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PROBLEMES D’ASTRONOMIE. 221
m—

ASTRONOMIE.

Essai d'une nouvelle solution des principaux problémes
d'astronomie ;

Par M. Kramp , professeur , doyen de la faculté deg
sciences de l'académie de Strasbourg.

[a Vs Vo ¥ Sl V1) Vo e a4

( Quatriéme Mémoire ). (*)

110, LA position du plan de Dorbite d'un astre dtant supposée
connue , soit par des calculs antérieurs, soit par des observations
faites prés des ncends , Ie probléme de déterminer les autres élé-~
mens a été ramené dans le second mémoire ( Annales, tom. 1V,

Pag- 248 ) aux quatre équalions qui suivent :

1.° na =Sin.Sin.xSin.¥ ,
2.° n*b  =Cos..Sin L Cos.4~4Sin.xCos.%) ,
3.° nc¢ =Cos.uSin.d ,

4.0 n d\/r;=¢+Sin.yCOS.zSin.1ﬁ .

(*) Voyez les pages 161 et 237 du IV,me volume et la page 1.v¢ de ecelui-ci.
L’auteur prie ses lecteurs de vouloir bien excuser [a distraction qui lui a fait em-
ployer , aux pages 18, 19, 20, 21 du 3,m¢ mémoire , pour désigner la demi-
somme des anomalies excentriques, au lieu de la lettre x qu'il avait destinée & cet
usage , dans les mémoires précédens , la letire @ qu'il a constamment consacrée
& désigner l'anomalie vraie. .

Tom. ¥V , n.° VIII, 1.°F féerier 1815. 29
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Les lettres @ , & , ¢ , d désignent ici des quantitds qu’on péut
immédiatement déduire des deux observations qui suffisent 2 la
solution du probléme , dont les inconnues sont représentées par les
lettres # , %, ¥ , n. La premitre x est I'angle qui détermine
Pexcentricité de lorbite. Les angles x et ¥+ sont , I'un la demi-
somme et l'autre la demi-différence des anomalies excentriques de
Vorbite , qui répondent aux époques des deux observations. Enfin
est une fraction ayant pour numérateur le demi-grand axe
de Vorbite de la terre, et pour dénominateur celui de l'orbite de
Yastre. Cette fraction 2 est positive dans le cas de Vellipse , né-
gative dans le cas de Vhyperbole , et nulle dansle cas de la pa-
rabole. Dans les deux derniers cas , nos quatre équations générales
doivent subir quelques modifications dont nous parlerons plus loin.
116. La troisitme de ces équations ne renfermeé que trois des
quatre inconnues du probléme , mais les trois autres les comprennent
toutes les quatre. Il se présente toutefois un artifice assez simple,
pour remplacer les quatre équations par deux autres qui, sans
étre plus conpliquées , ne renferment que deux des quatre inconnues,
savoir : I'angle ¥ et le facteur z. Nous poserons d’abord pour cela

=1, bPtaictct=b~4cf =k .

117. Ajoutant alors ensemble les quarrds des deux membres des
premidre et troisitme équations , on aura

n*(a*4c*) ou n*f*=Sin ¥ (1—Sin.>xCos.’x) ;
donc :
Sin.2xCos.*xSin,*¢ =Sin.2y—nf* ;
mais , la quatriéme équation donne, en transposant et quarrant,
| Sin.2uCos. zSin ¥ = (ndy/ 7imd)* ;
done
ndy/ n=4+v/ Sacxtns:

118, Si ensuite nous multiplions I'équation
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n*f*=Sin.>¥(1—Sin.>xCos.’X)
par le quarré de la troisieme
n*c:=Cos.2uS8in2¥ ,
nous aurons
ntcf+=Cos.*xSin. ¥ (Sin >¥—Sin.2xCos.* xSin¥)

mais , en élevant au quarré les deux membres de la seconde ,
on a

n”b‘=Cos.’peSin.=‘~KCos.’"~P+2Sin.pCos.xCos.ﬂlf—i-Sin.’chos.’?é) H
en les ajoutant donc, membre a membre , il viendra
nth*=Cos.*Sin.* ¥ 1-4-Sin.xCos.xCos.¥)* ,
d’ou
n*h=Cos.xSin.4(14Sin.xCos.xCos.¥) 3

