{z \in \mathbb{R}_+^2 : z < z'\},$$

and similarly we define $[z,z']$. Put

$$R_z =]0,z].$$

Let (Ω, \mathcal{F}, P) be a complete probability space and let

$$\{\mathcal{F}_z, z \in \mathbb{R}_+^2\}$$

be an increasing, complete, right-continuous family of sub-σ-fields of \mathcal{F}; we also assume that $\{\mathcal{F}_z, z \in \mathbb{R}_+^2\}$ satisfies the condition (F4) of Cairoli-Walsh [2]: If we define

$$\mathcal{F}_s = \bigvee_{v \geq 0} \mathcal{F}_{sv} \quad \text{and} \quad \mathcal{F}_\infty = \bigvee_{u \geq 0} \mathcal{F}_{ut},$$

then \mathcal{F}_s and \mathcal{F}_∞ are conditionally independent given \mathcal{F}_st.

A stochastic process $M = \{M_z, z \in \mathbb{R}_+^2\}$ adapted to

$$\{\mathcal{F}_z, z \in \mathbb{R}_+^2\}$$

and integrable is said to be a martingale if for each $z \leq z'$,

$$E[M_{z'}, |\mathcal{F}_z] = M_z.$$

We will denote for M^p_{∞} (p ≥ 1) the set of all sample continuous L^p-martingales

$$M = \{M_z, z \in \mathbb{R}_+^2\}$$

(that is, $E[|M_z|^p] < \infty$, for all $z \in \mathbb{R}_+^2$); and for $M^p_{\infty}(z_0)$ the set of all sample continuous martingales

$$M = \{M_z, z \in [0,z_0]\}$$

with $E[|M_{z_0}|^p] < \infty$.

For a process $X = \{X_z, z \in \mathbb{R}_+^2\}$ the increment over $[z,z']$

$(z=(s,t), z'=(s',t'))$ is $X([z,z']) = X_{z'} - X_s - X_{s't} + X_z$.

A process $A = \{A_z, z \in \mathbb{R}_+^2\}$ is said to be increasing
if it is right-continuous, $A_z = 0$ on the axes, and $A([z, z']) \geq 0$ for all rectangle $[z, z']$. Given a martingale M of \mathbb{M}^2_C, we will denote by $\langle M \rangle = \{\langle M \rangle_z, z \in \mathbb{R}^2_+ \}$ a continuous version of the quadratic variation of M (see [7]).

This process $\langle M \rangle$ is increasing.

Let $z = (s, t)$ be a point of \mathbb{R}^2_+. A grid over $[0, z]$ will be a finite sub-set $\Gamma = \Gamma^1 \times \Gamma^2$ of $[0, z], \Gamma^1 = \{s_1, \ldots, s_p\}$, $0 = s_1 < s_2 < \ldots < s_p < s$, $\Gamma^2 = \{t_1, \ldots, t_q\}$, $0 = t_1 < t_2 < \ldots < t_q < t$. For $z' \in [0, z]$, $\Gamma_{z'}$ will be the set $\{z'' \in \Gamma : z'' < z'\}$. If $u = (s_i, t_j)$ is a point of the grid Γ, then, we will write

$\Delta_u = [s_i, s_{i+1}] \times [t_j, t_{j+1}]$, $\Delta^i_u = [s_i, s_{i+1}] \times]0, t_j]$ and $\Delta^2_u =]0, s_i] \times [t_j, t_{j+1}]$, with the convention $s_{p+1} = s$ and $t_{q+1} = t$. The norm of the grid is the number

$$|\Gamma| = \max_{i=1, \ldots, p} \max_{j=1, \ldots, q} (|s_{i+1} - s_i| + |t_{j+1} - t_j|).$$

Let $\{\Gamma^n, n \geq 1\}$ be a sequence of grids over $[0, z]$. $\{\Gamma^n, n \geq 1\}$ is said to be a standard one if Γ^{n+1} is a refinement of Γ^n and $\lim_{n \to \infty} |\Gamma^n| = 0$.

If M is a martingale of \mathbb{M}^p_C ($p \geq 2$), then there exists a martingale \tilde{M} of $\mathbb{M}^{p/2}_C$ (see [7]) such that for all z_0 and for all standard sequence $\{\Gamma^n, n \geq 1\}$ of grids over $[0, z_0]$,

$$\lim_{n \to \infty} \sup_{z \in [0, z_0]} E_0 \left[\sum_{u \in \Gamma^n_z} M(\Delta^1_u) M(\Delta^2_u) - \tilde{M}_z |^{p/2} \right] = 0.$$

The next result about one-parameter martingales will be needed (cf. lemma 2.1 of Nualart [7]).

