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QUESTIONS RESOLUES.
Solution du problème de situation proposé à la page

23I du 3.me volume des Annales ;
Par M. ARGAND.

QUESTIONS R E S O L U E S.

N. B. Le rédacteur des Annales a reçu de M. Argand un beau mémoire d’ana-
lise indéterminée, contenant la solution du difficile problème de la page 23I du

3.me volume de ce recueil. Ce mémoire étant trop étendu pour pouvoir paraître
de suite , l’auteur , à la prière du rédacteur, a bien voulu en faire un extrait,
présentant le procédé pratique , dégagé de tout raisonnement ; extrait très-propre
à aider à l’intelligence du mémoire , lorsqu’il paraitra ; c’est cet extrait que l’on va

mettre sous les yeux du lecteur. On doit espérer que l’exemple de M. Argand
encouragera quelques géomètres à aborder d’autres questions, proposées dans les

Annales , et demeurées jusqu’ici sans solution.

PROBLÈME. Soit une circonférence divisée en un. nombre quel-
conque N de parties égales ; et soient affectés arbitrairement , et

sans suivre aucun ordre déterminé, aux points de division , les
numéros I , 2 , 3 ,.... N-I , N. Soient joints ensuite , par des
cordes, le point I au point 2 , celui-ci au point 3 , le point 3
au point 4 , et ainsi de suite j’usqu’à ce qu’on soit parvenu à
joindre le point N-I au point N et enfin ce dernier au point r.-
On formera ainsi une sorte de polygône de N côtés , inscrit au
cercle, et qui , en général , ne sera point régulier , puisque ses côtés
pour ront être inégaux , et que méme quelques-uns d’entre eux pourront
en couper un ou plusieurs des autres. Si l’on varie ensuite, de
toutes les manières possibles, le numérotage des points de division ,
et qu’on répète , pour chaque numérotage , la même opération q’e
ci-dessus , on formera un nombre déterminé de polygônes inscrits,
parmi lesquels plusieurs rie différeront les uns des autres que par
leur situation.

Tome V. 25
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On propose de déterminer , en général, quel sera le nombre des

polygônes réellement différens ?
Solution. Soit- N le nombre des côtés du polygône que, dans les

exemples qui suivront, nous supposerons constamment = 6.
I. Soit, en général, suivant’la notation de M. Kramp, m!= I,2,3,...m:

on aura ainsi

I!=I , 2!=2 , 3! =6 4!=24, 5!=I20 , 6!=720.
On sait d’ailleurs que 0!=I.

Employons le symbole m ? à désigner combien il y a de nom-
bres premiers à m dans la suite I, 2, 3,....m ; on aura ainsi

I?=I , 2?=I , 3?=2 , 4?=2 , 5?=4 , 6?=2. Il est connu

que si m=a03B1b03B2c03B3...., a,b,c,.... étant des nombres premiers

inégaux, on aura, en général , m? =m a-I a·b-I b·c-i c.....
DI , Ds , D3 ,....D~ sont les diviseurs de N, N compris ; de

sorte que, s’ils sont disposés par ordre de grandeur, on a DI=I ,

D~=N. Représentant donc, en général, par d un de ces diviseurs,
d sera susceptible de ~ valeurs. 

Pour N=6, on a DI=I , D2=2 , D3=3 , D4=6 , et ~=4 ;
les valeurs de d, dans ce cas seront- donc I , 2 , 3 , 6.

dI , d2 , d3 ,....d6 sont les diviseurs de d , d non compris, de
manière que leur nombre est et que , s’ils sont disposés par ordre
de grandeur, on a dI = i.

Pour d=I , on a .....03B5=0 ,

2 , dI=I.....03B5=I ,
3 dI=I.....03B5=I ,
6 dI=I , d2=2,d3=3 03B5=3 .

2. P , 0393 ,039B,.....P’, 0393’, 039B’,..... sont des signes de fonctions
dont on va successivement expliquer la nature.

La définition de la fonction P, quel que soit d, est

Ainsi pour N=6 ,
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PDI=PI=6I.6?I!=6.2. I = I2 ,

PD2=P2=32.3?2!=9.2. 2= 36, 
PD3=P3=23.2?3!=8.I. 6 = 48 ,
PD4=P6=I6.I?6!=I.I.720=720 .

3. r est une fonction dont la définition est

Ainsi , pour N=6 ,
0393DI=0393I=6.I20.6?0!=6.I.2.I= I2 ,

0393D2=03932=3. 6I.3?I!=3.6.2.I= 36 ,
0393D3=03933=6. 4I.2?I!=6.4.I.I= 24 ,
0393D4=03936=3. 23.I?3!=3.8.I.6=I44 .

4. A est une fonction dont la défitiition est 

Pour d impair ........... 039Bd=0393d ,

N d impair.....039Bd
= 

20393d N ,

Pour d pair et 

N d pair ..... 039Bd=40393d N.
Ainsi, pour N=6 ,

039BDI=039BI=0393I =I2 ,

039BD2=039B2=203932 6=2.36 6=I2 ,
039BD3=039B3= r3 =24 

039BD4=039B6=203936 6=2.I44 6=48 .
5. P’ , 0393’, 039B’ sont des fonctions dont la définition générale est

F’d=Fd=(F’dI+F’d2+F’d3+....+F’d03B5) ;
d’où l’on voit que , pour calculer ces sortes de fonctions , il faut

aller continuellement des plus petits nombres aux plus grands, en
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observant que, I n’ayant pas de diviseurs plus petits que lui, on
a simplement F’DI=F’I=FI.