mais la seconde, étant multiplide par Cos.¥, devient

1?5 Cos. ¥ = Cos.xSin.4(Cos.¥4-Sin.xCos.xCos.¥) ;
ce qui donne, par soustraction,
n*{h—bCos.¥ = Cos.Sin ¥ =ncSin.*¥ ;
cest-a-dire ,
n(h—bCos¥)=cSin>¥ ;
d’ou
. cSin2d
n= h—bCos b
Le problime s trouve donc ainsi réduit aux deux équations assez °
simples
ndy/ =4t/ Smad—n:fr ;
n(h—bCos.¥) =cSin2¥ .
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119. Cette dernidre équation nous- apprend 3 trouver l'une des
deux inconnues 2 et ¥ lorsqu’on connait l'autre, ou lorsquon lui
suppose une valeur quelconque. Supposons d’abord » connue, ‘et
posons , pour abréger ,

4 —Ahnch+tn*b*=R* ;

nous en déduirons

b—HR h—n3b2
Cos V= . ’ Sin_"‘.‘l,: w ,
2¢ 2c?
. nb4+-R anch—n2b>—nbR.
Sin..Cos.x= + , Cos.2u=— T nd :

2¢ - 2f2
On aura ensuite , en supposant le rayon de lorbite terrestre égal
a T'unité.
1~=Sin.z

Distance périkélie = ——— :
n

. , Sin.
Distance aphélie = o .
n
120. Le cas de la parabole est celui de =0, ce qui donne la
c(h==b)
T

négalif , ce qui donne 3 Cos. une valeur imaginaire ; Sin.e est

distance périhélie égale & ———.Dans celui de Phyperbole, 7 devient

alors une quantité trés-réelle, mais plus grande que I'unité; la
distance périhélie gardera donc la valeur positive que nous lui supposons
dans Dellipse ; mais la distance aphélie deviendra négative.

121. Si les observations sont assez rapprochées pour que I'angle ¥,
demi-différence des anomalies excentriques , puisse étre confonda
avec son sinus, sans erreur sens1ble, Ia quatuéme de nos équations (115)
deviendra

ndy/7="Sin. v(1+Sm £Cos.%)

ce qui donne, en substituant 2 Sin.xCos.e la valeur équivalente (1 19)
nb-B

2€

, 'équation
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2ncd\Jn=_(2c¢-+}nb~+R)Sin.¥ ;
et ensuite, en quarrant et mettant (11g) pour Sin.*y sa valeur,
8nctd* = (2ch—nb*~-bR) (2c+-nb+4R)* .
Le quarré de 20~4-nb-+R devient, en développant
8c* 4L nc(b—h)4-2nb*+-2(2c-}nb)R ; |
multipliant cette expression par 2ch=nd*4-bR, il viendra
2(8c*—4nc*h-t4c* R) (0+-4) ;
on aura donc l’équation
2(8¢% —4nc*h+4¢*R)(b-%)=8nc*d*

ou
(2c=nh=4-R)(o+-12) =n*c*d*
d’ot
n2c2d2 :
R= ) —2¢c4nk :
élevant au quarré de part et d’autre, il viendra
. 272 nicsds 3(2Cmnﬁ)nzczdﬂ s
4or—==fnchnb= o o ~(2camnk)
ou, en réduisant ,
sdin3 2J2(acmm=nh
Jr= cidin 2¢62d2(2cm=n )+5= )

Gthe bk

d’olt
nead? — o
i =i
» est done déterminée, et conséquemment le probléme est rdsolu.
. 4e3as ) ,
122. Si le second terme iy est assez petit pour que son quarre

puisse étre négligé devantle premier terme 2%, le radical deviendra
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-+ 20! ; on aura donc, pour trouver 2, Iexpress t t
boh)’ P pression entiéremen

rationnelle -
nc2d» 2c3d2
b4 =b-h+b(b+h) '
d'ol
__ 2cd*—bf*
bd:

- Clest la formule & laquelle nous avons été conduits , dans le mé-
moire précédent , en supposant Sin¥=V, et de plus Cos.¥=1.

