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ANALISE ELEMENTAIRE.

Démonstration du principe qui sert de fondement au
calcul des fonctions symetriques ;

Par M. GERGONNE.

[ Vi VI, V1, Vi, Vi Vo Vo Vo Yo

LE théoréme dont je vais m’occuper ici, et que Newton a donné
le premier , sans démonstration, peut étre énoncé en ces termes :

Il y a entre les sommes de puissances semblables de plusieurs
quantités et leurs sommes de produils deux & deux , trois & trois,
quaire & quatre, etc., des relations soumises @& une lof réguliére ,
et telles que les premiéres peuvent éire exprimées en jfonctions ration-
nelles et entiéres des derniéres, et réciproquement.

Ce thdoréme étant proprement du domaine de la théorie des
combinaisons , je vais en donner une démonstration fondée unique-
ment sur cette théorie, et qui me parait plus courte et plus simple
que celles que P'on déduit de la théorie des équations.

Soit @, b, ¢,.... des quantités quelconques , au nombre de 7.
Soient généralement désignées par S, la somme de leurs »™¢S puis—
sances , et par P la somme de leurs produits 2 4 »; on aura S,=m,
S, =P,, P, . ,=o. Soient, en outre, désignées par A, la somme de
ceux de leurs produits » & 2 ol ¢ n’entre pas, par B, la somme
de ceux de ces produits ou & n’entre pas, et ainsi de suite, ce
qui donnera A,=o0, B,=o0,.....

Ces notations admises , il est facile de se convaincre qu'on doit
avoir généralement
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SYMETRIQUES.
Pn:.-f.jn’{?‘g"fn-—x » (I)

car, en prenant, au hasard, un produit de n des lettres dounées,
sl renferme a, il se trouvera dans a.4,_, , et ne s’y trouvera qu'une
fois; et, sil ne renferme pas «, il se trouvera dans A4, et ne sy
trouvera également qu'une fois ; d’'ott 'on voit que A ,+a4,_; contient,
et ne contient qu’une fois seulement, tous les produits na n, et

est conséquermnment égal a P,.
Je dis, en sccond lieu, qu'on doit avair aussi, généralement,

An+Bu+cu+ ceer = /mr——ﬂ)P" s (2)

en effet, sichacune des quantités 4., B,, C,,.... tait précisément
la somme des produits des quantités @, &, ¢ ,.... prises 7 a n, leur
somme serait égale & m fois la somme de ces produits , c’est-a-dire,
4 mP,; mais, parce que ces produits out 2 facteurs, chacun d'eux
doit manquer, & son tour, dans n des quantités 4, , B,, Cy,....

ILa somme A,4+B,+4C, 4 .... doit donc renfermer 7z fois la somme
des produits z 4 n, moins » fois cette somme , c’est-a-dire, qu’elle
doit étre égale & m—n fois la somme de ces produits ou, ce qui revient

au méme, & (m—n)P,.
Cela posé , soient premitrement écrites les équations que voici,
lesquelles sont déduites de I’équation (1) ; et en nombre moindre

que 72,

P=A4~4a , °
Pz=Az+aAI ’
P,=4,+ad, ,

Pﬁ:All+ﬂAll-I ;

on en conclura facilement, en réduisant,
(l"-'-—P,a"-’-I—P,d"' '—Pia""-’.-!‘ " roe ip, :idg ;

on aurait pareillement
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(n—eP b 4P, b *—P,p"+....+P,=+B,,
¢—P,c" Pt P — P A P,=T1C,,

prenant donc la somme de ces équations , en ayant égard & I'équa-
tion (2), il viendra

S —P.Sy..+P,S-,—P,S,_;+.... tmP =+ (n—n)P, ,
ou , en transposant et réduisant ,
Sy—P. Sy s+P,Sye—P,S, +4.... TnP=0: 3)

Soit , en second lieu , 2>m , et solent écrites les équations
que voici :

Po=A4d,~+a ;
P,=A4,4aAd, B
P,=d,tad, ,

P m=0+¢-’4m—1 3
on en déduira facilement
@"—P,a" ' H4-P,a" *~P 0" ... . T Ppa" =20 ;
on aura pareillement
b"—P b 4P, b —P b A-.... TP, ""=0 ,
c'—P . "' -P " PP " oo . TP =0 ,

-
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d’o% , en ajoutant
S —P.Syn+P,S-—P,S,_;+.... = PpSum=o0. 4
On déduit des équations (3) et (4)
$;—P,=o,
§,—P,8,+42P,=0,
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$,—P,S,+-P,8,—3P, =0 ,
S,ﬂ.%,—-—Plxg,,,-_,_+P,Sm‘;——P;Sm§4+....I(m—-l’\P, -I-—-O 9
Sp—P S AP, S —P Sy e TP S+ mP, =0 ,

Sm+l—‘PlSm+Pl‘-("m- I_—P]Sm— 2+-co ...... 11‘,,,_‘SziPmS, =0 r)
Snpr—PLm AP =Py e cod P S, TP,S,=0,
..... Otontco.tl-o;..--l--.oooll‘-.l‘o--'-oo..‘OOD;

équations qui mettcut en cvidence la vérité du théoréme,
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