Martine Picavet-L’Hermitte

Cale Bases in Algebraic Orders

<http://ambp.cedram.org/item?id=AMBP_2003__10_1_117_0>
Cale Bases in Algebraic Orders
Martine Picavet-L’Hermitte

Abstract

Let R be a non-maximal order in a finite algebraic number field with integral closure \overline{R}. Although R is not a unique factorization domain, we obtain a positive integer N and a family Q (called a Cale basis) of primary irreducible elements of R such that x^N has a unique factorization into elements of Q for each $x \in R$ coprime with the conductor of R. Moreover, this property holds for each nonzero $x \in R$ when the natural map $\text{Spec}(\overline{R}) \to \text{Spec}(R)$ is bijective. This last condition is actually equivalent to several properties linked to almost divisibility properties like inside factorial domains, almost Bézout domains, almost GCD domains.

1 Introduction

Let K be a number field and \mathcal{O}_K its ring of integers. A subring of \mathcal{O}_K with quotient field K is called an algebraic order in K. Let R be a non-integrally closed order with integral closure \overline{R}. Since R cannot be a unique factorization domain, an element of R need not have a unique factorization into irreducibles. Let R be a quadratic order such that \mathfrak{f} is the conductor of $R \hookrightarrow \overline{R}$. A. Faisant got a unique factorization into a family of irreducibles for any x^e where $x \in R$ is such that $Rx + \mathfrak{f} = R$ and e is the exponent of the class group of R [7, Théorème 2]. We are going to generalize his result to an arbitrary order and to a larger class of elements, using the notion of Cale basis defined by S.T. Chapman, F. Halter-Koch and U. Krause in [4]. In Section 2, we show that there exists a Cale basis for an order R if and only if the spectral map $\text{Spec}(\overline{R}) \to \text{Spec}(R)$ is bijective. This condition is also equivalent to $R \hookrightarrow \overline{R}$ is a root extension, or R is an API-domain (resp. AD-domain, AB-domain, AP-domain, AGCD-domain, AUFD). These integral domains were studied by D. D. Anderson and M. Zafrullah in [3] and [11]. In Section 3, we consider orders R such that $\text{Spec}(\overline{R}) \to \text{Spec}(R)$ is bijective and exhibit a Cale basis Q for such an order. The elements of
Q are primary and irreducible and we determine a number N, linked to some integers associated to R, such that x^N has a unique factorization into elements of Q for each nonzero $x \in R$. When R is an arbitrary order, we restrict this property to a smaller class of nonzero elements of R. We do not know whether the integer N is the minimum number such that x^N has a unique factorization into elements of Q for each nonzero $x \in R$, but we get an affirmative answer for $\mathbb{Z}[3i]$.

A generalization of these results can be gotten by considering a residually finite one-dimensional Noetherian integral domain R with torsion class group or finite class group and such that its integral closure is a finitely generated R-module.

Throughout the paper, we use the following notation:

For a commutative ring R and an ideal I in R, we denote by $V_R(I)$ the set of all prime ideals in R containing I and by $D_R(I)$ its complement in $\text{Spec}(R)$. If R is an integral domain, $U(R)$ is the set of all units of R and \overline{R} is the integral closure of R. The conductor of $R \hookrightarrow \overline{R}$ is called the conductor of R. For $a, b \in R \setminus \{0\}$, we write $a \mid b$ if $b = ac$ for some $c \in R$. Let J be an ideal of R and x an element of R: we say that x is coprime to J if $Rx + J = R$ and we denote by $\text{Cop}_R(J)$ the monoid of elements of R coprime to J. The cardinal number of a finite set S is denoted by $|S|$. When an element x of a group has a finite order, $o(x)$ is its order. As usual, \mathbb{N}^* is the set of nonzero natural numbers.

\section{Almost divisibility}

\textit{Definition:} Let R be a multiplicative, commutative and cancellative monoid. A subset of nonunit elements Q of R is a Cale basis if R has the following two properties:

1. For every nonunit $a \in R$, there exist some $n \in \mathbb{N}^*$ and $t_i \in \mathbb{N}$ such that $a^n = u \prod_{q_i \in Q} q_i^{t_i}$ where $u \in U(R)$ and only finitely many of the t_i's are nonzero.
Cale bases in algebraic orders

2. If \(u \prod_{q_i \in \mathcal{Q}} q_i^{s_i} = v \prod_{q_i \in \mathcal{Q}} q_i^{t_i} \) where \(u, v \in \mathcal{U}(R) \) and \(s_i, t_i \in \mathbb{N} \) with \(s_i = t_i = 0 \) for almost all \(q_i \in \mathcal{Q} \), then \(u = v \) and \(t_i = s_i \) for all \(q_i \in \mathcal{Q} \).