La différence entre 'unité et Cos.¥ n'a pas ¢été négligée dans Yanalise
actuelle ; aussi la formule \

ncxdz 4edda

btk """H"V Ui iy wwy

doit-elle étre regardée comme plus exacte que l'autre. Ainsi done

la solution rigoureuse du probléme ou il s'agit de determiner le

demi-grand axe de P'orbite d’un astre , moyennant deux observations

assez rapprochées pour que la demi-différence des deux anomalies

excentriques puisse étre sensiblement ccnfondue avec son sinus ,

conduit finalement i une équation trés—simple du second degré.
123. Pour voir jusqu'ol peut aller la différence entre les deux

formules, revenons encore & la seconde cométe de Méchain, dé-

couverte en 1781, qui nous a déja fourni I'exemple du mémoire

précédent. En faisant usage de l'ancienne formule , nous avons
trouvé

n=—120 =23 41547 ;

voyons ce que donnera la nouvelle. En faisant usage des observations
des 14 et 19 de novembre , nous aurons

a=-—o0,0065710 ,

b=-}0,1066774 ,
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c=-0,1014968 ,
d=-0,0441035 ,
h=--o0,1071757 3

b4/ =-40,2138531 .

On en tire

b*=0,011380068 ,

4e3dz

b

La petitesse de ce second nombre , par rapport au premier, nous fait

prévoir que la différence entre les deux résultats sera peu sensible;
effectivement, la nouvelle formule donne.

n=—3,41626 ;

la différence est au-dessous d'un zrois millidme ; elle sera toujours

d’autant moins sensible qu’on aura employé des observations moins
éloignées entre elles.

124. Revenons aux deux équations (118) desquelles dépend la
solution rigoureuse et générale du probléme ; sayoir: '

nd\/ n=yt\/ Snif—nift ;
n(k—bCosc¥)=cSin*¥ .

=0,000038049 .

Il ne cotfitera rien d’éliminer I'inconnue » ; il en résultera pour
' Jautreinconnue ¥ une équation transcendante et de plus trés-compliqude.
Pour éliminer ¥ , il faudra employer des moyens approximatifs.
En faisant ¥=Sin. , la premiére équation deviendra 24Sin.y=
(nd*4-f*)y/ 7% ; en combinant cette équation avec l'autre n(h—5Cos.)
=¢Sin.*y, on aura, en éliminant les sinus et cosinus de P'angle ¢,
une dquation en 2 trés-composée du guatriéme degré , laquelle
toutefois pourra étre réduite & une équation du second , et ce sera
celle que nous avons déja obtenue (122). En faisant
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V= 244-Cosy Sin.¥
94-6Cos.

on aura pour 2 une équation encore bien plus compliquée du

228

-
s

sixiéme degré.

125. 11 est beaucoup plus convenable de s’en tirer par le simple
emploi de la régle de fausse position. On supposera & Fangle ¥ une
valeur quelconque, plus ou moins grande , d’aprés lintervalle de
temps qui sépare les dcux observations. On aura

¢Sin. 2
n= ——
h=—bCos.y 7

et substituant cette valeur de n dans lautre
ndy n=y-+/ Sinzg—n'fi ,

en aura, par un calcul trés-facile, Uerreur que cette fausse po=
sition aura produite. Un second emploi de la régle donnera ordi-
:nairement Pinconnue 2~ qu’on cherche , avec une précision suffisante.

126. Effectivement , le probléme presente peu de difficultés dans
le cas de [Pellipse ; mais ce n'est pas le eas ordinaire. En appli~
quant la méthode expesée ~dans le précédent mémoire & dix ou
douze cométes dont les orbites ont été supposées paraboliques , et
calculées dans cette supposition , jai presque toujours euw une va-
leur négative pour 7, indice infaillible de Fhyperbole. Il convient
donc d’appbrter a nos formules les modifications que cette courbe
&xige.

127. Soient ainsi C le cenire ; A le sommet ; F le foyer; et
soit B le point ot l’asymptote est rencontrée par la tangente AB
au sommet A, ce qui donnera AB=CF. Nous conserverons au demi-axe
transverse CA de 'hyperbole la notation qu’il avait dans Pellipse ; c’est-
3-dire , que nous ferons AC=0¢. Et, comme ["autre des deux axes,
de méme que Pangle désignéd jusqu’ici par  deviennent imaginaires
dans Phyperbole , nous choisirons , parmi les angles réels, celui

qui se rapproche le plus de cet angle «, afin de conserver 'em-
- ploi
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ploi de cette lettre, et d’établir une analogie convenable entre les
formules elliptiques et hyperboliques. Ainsi , nous designerons l'angle
ABC par p; ce qui donnera

AC=¢,
AB=5Cot.ss ;
BC=CF=4Cosec.x .