Lemma 1.1 (Nualart): Let $M = \{M_t, t \in \mathbb{R}^+_+\}$ be a square integrable continuous martingale with respect to an increasing
family of σ-fields \(\{ \mathcal{F}_t, t \in \mathbb{R}_+ \} \) satisfying the usual conditions. Suppose \(M_0 = 0 \). Fix \(t_0 \) and denote by \(\Lambda = \{ s_1, \ldots, s_n \} \), \(0 = s_1 \leq s_2 \leq \cdots \leq s_n < t_0 \) a finite set of points of \([0, t_0] \). Consider another finite set \(\Lambda' \supset \Lambda \), whose points can always be written as \(\sigma_{k_i}^i \), \(i = 1, \ldots, N; k = 1, \ldots, r_i \), in such a way that \(s_i = \sigma_{k_i}^i < \cdots < \sigma_{k_i}^i < s_{i+1} \) for all \(i \). Set \(|\Lambda| = \max \{|s_{i+1} - s_i|\}, i = 1, \ldots, n \) where \(s_{n+1} = t_0 \). Then,

\[
\lim_{|\Lambda| \to 0} \sup_{\Lambda' \supset \Lambda} E\left[\sup_{k=1}^{r_i} (M(\sigma_{k+1}^i) - M(\sigma_k^i))^2 \right] = 0,
\]

where by convention, we put \(\sigma_{r_i+1}^i = s_{i+1} \).

2. THE MARTINGALE \(M*N \)

THEOREM 2.1: Let \(M \) and \(N \) be martingales of \(\mathbb{M}_{c}(\mathbb{R}) \), \(p > 2 \). Then there exists a continuous martingale \(M*N \) of \(\mathbb{M}_{c}(\mathbb{R}) \) such that for every standard sequence of grids \(\{ \Gamma^n, n \geq 1 \} \) over \([0, \infty) \), if we define the martingales \(S^n \) as

\[
S^n_z = \sum_{u \in \Gamma^n \cap z} M(\Delta^1_u)N(\Delta^2_u), \quad z \in [0, \infty),
\]

then

(i) \(\lim_{n \to \infty} \sup_{z \in [0, \infty)} E\left[|S^n_z - M*N_z|^{p/2} \right] = 0 \quad (2.1) \)

(ii) For any \(n \), the martingales \(S^n \) and \(S^n_{s_0} = \{ S^n_{s_0}, t \in \Gamma^n \} \) are in \(\mathbb{H}^{p/2} \), and \(\lim_{n \to \infty} S^n_{s_0} = M*N_{s_0} \) in the convergence of \(\mathbb{H}^{p/2} \), that is,

\[
\lim_{n \to \infty} E\left[\sup_{s \in \Gamma^n} |S^n_{s_0} - M*N_{s_0}|^{p/2} \right] = 0 \quad (2.2)
\]
and
\[\lim_{n \to \infty} \mathbb{E}\left[\sup_{t \in [0,1]} \left| S^n_{s,t} - M^*N^*_{s,t}\right|^{p/2} \right] = 0. \]

PROOF

Without loss of generality, we can suppose M and N are zero on the axes.

The part (i) of the theorem will be proved adapting the proof of lemma 3.2 of Nualart [7]. The part (ii) for $p > 2$ is an obvious consequence of maximal Doob's inequality; for $p = 2$ it is proved using a modification of that lemma. We detail the main steps of this proof.

For simplicity, $z_0 = (1,1)$ is supposed.

a) Let $p > 2$. We consider a grid Γ^n over $[0,1]^2$ and we denote its points by $u = (s_i, t_j)$, $i=1, \ldots, p_n$, $j=1, \ldots, q_n$, $0 = s_1 < s_2 < \ldots < s_{p_n} < 1$, $0 = t_1 < t_2 < \ldots < t_{q_n} < 1$ (we put $(s_{p_n+1}, t_{q_n+1}) = (1,1)$).

By Γ^n we will indicate a grid over $[0,1]^2$ such that has the same projection on the "t" axes as Γ^n. The points of Γ^n will be denoted by $u' = (\sigma_i, \tau_j)$, $i'=1, \ldots, p'_n$, $j'=1, \ldots, q'_n$.