3. A monoid is called *inside factorial* if it possesses a Cale basis.

4. An integral domain \(R \) is called *inside factorial* if its multiplicative monoid \(R \setminus \{0\} \) is inside factorial.

Remark: In [4], the authors give the definition of an inside factorial monoid by means of divisor homomorphisms, but their result [4, Proposition 4] allows us to use this simpler definition.

Proposition 2.1: Let \(R \) be a one-dimensional Noetherian inside factorial domain with Cale basis \(\mathcal{Q} \). Any element of \(\mathcal{Q} \) is a primary element and there is a bijective map

\[
\begin{cases}
\mathcal{Q} \to \text{Max}(R) \\
q \mapsto \sqrt{Rq}
\end{cases}
\]

Proof: Let \(q \in \mathcal{Q} \) and show that \(Rq \) is a primary ideal. Let \(x, y \in R \setminus \{0\} \) be such that \(q|(xy)^k = x^ky^k \) for some \(k \in \mathbb{N}^* \). By [4, Lemma 2 (f)], there exists some \(n \in \mathbb{N}^* \) such that \(q|x^kn \) or \(q|y^kn \). This implies that \(\sqrt{Rq} \) is a maximal ideal in \(R \) and \(Rq \) is a primary ideal.

Let \(P \in \text{Max}(R) \) and \(q, q' \in \mathcal{Q} \) be two \(P \)-primary elements. \(R \) being Noetherian, there exists some \(n \in \mathbb{N}^* \) such that \(Rq^n \subset P^n \subset Rq' \), so that \(q'|q^n \). Set \(q^n = q'x \), \(x \in R \). Since \(R \) is inside factorial, there exist some \(k \in \mathbb{N}^* \) and \(t_i \in \mathbb{N} \) such that \(x^k = u \prod_{q_i \in \mathcal{Q}} q_i^{t_i} \) where \(u \in \mathcal{U}(R) \). This gives \(q^{nk} = uq'^k \prod_{q_i \in \mathcal{Q}} q_i^{t_i} \) and \(q = q' \) since \(\mathcal{Q} \) is a Cale basis.

Let \(P \in \text{Max}(R) \) and \(x \) be a nonzero element of \(P \). There exist some \(n \in \mathbb{N}^* \) and \(t_i \in \mathbb{N} \) such that \(x^n = u \prod_{q_i \in \mathcal{Q}} q_i^{t_i} \) where \(u \in \mathcal{U}(R) \). Then \(Rx^n = \prod_{q_i \in \mathcal{Q}} Rq_i^{t_i} \) with \(Rq_i^{t_i} \) a \(P_i \)-primary ideal and \(t_i \neq 0 \) for each \(P_i \) containing \(x \). Moreover we have \(P_i \neq P_j \) for \(i \neq j \). Since \(P \) contains \(x \), one of the \(P_i \) such that \(t_i \neq 0 \) is \(P \) so that \(q_i \) is \(P \)-primary. So we get the bijection. \(\Box \)
Remark: We recover here the structure of Cale bases gotten in [4, Theorem 2] with the additional new property that every element of the Cale basis is a primary element.

For a one-dimensional Noetherian domain with torsion class group, the notion of inside factorial domain is equivalent to a lot of special integral domains with different divisibility properties we are going to recall now (see [11], [3] and [1]).

Definition: Let R be an integral domain with integral closure \overline{R}. We say that

1. $R \hookrightarrow \overline{R}$ is a root extension if for each $x \in \overline{R}$, there exists an $n \in \mathbb{N}^*$ with $x^n \in R$ [3].

2. R is an almost principal ideal domain (API-domain) if for any nonempty subset $\{a_i\} \subseteq R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ with $\langle \{a_i^n\} \rangle$ principal [3, Definition 4.2].

3. R is an AD-domain if for any nonempty subset $\{a_i\} \subseteq R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ with $\langle \{a_i^n\} \rangle$ invertible [3, Definition 4.2].

