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ANALISE ÉLÉMENTAIRE.
Démonstration du principe qui sert de fondement au

calcul des fonctions symétriques;

Par M. G E R G O N N E.

FONCTIONS

LE théorème dont je vais m’occuper ici , et que Newton a donné

le premier, sans démonstration , peut être énoncé en ces termes :

Il y a entre les sommes de puissances semblables de plusieurs
quantités et leurs sommes de produits deux à deux , trois à trois,
quatre à quatre, etc., des relations soumises à une loi régulière,
et telles que les premières peuvent être exprimées en fonctions ration-
nelles et entières des dernières , et réciproquement.

Ce théorème étant proprement du domaine de la théorie des

combinaisons , je vais en donner une démonstration fondée unique-
ment sur cette théorie, et qui me paraît plus courte et plus simple
que celles que l’on déduit de la théorie des équations. 

Soit a, b , c,.... des quantités quelconques , au nombre de m.
Soient généralement désignées par 8,, la somme de leurs nmes puis-
sances, et par Pn la somme de leurs produits n à n ; on aura So=m ,
SI=PI, Pm+k=O. Soient , en outre , désignées par An la somme de
ceux de leurs produits n à n où a n’entre pas , par Bn la somme

de ceux de ces produits ou b n’entre pas, et ainsi de suite, ce

qui donnera Am=O, Bm=o .....
Ces notations admises, il est facile de se convaincre qu’on doit

avoir généralement
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car , en prenant, au hasard , un produit de n des lettres données,
s’il renferme a, il sc trouvera dans aAn-I , et ne s’y trouvera qu’une
fois; et, s’il ne renferme pas a , il se trouvera dans Ali, et ne s y
trouvera également qu’une fois ; doit l’on voit que An+aAn-I contient ,
et ne contient qu’une fois seulement, tous les produits n à n , et

est conséquemment égal à Pn.
Je dis, en second lieu, qu’on doit avoir aussi généralement,

en effet, si chacune des quantités du An , Bn , Cn ,.... était précisément
la somme des produits des quantités a, b, c,.... prises n à n , leur
somme serait égale à m fois la somme de ces produits , c’est-à-dire
à mPn; mais, parce que ces produits ont n facteurs , chacun d’eux
doit manquer , a son tour , dans n des quantités An , B tl Cn , .... 
IJa somme An+Bn+Cn+.... doit donc renfermer m fois la somme
des produits n à n, moins n fois cette somme, c’est-à-dire, qu’elle
doit être égale à m-n fois la somme de ces produits ou, ce qui revient
au même, à (m2013n)Pn.

Cela posé , soient premièrement écrites les équations que voici,
lesquelles sont déduites de l’équation (i) ; et en nombre moindre
que m.

on en conclura facilement, en réduisant

on aurait pareillement
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prenant donc la somme de ces équations , en ayant égard à l’équa-
tion (2), il viendra

ou y en transposant et réduisant,

Soit, en second lieu , n&#x3E;m , et soient écrites les équations
que voici:

on en déduira facilement

on aura pareillement

d’où , en ajoutant

On déduit des équations (3) et (4)

8,
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équations qui mettent en évidence ’la vérité du théorème.

QUESTIONS RÉSOLUES.

Solutions du problème d’analise indéterminée , proposé
à la page I40 de ce volume;

Par MM. Du BOURGUET , S..., CARDINALI, LANJUINAIS
et LE GRAND.

ENONCÉ. On demande quatre nombres pairs, en progressioN
arithmétique, tels qu’en multipliant la somme des trois derniers

par la somme des deux du milieu , on obtienne un produit égal
au cube d’un moyen arithmétique entre les deux premters de ces
quatre nombres ?

La difficulté de ce problème paraît consister principalement en ce
que, s’élevant naturellement au troisième degré , il faut le rabaisser
au. second. C’est , en effet, ce qu’ont fait M. Du Bourguet, pro-
f sseur de mathématiques spéciales au lycée impérial , M. S..., et
M. Le Grand , élève de l’école normale MM. Cardinall ? professeur
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