Let I_i the set $\{ i' : \sigma_i, \tau_j \in [s_i, s_{i+1}] \}$. We define
\[S^n_{z} = \sum_{u' \in I^n} M(\Delta_{u'}^1)N(\Delta_{u'}^2), \quad z \leq (1,1). \]

Then
\[\lim_{n \to \infty} \sup_{\Gamma^n} \mathbb{E}\left[\left| S^n_{1,1} - S^n_{1,1}\right|^{p/2} \right] = 0. \quad (2.3) \]

In fact, this convergence would follow the same argument used in the proof of (3.6) in [7].

Similarly, we denote by Γ^{2n} a grid over $[0,1]^2$ which contains Γ^n and has the same projection on the "s"
axes. The points of 2_T^n will be written by $u'=(s_i, \tau_j')$, \[i=1, \ldots, p_n; \quad j'=1, \ldots, q_n',\] and let J_j be the set \[\{j' : \tau_j' \in [t_j, t_{j+1}]\}.\] We define \[
\frac{\tilde{S}^n_z}{S^n_{z}} = \bigcup_{u' \in 2_T^n} M(\Delta^1_u,)N(\Delta^2_{u'}).\]

By symmetry we obtain
\[
\lim_{n \to \infty} \sup_{2_T^n} E[|\tilde{S}^n_{1,1} - S^n_{1,1}|^{p/2}] = 0. \quad (2.4)
\]

By the conjunction of (2.3) and (2.4) we obtain (i). By Cairoli-Doob's inequality, there exists a continuous version of M^*N. The part (ii) is an immediate consequence of the maximal Doob's inequality.

b) Let $p=2$. With the same notation as above,
\[
\lim_{n \to \infty} \sup_{2_T^n} E[\sup_{s \leq 1} |\tilde{S}^n_{s,1} - S^n_{s,1}|] = 0. \quad (2.5)
\]

This can be shown as (3.8) of [7].

By symmetry,
\[
\lim_{n \to \infty} \sup_{2_T^n} E[\sup_{t \leq 1} |\tilde{S}^n_{1,t} - S^n_{1,t}|] = 0. \quad (2.6)
\]

(2.5) and (2.6) imply (i). The continuity of M^*N is proved like [7]. It remains to show (ii) for $p=2$. We claim that
\[
\lim_{n \to \infty} \sup_{2_T^n} E[\sup_{s \leq 1} |\tilde{S}^n_{s,1} - S^n_{s,1}|] = 0. \quad (2.7)
\]

In fact,
\[
E[\sup_{s \leq 1} |\tilde{S}^n_{s,1} - S^n_{s,1}|]
\]
where $\Delta^2_u = \{0, s_1 \} \times \{ \tau_j, \tau_{j+1} \}$, and $N(\Delta^2_u)$ does not depend on s. For all i,

$$J - V_j$$

is a martingale in s with respect to s_{s_1}. If $i \neq i'$, these martingales are orthogonal. Indeed, let $\{\xi_1, \ldots, \xi_k\}$,

$0 = \xi_1 < \xi_2 < \cdots < \xi_k < 1$, be a partition of $[0,1]$ which is a refinement of $0 = s_{s_1} < s_2 < \cdots < s_p < 1$. Then,

$$\langle M(\sum_{k+1}^{\xi_k} \xi_k \tau_j), (s_{i+1} \wedge \xi_k \tau_j) \rangle - \langle M(\sum_{k+1}^{\xi_k} \xi_k \tau_j), (s_{i+1} \wedge \xi_k \tau_{j'} - \xi_k \tau_j) \rangle = 0,$$

for all $i = i'$, for all τ_j, τ_j', τ_j, τ_j', because one of the two factors is always zero. Then,

$$\langle M(\sum_{k+1}^{\xi_k} \xi_k \tau_j), (s_{i+1} \wedge \xi_k \tau_j) \rangle - \langle M(\sum_{k+1}^{\xi_k} \xi_k \tau_j), (s_{i+1} \wedge \xi_k \tau_{j'} - \xi_k \tau_j) \rangle = 0.$$

By Davis inequality,

$$E[\sup_{s_1 \leq s} | S_n^{s_1} - S_n^{s_1} |] \leq C E[\sum_{i \leq i'} \sum_{j' \neq j} N(\Delta^2_u) M(\sum_{1}^{\xi_i} \xi_i \tau_j - \sum_{1}^{\xi_i} \xi_i \tau_{j'} - \xi_i \tau_j) \xi_i^{1/2}]$$