L'ordonnée FN, qui répond au foyer de ’hyperbole , dont le double
est ce quon nomme le paramétre de la courbe, et dont nous au-
rons besoin par la suite , deviendra denc #Cot.x. L’expression
générale du rayon vecteur FM sera

_ 5Cos.z.Cot.¢

M — T ———————
F Sin.z4-Cos.@

en continuant de désigner par ¢ I'anomalie vraic , ou I'angle AFM:
128. En employant ces notations , on trouvera, pour la surface
du secteur curviligne AFM , proportionnelle au temps , 'expression

qui suit :

52Cok.2uSin.¢@ . 1+4-Sin. . Cos.¢~4-Cos.4Sin,@
2AFM= Cos.e4-Sin.x —2*Cot.uLog. Gos.@4-Sin.u

Si, dans cette expression , on fait

1-4-Sin.cCos.@-}-Cos pSin:@-
Cos.@-4-Sin. g

»=Log.

9
elle deviendra
2AFM=AB.BC. ."__"_;E_" —AC.AB. » ;

et si, dans cette derniére , on fait AC=a, BC=c, et que de
plus on remplace AB et = par7b et 7y, 7 étant /=1, on retrou-
vera la formule elliptique connue
2AFM==a@bx—bcSin> ;.
Tome F. ‘ 3o
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I’anomalie excentrique de lellipse sera donc remplacée ici par le
logarithme natarel de la fraction

14-Sin.sCos. p-4-Cos.£Sin.o
Cos.o4Sin.z
On sent , au surplus, que , dans I'hyperbole de méme que dans

la parabole , I'anomalie vraie ¢, de méme que l'excentrique =, est
toujours comptée depuis le périhélie.

12g. Il conviendra de choisir quelque signe représentatif des deux

. en B— EA em___e -3
fractions + et
2

, analogues & Cosx et Sin... Nous

conserverons ces deux notations, mais en les écrivant, comme nous
venons de le faire , en caractéres iZaligues. Ainsi , au licu de
Cos.>x4-Sin.*s=1 , nous aurons dorénavant

Cos2re=Sinla=1 .
Nous aurons de méme
Cos2x+-Sin2v=Cos.2, ,
2C0s2,=Cos.2,+1 ,
28in.2 e =C08.24x—1 ,
200581y =S8in.24 .

Indépendamment des caractéres italiques , les notations Cos.x et
Sin.» seront toujours reconnaissables en ce que, dans toute cette
analise des orbites hyperboliques, elles seront invariablement lides
avec les angles = et #/, de méme qu'avec leur demi-somme et.
leur demi-différence , et jamais avec l'excentricité w, ni avec les
anomalies vraies ¢ et ¢’.

130. Le développement en séries donne

2k 6

”2
Cos.n= 1+ ;_2' -+ 1,2‘3_4+ 1.2.3.4.5.6

+.-alo

x3 x5 %7

123 + 1.2:3:4:5 + 1.2.3.4.5.6.7‘+ et

» x
Slﬂ ¢”=—:-+
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Ces deux séries connues sont décomposables en facteurs infinis. On
S!'n.n

voit que Cos.x et sont toujours plus grands que 'unité, tandis

Siﬂ.’& , . . ) .1
que Cos.x et —— étaient constamment moindres que I'unité, Heu-
”%

reusement , de nos trois sections coniques , I’hyperbole est la moins
fréquente dans ses applications, sans quoi il faudrait construire des
tables de Cos.x et S/n.x , comme nous en avons pour Cos.x Sin.z

131. En introduisant deux angles quelconques * et #/ , indépendans
entre eux, on aura les expressions qui suivent

Sin(w'~x)=8in.x' Cos.x+4-Cos.x'Sin.,
Sin.(x/ —x)=38in."'CoS.x—C05.x'Sin:x
Cos.(x'~rx)=Cos.x' Cos.x+-Sin./Sin.. ,

C05.(/=1)= C05:' COSx=—Sinss'Sinx

A X

d’ou il résulte
28in./ Cos.n=Sin.(«'=x)+Sin.(s'—x)
2C05.2'S8in.e =Sin (x'Fo2)—S5in.(x'—=) ,
2€05.'Cos.x=C05(z'+x)FCo5.(/ —=x)
2851n.4/8in.e=Co0s.(«'4x)—Cos.('—=x) .
132. De Danomalie excentrique » , on repassera facilement 4 I'ano-
malie vraie que lui répond; on aura

Cos.uSin.= 1==Sin..Cos.x
£ Cos.p—= ————

S‘n'¢_ Cos.:c—-Sin-.“ ’ COS.K—SiﬁF‘

On aura de méme le rayon vecteur FM par la formule

r Cossx—Sin.pe ~ Cos.x

— = [ G
b Sin.ge Sin. g ’

enfin , la surface du secteur AFM se trouvera , par la formule
trés-simple
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.zA]E“M-—-b’Cos.,u(Cosec.FSz'n.z—-x) .

