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II2 QUESTIONS

On pourrait employer le même procédé pour démontrer la réa-
lité de toutes les racines de l’équation

à laquelle conduit le problème de la quintisection de l’angle ;
mais , comme le calcul est un peu long , nous ne nous y arrête-

rons pas.

QUESTIONS RÉSOLUES.
Solution de deux des quatre problèmes de géométrie

proposés à la page 68 du XI.e volume des Annales ,
et de deux autres problèmes analogues ;

Par feu J. B. DURRANDE.

LEMME I. Si a’eux cercles se coupent orthogonalement c’est-
à-dire, de manière que les droites menées du centre de chacun à

ses points d’intersection avec l’autre soient tangentes - à ce dernier ;
la polaire d’un point quelconque de la circonférence de l’un deux
prise par rapport à l’autre, passera par l’extrémité du diamè-
tre menée par ce point. 

Démonstration. Désignons par C et 0 tant les centres dés deux
cercles que ces cercles eux-mêmes, et soit 1 l’une de leurs inter-

sections ; de telle sorte que CI soit une tangente au cercle O. Par
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un quelconque P des points de la circonférence de ce dernier cer-

cle, soient menés le diamètre PK et la droite PC , coupant de
nouveau cette circonférence en Q. Par la propriété de la tangente
et de la sécante issues d’un même point , on aura

de sorte que P et Q sont deux points conjugués, par rapport au
cercle C. Or, si l’on mène QK, l’angle PQK , inscrit au demi-

cercle, sera droit ; QK est donc une perpendiculaire par Q à CP ;
c’est donc la polaire du point P.
LEMME II. Si deux sphères se coupent orthogonalement, c’est-

à’-dire , de manière que la surface conique qui, ayant le centre

de l’une quelconque pour sommet , passera par son intersection ata avec
l’autre, soit circonscrite à cette dernière ; le plan polaire d’un
point quelconque de la surface de l’une d’elles, pris par rappor
à l’autre, passera par l’extrémité du diamètre mené par ce point.

Démonstration. Désignons par C et 0 tant les celltres des deux

sphères qne ces. sphères elles-mêmes. Par un point quelconque 0
de la surface de la dernière soient menés un diamètre PK et la

droite PC, perçant de nouveau cette sphère en Q. SI , par ces

deux droites on conduit un plan , ses intersections avec les deux

sphères seront deux cercles se coupant orthogonalement , et on prou-
vera, comme ci- dessus, que QK est la polaire de P, par rapport
au cercle C ; mais les points P et- Q conjugués l’un à l’autre pac

rapport a-u cercle C , le sont aussi, par rapport à la sphère cor-
respondante ; donc le plan polaire de P , par rapport à cette sphère
est un plan conduit par Q , perpendiculairement à CP ; ce plan
contiendra donc QK perpendiculaire à cette- droite , et conséquem-
ment il passera par le point K.

THÉORÈME I. La circonférence du cercle décrit du centre

radical de trois cercles comme centre , et arec un rayon égal à
Tom. XVI. I5
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la tangente menée de ce centre à l’un d’eux, est à la fo is le lieu
géonétrique des points du plan des trois , cercles dont les polaires
relative à ces trois cercles concourent en un même point , et le 

lieu géemétrique du point de concours des trois polaires ; et ces

deux points sont constamment aux extrémtiés d’un même diamètre
de ce cercle.

Démonstration. Désignons par C , C’ , C" tant les centres des

trois cercles dont il s’agit que ces cercles eux-mêmes. Soient pa’reil-
lement désignés par 0 tant leur centre radical que le cercle dé-

crit de ce centre avec un rayon égal- à la tangente menée du même
point à l’un quelconque des trois cercles. Par un quelconque P
des points de la circonférence du cercle 0 , soient menées le dia-
mètre PK et les droites PC , PC’, PC" , coupant de nouveau la

circonférence 0 en Q, Q’, Q" ; comme , par construction , cette
circonférence coupe les trois autres orthogonalement, il s’ensuit.

( Lemme 1) que , si l’on mène les droites QK, Q’K , Q"K, ces
droites seront les polaires respectives du point P , par rapport aux
cercles C , C’, C" ; ces polaires concourront donc, en effet, en

un même point K , extrémité du diamètre conduit par P.
Il est aisé de se convaincre que les points de la circonférence

0 sont les seuls du plan des trois cercles qui jouissent de la pro-

priété que l’on vient de démontrer leur appartenir. Considérons en
eSet un point p , autre que ceux de cette circonférence , par lequel
soit fait passer une autre circonférence o coupant orthogonalement
les deux cercles C’ et Cl’ ; si l’on mène le diamètre pk, on dé-

montrera, comme ci-dessus , que les polaires de p relatives à C’

et C" concourent en k ; mais si , au lieu d’employer , dans cette
construction les deux cercles C’ et C", on emploie tour-à tour
les cercles C" et C , C et C’ , on trouvera deux autres points k’
et k" de concours de polaires , sur des circonférences c’ et cl’ diffé-

rentes de c ; de sorte qu’alors les trois polaires ne concourront plus
au même point.