4. R is an almost Bézout domain (AB-domain) if for $a, b \in R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ such that (a^n, b^n) is principal [3, Definition 4.1].

5. R is an almost Prüfer domain (AP-domain) if for $a, b \in R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ such that (a^n, b^n) is invertible [3, Definition 4.1].

6. R is an almost GCD-domain (AGCD-domain) if for $a, b \in R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ such that $a^nR \cap b^nR$ is principal [11].

7. A nonzero nonunit $p \in R$ is a prime block if for all $a, b \in R$ with $aR \cap pR \neq apR$ and $bR \cap pR \neq bpR$, there exist an $n \in \mathbb{N}^*$ and $d \in R$ such that $(a^n, b^n) \subseteq dR$ with $(a^n/d)R \cap pR = (a^n/d)pR$ or $(b^n/d)R \cap pR = (b^n/d)pR$. Then R is an almost unique factorization domain (AUFD) if every nonzero nonunit of R is expressible as a product of finitely many prime blocks [11, Definition 1.10].

8. R is an almost weakly factorial domain if some power of each nonzero nonunit element of R is a product of primary elements [1].
We first give a result for one-dimensional Noetherian integral domains.

Proposition 2.2: Let R be a one-dimensional Noetherian inside factorial domain with Cale basis Q. Then R is an AGCD and an almost weakly factorial domain.

Proof: R is obviously an almost weakly factorial domain (see also [1, Theorem 3.9]). Let $a, b \in R \setminus \{0\}$. There exist some $n \in \mathbb{N}^*$ and $s_i, t_i \in \mathbb{N}$ such that $a^n = u \prod_{q_i \in Q} q_i^{s_i}$, $b^n = v \prod_{q_i \in Q} q_i^{t_i}$ where $u, v \in U(R)$. For each i, set $m_i = \sup(s_i, t_i)$, $m'_i = \inf(s_i, t_i)$ and $c = \prod_{q_i \in Q} q_i^{m_i}$. Then $Rc \subset Ra^n \cap Rb^n$ so that $c = u^{-1}a'^n a' = v^{-1}b'^nb'$ with $a' = \prod_{q_i \in Q} q_i^{m_i - s_i}$ and $b' = \prod_{q_i \in Q} q_i^{m_i - t_i}$. Now, let $x, y \in R \setminus \{0\}$ be such that $xa^n = yb^n$. It follows that $xu \prod_{q_i \in Q} q_i^{s_i - m'_i} = yv \prod_{q_i \in Q} q_i^{t_i - m'_i}$ where q_i appears in the product in at most one side and $uxb' = vya'$. Assume $m'_i = s_i \neq t_i$. Since $Rd_i^{t_i - m'_i}$ is a P_i-primary ideal and $q_j \notin P_i$ for each $j \neq i$ by Proposition 2.1, we get that $q_i^{m_i - s_i} = q_i^{t_i - m'_i}$ divides x. Repeating the process for each i such that $t_i > m'_i$, we get that $a' \mid x$ and $xa^n \in Rc$. Then $Rc = Ra^n \cap Rb^n$ and R is an AGCD.

More precisely, for one-dimensional Noetherian integral domains with torsion class group, we have the following.

Theorem 2.3: Let R be a one-dimensional Noetherian integral domain with torsion class group and with integral closure \overline{R}. The following conditions are equivalent.

1. $R \hookrightarrow \overline{R}$ is a root extension.
2. R is an API-domain.
3. R is an AD-domain.
4. R is an AB-domain.
5. R is an AP-domain.
6. R is an AGCD-domain.
7. \(R \) is an AUFD.

8. \(R \) is an inside factorial domain.

Moreover, if \(\overline{R} \) is a finitely generated \(R \)-module and \(R \) is residually finite, these conditions are equivalent to

9. \(\text{Spec}(\overline{R}) \to \text{Spec}(R) \) is bijective.

\textbf{Proof:} \ (1) \Leftrightarrow (4) \Leftrightarrow (5) by [3, Corollary 4.8] since \(\overline{R} \) is a Prüfer domain.
\((1) \Leftrightarrow (8) \) by [4, Corollary 6].
\((6) \Leftrightarrow (7) \) by [11, Proposition 2.1 and Theorem 2.12].

At last, implications \((4) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) \) and \((4) \Rightarrow (6) \) are obvious since \(R \) is Noetherian.