For each i, let $\Lambda_i = \{s_{i1}, s_{i2}, \ldots, s_{i1}\}$ be a finite partition of $[s_{i1}, s_{i1}+1]$. By Fatou's inequality,

$$E[\sup_{s_1 \leq s} | S_n^{s_1} - S_n^{s_1} |] \leq$$
\[\begin{align*}
\sum \mathbb{E}[\sum \lim_{i \to 0} \sum_{i,k,j'} M_i^*(s_i, t_j, s_k, t_{j'}^j)] - M_i^*(s_i, t_j, s_k, t_{j'})^2 \cdot |1/2| &= \\
= \mathbb{E}[\sum \lim_{i \to 0} \sum_{i,k,j'} M_i^*(s_i, t_j, s_k, t_{j'})^2 \cdot |1/2|] \leq \\
\leq \mathbb{E}[\sup_{i,k} F_{i,k}(t) \cdot dt] = \\
= \mathbb{E}[\sup_{i,k} \int_0^1 F_{i,k}(t) \cdot dt] \leq \\
\leq \mathbb{E}[\sup_{i,k} \sup_{j} N_i^*(s_i, t_j) \cdot M_i^*(s_i, t_j, s_k, t_{j'})^2 \cdot |1/2|] \cdot \mathbb{E}[\sup_{i,k} M_i^*(s_i, t_j, s_k, t_{j'})^2]^{1/2}. \\
\end{align*} \]

To bound the first factor of (2.8), let \(\{f_j, j' \in J_j\} \) be a family of Rademacher functions over \([0,1]\). By Khintchine inequality,

\[\mathbb{E}[\sup_{i,j} N_i^*(s_i, t_j) \cdot M_i^*(s_i, t_j, s_k, t_{j'})^2] \leq \]

\[\mathbb{E}[\sup_{i,j} \sup_{j' \in J_j} \int_0^1 N_i^*(s_i, t_j) \cdot f_j(t) \cdot dt^2] \leq \]
By maximal Doob's inequality, we can bound the second factor of (2.8):

\[
\mathbb{E} \left[\sum_{i,j,k} \sup_j M(\Lambda_{ij}^k) \right] = \\
= \sum_{i,j,k} \mathbb{E} \left[\sup_j M(\Lambda_{ij}^k) \right] \leq C \sum_{i,j,k} \mathbb{E} \left[M(\Lambda_{ij}^k) \right] = C \mathbb{E} \left[M_{1,l,1}^2 \right],
\]

where \(\Lambda_{ij}^k = \left[s_{k,l}^i, s_{k+1,l}^i \right] \times \left[t_{j,l}, t_{j+1,l} \right] \).

By (2.5) and (2.8) we have

\[
\lim_{n,m \to \infty} \mathbb{E} \left[\sup_{s \leq l} \left| S_{s,1}^n - S_{s,1}^m \right| \right] = 0. \tag{2.9}
\]

In fact, for \(n,m \), let \(\Gamma_{nm} \) be a grid over \([0,1]\) which has the same projection on the "t" axes as \(\Gamma_n \), and on the "s" axes as \(\Gamma_m \). We define

\[
S_{z}^{nm} = \sum_{u \in \Gamma_{nm}} M(\Lambda_{u}^1) N(\Delta_{u}^2).
\]

Then,

\[
\mathbb{E} \left[\sup_{s \leq l} \left| S_{s,1}^n - S_{s,1}^m \right| \right] \leq \sup_{m \leq n} \mathbb{E} \left[\sup_{s \leq l} \left| S_{s,1}^n - S_{s,1}^{nm} \right| \right] + \sup_{m \leq n} \mathbb{E} \left[\sup_{s \leq l} \left| S_{s,1}^m - S_{s,1}^{nm} \right| \right],
\]

and taken \(n,m \to \infty \), (2.9) holds.

Finally, the convergence in (2.9) is the convergence in \(H_{1}^1 \), and since the space \(H_{1}^1 \) is complete, there exists a martingale \(S_{s,1} \) of \(H_{1}^1 \) such that \(\lim_{n \to \infty} \mathbb{E} \left[\sup_{s \leq l} \left| S_{s,1}^n - S_{s,1} \right| \right] = 0 \).