133. Les deux expressions littérales de P, @, de méme que
de P’y (, subiront les modifications suivantes : on aura

r Cos.x—Sin.x
——'——T COS.(6+¢)= T COS.(ﬁ+¢) ’

Cos.x—Sin.x

0=

ce qui se réduit a

Sin.(s4-0) =

o~f

Sin.(s-}-¢) ;

Sin.;‘

P =Cosec.xCo8.s~~Co0s.* Cos.s==Cos,.57n.2S1n.¢

Q =Cosec.xzSin.«—Cos.» Cos.s4Cos..Sin.2Cos.s

Pl= Cosec.,uCos.-—éos.x’Cos.s—Cos.pSin.»’Sin.: ,

@/ =Cosec.xSin.s—Cos.#'Cos.c4-Cos.xSin.»'Cos.s ,
R =Cosec.pu. Cosx —1 ,

R/ =Cosec.p. Cos.x/—1 .

134. Les expressions R—R/, PQ'—P'Q, RR'—PP/'—(QQ’ su-
bissent de méme quelques modifications, exposées dans le tableau
qui suit: '

R—R/=Cosec.u(Cosin=Cos.#’) .
(PQ/—P/Q)Sin.*p=Cos.4(Sinw/=—S8in.£)—Sin.uCos.«Sin.(*'—*) |
RRA/—PP/'—QQ)=Cos.*kCos.(n/—x)=—Cos.’p .

A Texemple de lellipse , nous désignerons par x et ¥ la demi-

somme et la demi-différence des deux anomalies excentriques fic-
tives »/ et #, On aura ainsi

"/+"=2% y Lol o = 4= N
o
xl-—x=24/ N

= Xm—

Comme les angles x et ¥ se rapportent aux anomalies excentriques
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% et », les notations Sin.x , Cos. x, Sin+, Cos.y continueront
d’étre prises dans le sens du n.° 129. On aura

" B’—R=2Cosec.#Sin.xSin¥ ,
(PQ/—P/Q)Sin.*p=2Cos.uSin.¥(Cos.x—Sin.£Los.y) »
RR/'—~PP/'—QQ/ =2Co0s.>uSin2y .

En comparant ces équations a celles de l'analise précédente ( Annales,
tome 1V, pag. 247, et tom. V, pag. 18 ) on voit qu’en divisant
généralement par Sin.* les expressions elliptiques, on parvient &
celles de I'hyperbole,

135. A ces trois équations, il convient d’ajouter la quatridme,
qui tient 3 la surface du secteur hyperbolique , proportionnelle au
temps. On a eu (132)

2AFM=5Cos.x(Cosec.pSiny=—y) 3

on aura de méme, pour une seconde observation
2 AFM/=5Cos.#(Cosec.eSin.»'—»') .
Otant la premitre de la seconde , il résultera
2MFM/ = 25*Cos.«(Cosec.#Cos xSin.y—¥) « -

La surface de ce secteur est proportionnelle au temps qui sépare
les deux observations , c’est-a-dire , & I'angle #—1#; reste donc 3
déterminer le facteur par lequel il faut multiplier 'une de ces
deux quantités , pour que le produit soit rigoureusement égal &
Pautre.

136. Concevons généralement deux astres , tournant autour du
méme centre de forces dans deux sections coniques, dont les pa-
ramétres soient 2p , 2p/ ; les lettres p, p/ désigneront ainsi les
ordonndes des deux sections, i leurs foyers respectifs. Supposons
de plus que 'un de ces deux astres décrive le secteur 4 dans

le temps T, et Pautre le secteur 4/ dans le temps 77. On sait

A : .
——= seront égales entre elles:

A
qu’alors les deux fractions —= et
Ive — TWE



234 PROBLEMES

Ainsi, dans le cas T=17, les aires A, A’/ étant supposées décrites
dans des temps ¢égaux , on aura la proportion , trés - générale,
A: A’=+\Jp : \Jp' ; Clest-a-dire , les aires des sccteurs sont entre elles
eomme les racines quarrées des paramétres des deux orbites.