\((6) \Rightarrow (1) \) follows from [3, Theorem 3.1] and \((1) \Rightarrow (9) \) is true in any case by [3, Theorem 2.1].

Moreover, if \(\overline{R} \) is a finitely generated \(R \)-module and \(R \) is residually finite, we get \((9) \Rightarrow (1) \). Indeed, it is enough to mimic the proof of [9, Proposition 3] since \(R \hookrightarrow \overline{R} \) is factored in finitely many root extensions. \qed

\textbf{Remark:} In [5, page 178] and [3, page 297], the authors asked about non-integrally closed AGCD domains of finite \(t \)-character or of characteristic 0. The previous theorem gives examples of such domains.

3 Structure of Cale bases of algebraic orders

In this section, we consider algebraic orders where Theorem 2.3 reveals as being useful. A generalization to residually finite one-dimensional Noetherian integral domains \(R \) with finite class group and with integral closure \(\overline{R} \) such that \(\overline{R} \) is a finitely generated \(R \)-module can be easily made. We use the following notation.

Let \(R \) be an order with integral closure \(\overline{R} \) and conductor \(\mathfrak{f} \). Set \(\mathcal{I}(R) \) (resp. \(\mathcal{I}_{\mathfrak{f}}(R) \)) the monoid of all nonzero ideals of \(R \) (resp. the monoid of all nonzero ideals of \(\overline{R} \) comaximal to \(\mathfrak{f} \), the monoid of all nonzero ideals of \(R \) comaximal to \(\mathfrak{f} \)). In particular, \(D_{\mathfrak{f}} = (\mathcal{I}_{\mathfrak{f}}(R) \cap \text{Spec}(R)) \cup \{0\} \). Let \(\mathcal{P}(\overline{R}) \) (resp. \(\mathcal{P}_{\mathfrak{f}}(R) \)) be the submonoid of all principal ideals belonging to \(\mathcal{I}(\overline{R}) \) (resp. to \(\mathcal{I}_{\mathfrak{f}}(R) \)). Then \(\mathcal{C}(R) = \mathcal{I}(R)/\mathcal{P}(R) \) (resp. \(\mathcal{C}(R) = \mathcal{I}_{\mathfrak{f}}(R)/\mathcal{P}_{\mathfrak{f}}(R) \)) is the class group of \(R \) (resp. \(\overline{R} \)).
Cale bases in algebraic orders

surjective. Both of these groups are finite. Moreover, we have a monoid isomorphism \(\varphi : \mathcal{I}(R) \to \mathcal{I}(\mathcal{R}) \) defined by \(\varphi(J) = J\mathcal{R} \) for all \(J \in \mathcal{I}(R) \) (see [8, §3]). In particular, any ideal of \(\mathcal{I}(R) \), as any ideal of \(\mathcal{I}(\mathcal{R}) \), is the product of maximal ideals in a unique way since \(\varphi(D_R(f)) = D_{\mathcal{R}}(f) \). The image of an ideal \(J \) of \(\mathcal{I}(\mathcal{R}) \) (resp. \(\mathcal{I}(R) \)) in \(\mathcal{C}(\mathcal{R}) \) (resp. \(\mathcal{C}(R) \)) is denoted by \([J]\). The exponent of \(\mathcal{C}(R) \) is denoted by \(e(R) \) and \(s(R) \) is the order of the factor group \(\mathcal{U}(\mathcal{R})/\mathcal{U}(R) \).

3.1 Building a Cale basis

Proposition 3.1: Let \(\mathcal{I} \) be the conductor of an order \(R \) where the integral closure is \(\mathcal{R} \).

1. Let \(P \in D_R(\mathcal{I}) \setminus \{0\} \) and \(\alpha = o([P]) \). There exists an irreducible \(P \)-primary element \(q \in P \) such that \(P^\alpha = Rq \).

2. Let \(P \in V_R(\mathcal{I}) \) such that there exists a unique \(P' \in \text{Spec}(\mathcal{R}) \) lying over \(P \). There exists a \(P \)-primary element \(q \in P \) such that \(P^{n'q} = Rq \) for some \(n \in \mathbb{N}^* \) and such that \(P^{n'q} = Rq' \) with \(q' \in R \) implies \(n \leq n' \).

Such an element \(q \) is irreducible in \(R \).