Comme , par le n.° précédent , on a, dans le cas de d impair,
039Bd=0393d , et comme d’ailleurs un nombre impair ne peut avoir

que des diviseurs impairs, il s’ensuit qu’on peut, quand d est im-
pair, écrire plus simplement 039B’d=0393’d.
A l’aide de ces attentions on trouvera , pour N=6 ,
P’DI=P’I=PI=I2 ,
P’D2=P’2=P2-P’I=36-I2=24 ,
P’D3=P’3=P3-P’I=48-I2=36 ,

0393’DI=0393’I=0393I=I2 ,
0393’D2=0393’2=03932-0393’I=36-I2=24 ;

0393’D3=0393’3=03933-0393’I=24=I2=I2 ,
0393’D4=0393’6=03936-(0393’I+0393’2+0393’3)=I44-(I2-24-I2)=96 .
039B’DI=039B’I=0393’I=I2 ,
039B’D2=039B’2=039B2-039B’I=I2-I2-0 ,
039B’D3=039B’3=0393’3=I2 ,
039B’D4=039B’6=039B6-(039B’I+039B’2+039B’3)=48=(I2+0+I2)=24.

6. Des fonctions 0393’ et 039B’ on tire les fonctions 03C3, de la
manière suivante :

Pour d’impair 03C3 d=d0393’d ;
03C3’ et 03C3" ne s’emploient pas dans ce second cas.

Ainsi, pour N=6,
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7. Les fonctions P’ et 03C3 conduiront aux fonctions §, en faisant

§=P’201303C3.
Ainsi, pour N=6,

§D1=§I=P’I201303C3I= I22013 I2= o ,

§D,=§2=P’2-03C32= 242013 22= 0 ,

§D,=§3=P’3201303C33= 36- 36= o
§D4=§6=P’6201303C36=648201336o=288 .

8. Ce qui précède forme , quand N est impair la première
partie du procédé ; mais, quand N est pair, il faut, de plus , effectuer
les déterminations suivantes 

Ainsi , pour N=6 ,

’On fera ensuite
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M étant impair , dans notre exemple , on a

On Dosera ensuite , quel aue soit M .

Ainsi, dans notre exemple ,

9. Voici maintenant la seconde partie du procédé On yt emploie
les fonctions 03A3, 03A3’ , 03A3" , S qui, comme les précédentes ont pour
sujet les différentes valeurs de d , avec cette restriction que 03A3
s’applique aux valeurs impaires seulement, 03A3’ et 03A3" aux valeurs 

paires, en exceptant la valeur d= N. Quant à 039E, elle s’applique
a toutes les valeurs de d, nraas en exceptant encore d=N, si N est pair.

Les valeurs de ces diverses fonctions sont les suivantes :.

’Ainsi, dans notre exemple,

xo. Quant N est pair, on doit en outre faire
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Ainsi, dans notre exemple, où M=3, on a

On fera ensuite, quel que soit M;

ce qui donne , dans notre exemple y

il. Enfin , en nommant 03A0 le nombre des polygones qui sont

l’objet du problème , ce nombre , dans le cas de N impair , sera
la somme de toutes les fonctions 2 , 03A3’, 03A3", 25 ; et , dans le cas

de N pair , il sera cette somme , augmentée de celle des nombres

G, H, G’, H’, A’, A", 03A9.

Ainsi puisque, dans notre exemple , N=6, nombre pair, on aura

ou

On aura donc douze polygones essentiellement différens. Si l’on

veut les construire , il suffira de construire douze cercles , de diviser

chacun d’eux en six parties égales , de numéroter ensuite consé-

cutivement les points de division ainsi qu’il suit

I23456 , I35264 , I24635 ,
I26453 , I26543 , I24653 ,
I25634 , I25364 , I26354 ,
I25436 , I24365 , I23645 ,

et joindre enfin les points de division par des cordes , suivant les

conditions prescrites dans l’énoncé du problème.
12. En faisant successivement diverses suppositions pour N , et

appliquant à chacune d’elles les méthodes qui viennent d’être déve-

loppées , on trouve 
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Pour N=I , 03A0= -0 ,

2 I ,

3 . I ,

4 2 ,
5 , 4
6, 12 ,

7 , 39 ,
8, 203,

9 , I2I9 ,
I0 , 9468 ,
II , 83435 ,
I2 , 8360I7 ,
.....

QUESTIONS PROPOSÉES.
Problèmes d’optique.

I. SUR une table rectangulaire donnée doivent être placées deux
lumières élevées au-dessus de cette table d’une même quantité donnée, 
et qui doivent y être tellement posées que leurs projections tombent
sur la droite qui joint les milieux des deux petits côtes du rec-

tangle. On demande de quelle manière ces deux lumières doivent

être placées ; I.° pour que le point le moins éclairé du bord de

la table le soit le plus possible ? 2.° pour que le point le pius
éclairé du bord de la table le soit le moins possible ?

II. Resoudre le même problème pour une table elliptique ; les

deux lumières devant répondre au grand axe ?
III. Résoudre le même problème pour quatre lumières et une

table rectangulaire; les lumières pouvant repondre 1.0 aux droites

qui joignent les milieux des côtés opposés ; 2.° aux deux diagonales ?
IV. Résoudre enfin le même problème pour une table elliptique

les quatre lumières pouvant répondre I.° aux deux axes ; 2.° aux

deux diamètres conjugués égaux ?