137. Appliquons cette proportion & l'analise qui nous occupe.
L'un des deux astres est la terre, décrivant, sur un cercle du rayon
a, l'angle au centre #—4¢. Le demi-paramétre est ici 4 ; et la surface
du secteur est 1g*(¢/—o). L autre est une hyperbole dont le demi-
axe transverse est &, la distance du foyer au centre 4Cosec.., et
le demi-paramétre 4Cos.?,. Cette comete aura donc déerit, dans
le temps méme qui sépare les deux observations, I'aire MFM/,
dont nous venons de donner l'expression littérale. Cela donne la

proportion
La*(V—0) : MEM/=+/a: /6 .Cos..c ,
d’ol résulte I’égaiité
a\Jab(¢/—6)Cos.p.=2MFM/ ;
ou bien
(¥ —8,a\Ja=(Cosec.uCos.xSiny—4)20\b .

138. De méme que , dans les problémes précédens, nous devons
nous ‘rappeler que la fraction -2— , qui multiplie P, P/, Q, ¢,
dans les formules du n.° 55 (Annales, tom. 1V, pag. 245), est
elle =méme une de nos inconnues. En faisant , comme ci-dessus,

a .
T et en conservant les notations

P=nM , Q=nN , R=n0 ;
Pl=nM, Q'=nN', R=n0;
les quantitds M, N, O, M/, N/, (/, seront celles qu'on aura

déduites immédiatement des formules du n.° 55, lesquelles , au
signe’ prés, sont identiquement lés mémes dans lellipse et dans
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I'hyperbole. Ces quantités pourront étre regardées comme connues;

. a
tandis qu’il faudra regarder comme inconnues la fraction T =0
aussi bien que ‘.')/f =n\/n.

NG

139, Nos quatre équations deviendront ainsi
n((#—0)=2Cosec.uSin.xSin.y ,
2*{MN'—M'N)Sin.*x = 2Cos.£5in.¥{Cos. x—Sin.uCos.y) ,
n*(00'—MM'—NN")=2Cos.*nSin>¥ ,
a\Jn(¥—8=2Cosec.uCos.xSin.—2¢ .

140, En conséquence , en revenant aux notations déja employées
dans les mémoires précédens ( 4nnales, tom. V , pag. 18 ), savoir:

2a =0'—0 ,
2b =MN/—M'N ,
202 =00/'— MM/ ~—NN’ ,
2d =¢—4 ;
le probléme sera facilement réduit aux quatre équations qui suivent:
n a=Cosec.rSin.xSin¥ ,
n*b="Cosec,*#Cos..5inV(Cos.x=Sin.uCos.¥) ;
n c=CotpSin ¥ ,
nd\Jn=Cosec..Cos.xSin¥y—¢ :
141. En suivant une marche analogue 4 celle qui a été enseignée
au commencement de ce guatriéme mémoire , et en se rappelant, pour
les réductions, que Cos.*¢—S8in.*4=1, on parviendra de méme &

réduire ces quatre équations & deux , ne renfermant plus que les
deux inconnues z et ¥, savoir :

nd\Ji=\y/Sinodgwfim¥ ;
eSin2y
= h—bCosp
142, Cette dernidre est identiquement la méme que dans Lellipse

n
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(118), méme en ayant égard aux signes. La premitre différe de
celle qui a été obtenue pour Dellipse dans le signe de langle ¥,
et de plus dans celui de n*f*, compris sous le radical. On les
résoudra de la méme manitre ; et deux emplois de la régle de
fausse position y suffiront. Une valeur quelconque de ¥ qu'on aura
supposée, conduira immédiatement i 2 ; et substituant cette valeur
dans la premitre , on s'assurera de Ierreur que cette supposition
aura occasionde. Mais il ne faut pas oublier qu’il est question ici

de sinus et de cosinus hyperboliques, pour lesquels on a

2Cos.¢=e4/+e—-q‘ s 2Sz'n.«1«=e‘p——e~¢ ..

En employant les sinus et les cosinus des tables qui nous ont
conduit (118) awx deux équations finales
nd\Jn=Y4/Snid=nfs ,
n(he=bCos.¥)=¢Sin¥ ,
en aurait beau faire pour/ ¥ toutes les suppositions imaginables,

aucune valeur réelle né pourrait y satisfaire , attendu que, dans
FPhyperbole , la valeur de cet angle est réellement imaginaire.
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