Lorsque les trois cercles se coupent de manière à avoir une par-
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tie commune , leur centre radical situé alors dans cette p artie com-
mune, leur étant ainsi intérieur à tous trois, il n est plus possi-
ble de leur mener des tangentes de ce centre ; aucun cercle ne

peut donc les couper tous trois orthogonalement , et par suite

il n’est aucun point de leur plan dont les trois polaires concou-
rent en un même point. 
Ce qui précède résout complètement le problème III de la page

68 du XI.e volume des Annales, et prouve en outre que le pre-
mier des quatre problèmes proposés en cet endroit est Impossible
ou indéterminé. On demande en effet, dans l’énoncé de ce pro-
blème , de trouver le point t!u plan de quatre cercles dont les po-
laires , relatives à ces quatre cercles , concourent en un même

point. Or, s’il existe un tel point , en le joignant au point de

concours des quatre polaires par une droite, le milieu de cette

droite devra, par ce qui précède, être le centre radical de’ cha-
cun des quatre systèmes de trois cercles que l’on peut former avec
les quatre cercles donnés. Le problème ne sera donc possible qu’au-
tant que ces quatre cercles seront tels que , pris trois à trois comme

on le voudra, ils auront un seul et même centre radical ; c’est a-

dire, qu’autant qu’ils pourront être coupés orthogonalement par
un cinquième cercle , dont alors tous les points résoudront le pro-
blème.

THÉORÈME Il. La surface de la sphère dont le centre est

le centre radical de quatre sphères données et qui a pour rayon
la tangente menée de ce point à l’une quelconque de ces quatre
sphères, est à la fois le lieu géométrique des points de l’espace
dont les plans polaires, relatifs à ces quatre sphères concourent
en un même point , et le lieu géométrique du point de concours

des quatre plans polaires ; et ces deux points sont constamment aux
extrémités dan même diamètre de cette sphère.

Démonstration. Désignons par C , C’ , C" , C’" tant les centres

des quatre sphères dont il s’agit que ces sphères elles-mêmes. Soient
pareillement désignés par 0 tant leur centre radical que la sphère



II6 QUESTIONS
décrite de ce centre et d’un rayon égal à la tangente menée drt
même point à l’une quelconque des quatre sphères données. Par

l’un quelconque P des peints de la surface de la sphère O, soient-
menés le diamètre PK et les droites PC , PC’ , PC" , PC’" , per-
çant de nouveau la sphère 0 en Q, Q’, Q", Q’"; comme, par
construction, cette sphère coupe les quatre autres orthogonalement,
il s’ensuit ( Lemme II) que, si l’on conduit, par les droites QK,
Q’K, Q"K , Q"’K, des plans respectivement perpendiculaires à PC ,
PC’ , PC", t PC"’ , ces plans seront les plans polaires respectifs du
point P, par rapport aux sphères C , C’ , C" , C"’ ; ces plans con-
courent donc , en effet , en un même point K , extrémité du dia-
mètre conduit par P. 

Ici encore on démontrera que les propriétés que nous venons
de reconnaître appartenir aux points de la surface de la sphère
O leur appartient exclusivement. Si , en effet, un point p de l’es-
pace n’est pas sur cette surface , on pourra toujours par ce point
faire passer quatre sphères o , o’ , o", o’" qui coupent orthogona-
lement trois des sphères données. Menant alors dans ces sphères
les diamètres pk , pk’ , pk" , pk’" , on prouvera, en raisonnant

comme ci-dessus , que les quatre plans polaires de p , par rapport
à C, C’ , C" , C’", concourent trois à trois aux points k , k’ ,
k" , k’" et, que conséquemment ils ne concourent pas tous quatre
en un même point.

Si les quatre sphères se coupent de manière à avoir une partie
qui leur soit commune à toutes , leur centre radical , situé alors

dans cette partie commune , leur étant ainsi intérieur à toutes qua-
tre, il ne sera plus possible de leur mener des tangentes de ce

centre; aucune sphère ne pourra donc les couper toutes quatre
crthogonalement, et par suite, il n’y aura aucun point de l’es-

pace dont les quatre plans polaires concourent en un même point.
Ce qui précède résout complètement le problème où l’on pro-

poserait de déterminer le lieu géométrique des points de l’espace
dort les plane polaires, relatifs à quatre sphères données, concou-
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rent en un même point , et prouve en outre qne le problème où
l’on proposerait de déterminer le point de l’espace dont les plans
polaires relatifs à cinq sphères données concourent en un même

point , est toujours impossible ou indéterminé. Si en effet ces cinq
sphères peuvent être toutes coupées orthogonalement par une sixième
sphère, tous les points de cette dernière résoudront le problème,
-et , dans le cas contraire, ce problème 3 sera impossible (*).

Solution du problème de géomètrie énoncé à la page
368 du XV.e volume du présent recueil ;

Par un ABONNÉ.

PROBLÈME. On donne l’une des faces latérales d’un tronc

de prisme triangulaire, la longueur de l’arête latérale opposée ,
la section du tronc par un plan perpendiculaire à ses arêtes la-

térales , et par suite le volume du tronc ; et l’on demande quelle
doit être la situation de l’arête latérale donnée de longueur, par
rapport à la face latérale opposée , pour que la somme des aires
des deux bases du tronc soit un minimum ?

Solution. Soient ABB’A’ la face latérale donnée et CC’ la pro-

jection orthogonale, sur le plan de cette face , de l’arête latérale

opposée, dans la situation qui convient au minimum de la somme

(*) M. Durrande , déjà très-gravement malade lorsqu’il nous adressa ce

qu’on vient de lire, nous avait annoncé la solution de deux autres pro-
bièmes de l’endroit cité. Ii a terminé sans carrière sans ravoir pu mettre

par écrit.

J. D. G.