Proof:

(1) \(P^\alpha \) is a principal ideal. Let \(q \in R \) be such that \(P^\alpha = Rq \) and suppose there exist \(x, y \in \mathcal{R} \) such that \(q = xy \) so that \(P^\alpha = (Rx)(Ry) \). Using the monoid isomorphism \(\varphi \), we get that \(Rx = P^\beta \) and \(Ry = P^\gamma \) with \(\alpha = \beta + \gamma \). But the definition of \(\alpha \) implies that \(x \) or \(y \) is a unit and \(q \) is an irreducible element, obviously \(P \)-primary.

(2) Set \(\alpha = o([P']) \). There exists \(p' \in P' \) such that \(P'^\alpha = \mathcal{R}p' \).

Let \(Q \in D_R(\mathcal{I}) \). Then \(RQ \to \mathcal{R}Q \) is an isomorphism, so that \(p'/1 \in RQ \).

Let \(P \neq Q \in V_R(\mathcal{I}) \). Then \(p'/1 \in \mathcal{U}(\mathcal{R}Q) \). As \(\mathcal{U}(\mathcal{R}Q)/\mathcal{U}(RQ) \) is finite, there exists \(n_Q \in \mathbb{N}^* \) such that \((p'/1)^{n_Q} \in R_Q \).

Lastly, \(R_P \to \mathcal{R}_P \) is a root extension in view of Theorem 2.3 (9). It follows that there exists \(n_P \in \mathbb{N}^* \) such that \((p'/1)^{n_P} \in R_P \).

\(V_R(\mathcal{I}) \) being finite, there exists a least \(n \in \mathbb{N}^* \) such that \(p'^n \in R \cap P' = P \).

In case there exists \(u \in \mathcal{U}(\mathcal{R}) \) such that \(P^{n'u} = \mathcal{R}p^m \), with \(m < n \) and \(wp^m \in R \cap P' = P \), we pick \(q \in P \) such that \(P^\beta = Rq \), where \(\beta \) is the least \(k \in \mathbb{N}^* \) such that \(P^{nk} = Rq' \) with \(q' \in R \). Then \(q \) is obviously a \(P \)-primary element.
Let $x, y \in R$ be such that $q = xy$, which gives $P^\beta = (\overline{R}x)(\overline{R}y)$ so that $\overline{R}x = P^\beta$ and $\overline{R}y = P^\delta$ with $\beta = \gamma + \delta$. But the definition of β implies that x or y is in $U(\overline{R}) \cap R = U(R)$ and q is an irreducible element in R.

Remark: If we assume that $\text{Spec}(\overline{R}) \to \text{Spec}(R)$ is bijective in Proposition 3.1, $R \hookrightarrow \overline{R}$ is a root extension in view of Theorem 2.3 (1). Then, there exists a least $n \in \mathbb{N}^*$ such that $p^n \in R \cap P' = P$.

Theorem 3.2: Let R be an order with conductor \mathfrak{f} and integral closure \overline{R}.

For each $P \in D_R(\mathfrak{f}) \setminus \{0\}$, let $\alpha = \alpha([P])$. Choose $q_P \in P$ such that $P^\alpha = Rq_P$. Set $Q_1 = \{q_P \mid P \in D_R(\mathfrak{f}) \setminus \{0\}\}$.

For each $P \in V_R(\mathfrak{f})$ such that there exists a unique $P' \in \text{Spec}(\overline{R})$ lying over P, choose $q_P \in P$ such that q_P generates a least power of P'. Set $Q_2 = \{q_P \mid P \in V_R(\mathfrak{f}),$ there exists a unique $P' \in \text{Spec}(\overline{R})$ lying over $P\}$.

To end, set $Q = Q_1 \cup Q_2$ and let J be the intersection of all $P \in V_R(\mathfrak{f})$ such that there exists more than one ideal in $\text{Spec}(\overline{R})$ lying over P.

For each $P_i \in V_R(\mathfrak{f})$ such that there exists a unique $P'_i \in \text{Spec}(\overline{R})$ lying over P_i let n_i be the least $n \in \mathbb{N}^*$ such that P_i^m is a principal ideal generated by an element of R. Lastly, set $m = \text{lcm}(e(R), n_i)$ and $N = ms(R)$. Then

1. Up to units of R, x^N is a product of elements of Q in a unique way, for each $x \in \text{Cop}_R(J)$.

 In particular, $\text{Cop}_R(J)$ is an inside factorial monoid with Cale basis Q.