By (2.1) \(\lim \sup_{n \to \infty} \mathbb{E} \left[\left| S_{s,1}^n - M S_{s,1}^n \right| \right] = 0 \). It follows \(S_{s,1} = M S_{s,1} \).
REMARKS

1) The operation \(* \) is not commutative, but it is distributive with respect to the sum either from the right or from the left.

2) \(\tilde{M} = M \ast M \) and \(\tilde{M} \tilde{N} = \frac{1}{2} M \ast N + \frac{1}{2} N \ast M \).

3) \(\tilde{M} + \tilde{N} = \tilde{M} + \tilde{N} + M \ast N + N \ast M \).

This last remark allows to compute \(\tilde{M} \) when \(M \) is a sum of factors. Specifically,

COROLLARY 2.2: Let \(M_1, \ldots, M_n \) be martingales of \(\mathbb{M}^p(z_0) \), \(p \geq 2 \). Then

\[
\tilde{\sum_{i=1}^n M_i} = \tilde{\sum_{i=1}^n M_i} + 2 \sum_{i \neq j} \tilde{M_i \tilde{M_j}}.
\]

3. AN EXAMPLE: THE FILTRATION PRODUCT OF FILTRATIONS

GENERATED BY MULTI-DIMENSIONAL BROWNIAN MOTIONS

On the complete probability space \((\Omega, \mathcal{F}, P)\) we consider two independent multi-dimensional brownian motions

\(W = \{(W^1_s, \ldots, W^n_s) : s \in \mathbb{R}_+\} \) and \(\hat{W} = \{\hat{W}^1_t, \ldots, \hat{W}^m_t) : t \in \mathbb{R}_+\} \).

We will denote by \(\{\mathbb{F}^{1}_S, s \in \mathbb{R}_+\} \) and \(\{\mathbb{F}^{2}_t, t \in \mathbb{R}_+\} \) the completed filtrations generated by \(W \) and \(\hat{W} \) respectively.

Set \(\mathbb{V} \mathbb{F}^{1}_S = \mathbb{F}^{1}_\infty \) and \(\mathbb{V} \mathbb{F}^{2}_t = \mathbb{F}^{2}_\infty \). (We might suppose \(\mathbb{F} = \mathbb{F}^{1}_\infty \mathbb{V} \mathbb{F}^{2}_\infty \)). We define the product filtration \(\{\mathbb{F}^{1}_S, z \in \mathbb{R}_+^2\} \) by \(\mathbb{F}^{1}_S \mathbb{V} \mathbb{F}^{2}_t = \mathbb{F}^{1}_S \mathbb{V} \mathbb{F}^{2}_t \). It is known that this filtration is right-continuous and satisfies (F4).

We define the bi-brownian process \(W^{ij} = \{W^{ij}_z, z \in \mathbb{R}_+^2\} \) by

\[
W^{ij}_S(\omega) = W^i_s(\omega) \hat{W}^j_t(\omega).
\]
Let \(L^2_1(\mathbb{R}_+ \times \Omega) \) be the set of equivalence classes of measurable processes \(g: \mathbb{R}_+ \times \Omega \rightarrow \mathbb{R} \) adapted to \(\{ F^1_s, \ s \in \mathbb{R}_+ \} \) and such that \(E \int_0^S g^2(x)dx < \infty \), for all \(S \). Similarly, we define \(L^2_2(\mathbb{R}_+ \times \Omega) \). We will denote by \(L^2(\mathbb{R}_+^{2} \times \Omega) \) the set of equivalence classes of measurable processes \(f: \mathbb{R}_+^{2} \times \Omega \rightarrow \mathbb{R} \) adapted to \(\{ F^2_z, \ z \in \mathbb{R}_+^{2} \} \) and such that \(E \int_0^Z f^2(\zeta)d\zeta < \infty \), for all \(Z \).

The results of Brossard-Chevalier ([1]) are extended without difficulty to the multi-dimensional case and we obtain

Proposition 3.1: Let \(M = \{ M_z, F^2_z, \ z \in \mathbb{R}_+^{2} \} \) be a square-integrable martingale. Then there exists unique functions \(g_1, \ldots, g_n \in L^2_1(\mathbb{R}_+ \times \Omega), h_1, \ldots, h_m \in L^2_2(\mathbb{R}_+^{2} \times \Omega), f_{11}, \ldots, f_{nm} \in L^2(\mathbb{R}_+^{2} \times \Omega) \) such that

\[
M_{st} = M_{00} + \sum_{i=1}^{n} \int_0^s g_i(x)dW^i(x) + \sum_{j=1}^{m} \int_0^t h_j(y)dW^j(y) + \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{R_{st}} f_{ij}(x,y)dW^{ij}(x,y).
\]

