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123 QUESTIONS

Démonstration du théoréme de geomélrie énonce & la

puge 100 du X volume de ce recueil , et dun
“autre .théoréme analogue ;

Par M. J. B. Durraxpe , professeur de mathématiques
spéeiales et de physique au collége royal de Cahors.

TH E OBEME. Le licu des milicux des cordes menées & une
ivq’_ctz:b‘n cor’zz’é;z;e 7quélcéngug , par lun. quelconque des points de son
}lqn ,A.,e}rt‘ une .autre section qbuijzgic , Semblable a la premiire et
semblablement située , passont par le centre de celle-ci et par le
point donné. '
Démonstration. Soient pris le diamétre passant par le point donné
pour axe des z et la parallele menée par le méme point 3 son

conjugué pour axe des y; l'équation de la courbe sera de ceute
forme

I's =a.1:’-,l;2bx+c.

Celle d’une droite menée d’une manidre quelconque par le point
donné sera de la forme

- y=ms
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ed m est indéterminé. En la combinant avec celle de la courbe R
pour éliminer y, on trouvera yue les abscisses des deux extrémités
de la corde interceptée sont données par I'équation

(e=—m*)z*+30x+c=o0 .

Mais I'abscisse du milien d’une droite est la demi-somme des abs<
cisses de ses extrémités; et il est connu dailleurs que, dans une
équation du second degré, dont le premier terme est dégagé de
son coeflicient, le coeflicient du second terme, pris avec un signe
contraire , est la somme des racines de I'équation; d’ou il suit que
Pabscisse du milicu de la corde sera donnée par I’équation

B e e ou (@a—m*)z+b=0 ;

mettant donc pour larbitraire 72, dans cette derniére , la valeur
Y. tirde de I'équation de la corde , on obtiendra, toutes réductions
x

faites , pour I'éguation de la courbe cherchée
y‘:ax’—f-ﬁx ,

ce qui démontre la proposition annoncée.

On peut facilement démontrer d’une maniére analogue cet autre
théoréme :

THEOREME. Le lieu des milicuz"des cordes menées & une surface
quelcongue du second ordre, par un quelconque des points de Ies-
pace , est une auire surface du second ordre, semblable & la premiére
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et semblablement située , passant par le centre de celle-ci et par le
point donné.

! %

Démonstration. Par le centre de la surface et parle point donnd
faisons passer un plan diaméiral quelconque, que nous prendrons
pour plan des zy, en prenant pour axe des z la paralltle au con~
jugué de ce plan diamétral. Par le méme pecint, tragons, sur le
plan des 2y, des paralltles a deux diamétres conjugués quelconques
de la section de la surface .par ce plan, et prenons ces paralléles
pour axes des x et des y; ’équation de la surface sera de la forme

2 =az*-by*t20'ad-2b'y+c .

Une droite menée d'une manidére quelconque par le point donné aura
des équations de cette forme

x=mz, y=nz,

ol :m et n sont indéterminds. En les combinant avec celle de la
surface , pour en eliminer #, ¥, on trouvera que les valeurs de
z qui répondent aux deux extrémités de la corde interceptée sont
données par 'équation

(em*-bn® == 1) 2*A=2(0/m=4-b/n)zf-c =0 ;

done, pour les mémes raisons que ci-dessus, la valeur de z qui
répond au milieu de cette corde sera donnde par I’équation

a'm+4-b'n
e ou  (am*~4-bn*e=i)zt(a'm-t-b/n)=0 ;
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mettant donc, pour les deux arbitraires m , », Jdans cette der=

. X Y o, . .

piére , leurs valeurs=— "= tirées des équations de la corde , on
z

obtiendra, toutes réductions faites, pour l'équation de la surface
cherchée ,

=ax* by ~a'z4-Vy ;

ce gqui démontre Ja proposition annoncée.

Nous aurions pu facilement, au surplus, par des considérations
purement géométiriques , déduire le second théoréme du premier ;
mais nous ne voyons pas trop ce qu’on peut gagner & remplauer
quclques lignes de calcul par un grand nombre de mots.