2. In particular, Q is a Cale basis for R when $\text{Spec}(\overline{R}) \to \text{Spec}(R)$ is bijective.

Proof: • Since $V_R(\mathfrak{f})$ is a finite set, there are finitely many $P_i \in V_R(\mathfrak{f})$ such that there exists a unique $P'_i \in \text{Spec}(\overline{R})$ lying over P_i.

Set $n_i = \inf\{n \in \mathbb{N}^* \mid P_i^m$ is a principal ideal generated by an element of $R\}$. We can set $m = \text{lcm}(e(R), n_i)$ so that $m = e(R)e' = n_in_i'$ and $e(R) = \alpha_i\alpha_i'$, where $\alpha_i = \alpha([P_i])$ for each i such that $P_i \in D_R(\mathfrak{f}) \setminus \{0\}$.

Let $x \in \text{Cop}_R(J)$. Then $\overline{R}x = \prod P_i^{\alpha_i}, \ a_i \in \mathbb{N}^*, \ P_i' \in \text{Max}(\overline{R})$. Set $P_i = R \cap P_i'$ and $q_i = q_{P_i}$ for each i.

Then we have $\overline{R}xm = \prod_{P_i \in V_R(\mathfrak{f})} P_i'^{\alpha_i} \prod_{P_i \in D_R(\mathfrak{f}) \setminus \{0\}} P_i'^{\alpha_i}$.

If $P_i \in V_R(\mathfrak{f})$, we get that $P_i'^{\alpha_i} = P_i'^{n_i'\alpha_i} = \overline{R}q_i^{a_in_i'}$, with $q_i \in Q_2$.

124
Cale bases in algebraic orders

If $P_i \in D_R(f) \setminus \{0\}$, we get that $P_i' = \overline{RP_i}$ so that $P_i^{m_{a_i}} = \overline{P_i e(R) e_{a_i} = \overline{Rq_i^{a_i e_{a_i}}}}$, with $q_i \in Q_1$. This gives finally $\overline{Rx^m} = R \prod_{P_i \in V_R(f)} q_i^{n_i a_i} \prod_{P_i \in D_R(f) \setminus \{0\}} q_i^{e_{a_i} e_{a_i}}$, so that there exists $u \in U(R)$ such that $x^m = u \prod q_q^{b_q}, b_q \in \mathbb{N}$. From $v = u^{s(R)} \in R \cap U(R) = U(R)$, we deduce $x^{ms(R)} = v \prod q^{s(R) b_q}$. Set $N = ms(R)$ and $t_q = s(R) b_q$ for each $q \in Q$. Then $x^N = v \prod q^{t_q}$.

• Let us show that x^N has a unique factorization into elements of Q. Let $v, v' \in U(R)$, $t_q, t'_q \in \mathbb{N}$ be such that $x^N = v \prod q^{t_q} = v' \prod q^{t'_q}$. This implies

$$\prod_{q \in Q} \overline{Rq^{t_q}} = \prod_{q \in Q} \overline{Rq^{t'_q}}$$

in R, with finitely many nonzero t_q and t'_q. Taking into account the uniqueness of the primary decomposition of $\overline{Rx^N}$ in R, we first get $\overline{Rq^{t_q}} = \overline{Rq^{t'_q}}$, so that $t_q = t'_q$ for each $q \in Q$, and then $v = v'$.

It follows that Q is a Cale basis for Cop$_R(J)$, which is an inside factorial monoid. Part (2) is then a special case of the general case.

Remark: (1) If there exists a maximal ideal P in R with more than one maximal ideal in R lying over P, then Cop$_R(J)$ is not the largest inside factorial monoid contained in R where the elements of the Cale basis are primary.

Indeed, let q be a P-primary element. The monoid generated by Cop$_R(J)$ and q is still inside factorial.

(2) Nevertheless, under the previous assumption, we can ask if there exists in R a largest inside factorial monoid of the form Cop$_R(K)$ where K is an ideal of R and such that the elements of the Cale basis of Cop$_R(K)$ are irreducible and primary.

Proposition 3.3: Under notation of Theorem 3.2, J is the greatest ideal K of R such that Cop$_R(K)$ is an inside factorial monoid and such that the elements of the Cale basis of Cop$_R(K)$ are primary. Moreover, we get Cop$_R(K) \subset$ Cop$_R(J)$ for any such an ideal K.