If \(M'_st = \int_{R_{st}} f(z)dW^{ij}(z) \) and \(M''_{st} = \int_{R_{st}} \bar{f}(z)dW^{jk}(z) \), by means of the Itô formula we can compute \(\tilde{M}' \) (see [3]) and by means of the multi-dimensional version, we can compute \(\tilde{M}'' \). Exactly,

\[
\tilde{M}'_{st} = \int_{R_{st}} (\int_0^t f(s',y)dW^j(y)) (\int_0^s f(x,t')dW^i(x))dW^{ij}(s',t')
\]

and

\[
\tilde{M}''_{st} = \frac{1}{2} \int_{R_{st}} (\int_0^t f(s',y)dW^j(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{ik}(s',t') + \frac{1}{2} \int_{R_{st}} (\int_0^t \bar{f}(s',y)dW^k(y)) (\int_0^s f(x,t')dW^d(x))dW^{dj}(s',t')
\]

and

\[
\tilde{M}''_{st} = \frac{1}{2} \int_{R_{st}} (\int_0^t \bar{f}(s',y)dW^k(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{ik}(s',t') + \frac{1}{2} \int_{R_{st}} (\int_0^t f(s',y)dW^j(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{dj}(s',t')
\]

and

\[
\tilde{M}''_{st} = \frac{1}{2} \int_{R_{st}} (\int_0^t \bar{f}(s',y)dW^k(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{ik}(s',t') + \frac{1}{2} \int_{R_{st}} (\int_0^t f(s',y)dW^j(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{dj}(s',t')
\]

and

\[
\tilde{M}''_{st} = \frac{1}{2} \int_{R_{st}} (\int_0^t \bar{f}(s',y)dW^k(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{ik}(s',t') + \frac{1}{2} \int_{R_{st}} (\int_0^t f(s',y)dW^j(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{dj}(s',t')
\]

and

\[
\tilde{M}''_{st} = \frac{1}{2} \int_{R_{st}} (\int_0^t \bar{f}(s',y)dW^k(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{ik}(s',t') + \frac{1}{2} \int_{R_{st}} (\int_0^t f(s',y)dW^j(y)) (\int_0^s \bar{f}(x,t')dW^d(x))dW^{dj}(s',t')
\]
REMARK: The computation of M^1*M^2 cannot be reached by means of Itô formula, because this martingale does not appear in this formula. The expression of M^1*M^2 can be deduced calculating the limit of (2.1). In order to obtain the explicit formula for M^1*M^2 we need the convergence in H^1 given by (2.2). The result is

$$M^{1*}M^2_{st} = \int_{R_{st}} \left(\int_0^{t'} f(s', y) d\hat{W}^j(y) \right) \left(\int_0^{s'} f(x, t') dW^d(x) \right) dW^i(s', t').$$

We introduce some notation. We restrict our study to the martingales vanishing on the axes: If M is a L^2-martingale, zero on the axes, with representation

$$M_{st} = \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{R_{st}} f_{ij}(x, y) dW^i(x, y),$$

we define

$$Y^j(s, t) = \sum_{i=1}^{n} \int_0^{s} f_{ij}(x, t) dW^i(x), \quad j = 1, \ldots, m;$$

$$\hat{Y}^i(s, t) = \sum_{j=1}^{m} \int_0^{t} f_{ij}(s, y) d\hat{W}^j(y), \quad i = 1, \ldots, n.$$

A Fubini theorem for bi-brownian stochastic integrals allows us to write

$$M_{st} = \sum_{j=1}^{m} \int_0^{t} Y^j(s, y) d\hat{W}^j(y) = \sum_{i=1}^{n} \int_0^{s} \hat{Y}^i(x, t) dW^i(x).$$

The expression of \hat{N} and \hat{M}^2 and the corollary 2.2 give:

PROPOSITION 3.2: Let M be a L^2-martingale, zero on the axes. With the preceding notations,

$$\hat{M}_{st} = \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{R_{st}} \hat{Y}^i(x, y) Y^j(x, y) dW^i(x, y).$$
4. THE QUADRATIC VARIATION OF M*N

Some definitions are required: A stochastic process \(\{M^z, z \in \mathbb{R}^2_+\} \) adapted to \(\{\mathcal{F}^z, z \in \mathbb{R}^2_+\} \) and integrable is said to be a 1-martingale if for any fixed \(t \), the process \(\{M^t_s, \mathcal{F}^t_s, s \in \mathbb{R}_+\} \) is a martingale. Similarly, we define 2-martingales. Because of (F4), we have that \(M \) is a martingale if and only if it is a 1 and 2-martingale. For a \(L^2 \) 1-martingale, we denote by \(\langle M^t \rangle_s \) the process \(\langle M^t_s \rangle \), that is, the quadratic variation of the one parameter martingale \(\{M^t_s, s \in \mathbb{R}_+\} \).

Let \(M \) be a 1-martingale. \(M \) is said to have 1-orthogonal increments if for any couple of disjoints rectangles \(\]z_1,z_1^i]\) and \(\]z_2,z_2^i]\) we have

\[
\mathbb{E}[\mathbb{E}([M(z_1^1,z_1^1)]M(z_2^i,z_2^i))|\mathcal{F}_{s_1^i,s_2^i,\infty}] = 0,
\]

where \(z_i = (s_i,t_i), z_i^i = (s_i^i,t_i^i), i = 1,2 \).

Similarly we define 2-martingales with 2-orthogonals increments. A martingale is said to have orthogonal increments if it has 1 and 2-orthogonal increments.

If \(M \) is a \(i \)-martingale with \(i \)-orthogonal increments, then the process \(\langle M^i \rangle_z \) is increasing, \(i = 1,2 \) (see [6]).

Lemma 4.1: Let \(M \) and \(N \) be two martingales of \(\mathbb{M}^\infty_4(z_0) \) zero on the axes, and let \(\Gamma \) a grid over \([0,z_0] \). We consider the martingale

\[
S_z = \sum_{u \in \Gamma_z} M(u^1)N(u^2), \quad z \leq z_0.
\]

Then

\[
\langle S \rangle_z = \sum_{u \in \Gamma_z} \langle M^u \rangle \langle N^u \rangle < 0.
\]
PROOF

We consider two points of \([0, z_0] : z = (s, t) \) and \(z' = (s', t')\), \(z < z'\). Let \(\Delta^1_{z, z'} =]s, s'] \times]0, t']\) and \(\Delta^2_{z, z'} =]0, s'] \times]t, t']\). Then

\[
S_z = \sum_{u \in \Gamma} M(\Delta^1_u \cap R_z) N(\Delta^2_u \cap R_z),
\]

and

\[
S([z, z']) = \sum_{u \in \Gamma} (M(\Delta^1_u \cap R_z) N(\Delta^2_u \cap R_z))([z, z']).
\]

By considering different cases it can be proved that

\[
S([z, z']) = \sum_{u \in \Gamma \setminus z'} M(\Delta^1_u \cap \Delta^1_{z, z'}) N(\Delta^2_u \cap \Delta^2_{z, z'}). \]

We denote by \(A_Z\) the process \(\sum_{u \in \Gamma \setminus z'} M^j(\Delta^1_u) <N^\Delta(\Delta^2_u)\), which has the following properties:

a) \(A\) is increasing: Just as before,

\[
A([z, z']) = \sum_{u \in \Gamma \setminus z'} <M^j(\Delta^1_u \cap \Delta^1_{z, z'}) <N^\Delta(\Delta^2_u \cap \Delta^2_{z, z'}) \geq 0.
\]

b) \(A\) is continuous and adapted. So, it is predictable.

c) \(S^2 - A\) is a weak martingale. That means, we have to show that

\[
E[S^2([z, z']) | F_z] = E[A([z, z']) | F_z].
\]

In fact,

\[
E[S^2([z, z']) | F_z] = E[(S([z, z']))^2 | F_z] =
\]

\[
= \sum_{u \in \Gamma \setminus z'} E[M(\Delta^1_u \cap \Delta^1_{z, z'})^2 N(\Delta^2_u \cap \Delta^2_{z, z'})^2 | F_z] +
\]

\[
+ 2 \sum_{u, u' \in \Gamma \setminus z', u \neq u'} E[M(\Delta^1_u \cap \Delta^1_{z, z'}) N(\Delta^2_u \cap \Delta^2_{z, z'}) M(\Delta^1_{u'} \cap \Delta^1_{z, z'}) N(\Delta^2_{u'} \cap \Delta^2_{z, z'}) | F_z].
\]

The second term is zero: If \(u, u' \in [z, z']\), \(u = (u_1, u_2)\),
We similarly calculate the other possibilities for u and u'. For the first term, we suppose $u \in [z, z']$ (the other cases are equally computed). Using the conditional independence we obtain

$$E[M(\Delta_u^1)N(\Delta_u^2)M(\Delta_{u'}^1)N(\Delta_{u'}^2) | \mathbb{F}_Z] =$$

$$= E[M(\Delta_u^1)N(\Delta_u^2)M(\Delta_{u'}^1)E[N(\Delta_{u'}^2) | \mathbb{F}_u^2] | \mathbb{F}_Z] = 0.$$

By the unicity of the quadratic variation of S, we obtain $<S> = A.$

LEMMA 4.2: Let $\{M^n, n \geq 1\}$ be a sequence of martingales of $M^2(z_0)$ such that

$$\lim_{n \to \infty} E[|M^n_{z_0} - M^z_{z_0}|^2] = 0.$$

Then

$$\lim_{n \to \infty} E[|<M^n>_{z_0} - <M>_z |] = 0.$$

PROOF

By the Kunita-Watanabe inequality we have

$$<M>^{1/2} - <N>^{1/2} \leq <M-N>^{1/2}.$$

Then, by the Burkholder inequalities for the continuous two-
parameter martingales (see [9]) and by Cairoli-Doob inequality,

$$E[|M^n_{z_0} - M_{z_0}|] =$$

$$= E[|M^n_{z_0} - M_{z_0}|] \leq$$

$$\leq \{2E[|\{M^n_{z_0} + |M_{z_0}|^2\}] \cdot E[|\{M^n_{z_0} - |M_{z_0}|^2\}]\}^{1/2} \leq$$

$$\leq \{2E[|\{M^n_{z_0} + |M_{z_0}|^2\}] \cdot E[|\{M^n_{z_0} - |M_{z_0}|^2\}]\}^{1/2} \leq$$

$$\leq C\{E[|M^n_{z_0} - |M_{z_0}|^2\}]^{1/2}. \blacksquare$$

THEOREM 4.3: Let M and N be two martingales of $M^4_{C(z_0)}$, zero on the axes. For any standard sequence of grids $\{n^n, n \geq 1\}$ over $[0, z_0]$ we have

$$<M^*N>_{z} = \lim_{n \to \infty} \sum_{u \in [n^n]_{Z}} <M^*(\Delta^1_u)N^*(\Delta^2_u) >_{z} \in L^1,$$

and if M has 1-orthogonal increments and N has 2-orthogonal increments, then

$$<M^*N>_{z} = \int_{R^2_z \times R^2_z} \psi(\zeta, \zeta') \, d<M^*(\zeta)\,d<N^*(\zeta'),$$

where $\psi: R^2_+ \times R^2_+ \to R$ is the deterministic corner function

$$\psi(z, z') = \begin{cases} 1 & \text{if } s > s' \text{ and } t < t' \\ 0 & \text{otherwise.} \end{cases}$$

(z=(s,t) and z'=(s',t')).
PROOF

The first part is a consequence of the preceding lemmas.

The second part holds because the functions

$$
\Psi_n = \sum_{\mu \in \Gamma} n^{1/2} \Delta_u^1 \Delta_u^2
$$

converge pointwise to Ψ. And then, by the dominated convergence theorem, they converge to Ψ in the norm

$$
\|\varphi\| = \left(\iint_{R \times R} \varphi^2(z, z') \, d\langle M^\varphi(z) \rangle d\langle N^\varphi(z') \rangle \right)^{1/2}.
$$

REMARK: The martingale M^*N can always be written as

$$
M^*_N = \iint_{R \times R} \Psi(\zeta, \zeta') \, dM_\zeta \, dN_{\zeta'},
$$

where this integral must be understood as a double stochastic integral of a corner function (see [4], [10]). On the contrary, $<M^*N>$ cannot, generally, be expressed as an integral with respect to $<M>_Z^1$ and $<N>_Z^2$, because these processes are not increasing in general.

ACKNOWLEDGEMENT The author is very grateful to Professor D.Nualart for his support and valuable help in writing his doctoral thesis, from which the results shown in this article have been drawn.
REFERENCES

F. UTZET
Trav. de les Corts, 272, A, 11-1
08014 BARCELONE
Espagne

Reçu en Juillet 1985