Proof: Let K be an ideal of R such that Cop$_R(K)$ is an inside factorial monoid and such that the elements of the Cale basis Q' of Cop$_R(K)$ are
primary. Assume there exists a \(P \)-primary element \(q \in \mathcal{Q}' \) with \(P \in V_R(J) \). Let \(P_1, \ldots, P_n \in \text{Spec}(R) \) be lying over \(P \) with \(n > 1 \), so that \(f \subset P \). Let \(p_1 \in \overline{R} \) be a \(P_1 \)-primary element. We first show that there exist some \(r \) and \(s \in \mathbb{N}^* \) such that \(q^r p_1^s \) is a \(P \)-primary element of \(R \).

For a maximal ideal \(M \in \text{Max}(R) \), we denote by \(X' \) the localization of an \(R \)-module \(X \) at \(M \).

- If \(M \in D_R(f) \), we get an isomorphism \(R' \simeq \overline{R} \).
- Then \(p_1/1 \in R' \) and \((q^r p_1^s)/1 \in R' \) for any \(r', s' \in \mathbb{N}^* \) and \(M \). Moreover, we have \((q^r p_1^s)/1 \in U(R') \).

- If \(M \in V_R(f) \) and \(M \neq P \), then \(p_1/1 \in U(\overline{R}) \) and there exists \(s_M \in \mathbb{N}^* \) such that \((p_1^{s_M})/1 \in U(R') \) since \(U(\overline{R})/U(R') \) has a finite order. Because of \(V_R(f) \) being finite too, there exists \(s \in \mathbb{N}^* \) such that \((q^r p_1^s)/1 \in R' \) for any \(M \in V_R(f) \setminus \{P\} \) and for any \(r' \in \mathbb{N}^* \). Moreover, \((q^r p_1^s)/1 \in U(R') \).

- If \(M = P \), we get that \(f' \) is a \(P \)-primary ideal and the conductor of \(R' \).

There exists \(r \in \mathbb{N}^* \) such that \(P^{rt'} \subset f' \), so that \(q^r/1 \in f' \). This implies \((q^r p_1^s)/1 \in P' \subset R' \).

To conclude, there exist \(r, s \in \mathbb{N}^* \) such that \((q^r p_1^s)/1 \in R_M \) for any \(M \in \text{Max}(R) \), which gives \(q^r p_1^s \in R \) and is a \(P \)-primary element in \(R \) by the previous discussion. But \(P + K = R \) since \(q \in \text{Cop}_R(K) \). It follows that \(q^r p_1^s \in \text{Cop}_R(K) \) and there exist \(t, x \in \mathbb{N}^* \) such that \((q^t p_1^s)^t = u q^x \) (1), with \(u \in U(R) \). As \(q \) is a \(P \)-primary element, we get in \(\overline{R} \) the two factorizations \(\overline{R} q = \prod_{i=1}^n P_i^{a_i} \) and \(\overline{R} p_1 = P_1^{a_1} \), with \(a_i, a \in \mathbb{N}^* \). From (1), we get

\[
P_1^{a_1} / \prod_{i=1}^n P_i^{x a_i} = P_1^{a_1} \prod_{i=1}^n P_i^{x a_i},
\]

which gives:

- if \(i = 1 \), then \(r t a_1 + a s t = a_1 x \) (1)
- if \(i \neq 1 \), then \(r t a_i = a_i x \) (i)

so that \(x = r t \) by (i) and then \(a s t = 0 \) by (1), a contradiction.

Hence, any \(P \)-primary element \(q \in \mathcal{Q}' \) is such that \(P \in D_R(J) \).

For any \(x \in \text{Cop}_R(K) \), let \(k \in \mathbb{N}^* \) be such that \(x^k = u \prod_{q \in \mathcal{Q}'} q^{b_q} \), so that any maximal ideal \(P \in V_R(x) \) is in \(D_R(J) \). This implies that \(x \in \text{Cop}_R(J) \).

We have just shown that \(\text{Cop}_R(K) \subset \text{Cop}_R(J) \). To end, any \(P \in D_R(K) \) contains some \(q \in \text{Cop}_R(K) \subset \text{Cop}_R(J) \) so that \(P \in D_R(J) \).

Then \(V_R(J) \subset V_R(K) \) and \(K \subset \sqrt{K} \subset \sqrt{J} = J \).

Recall that an integral domain is weakly factorial if each nonunit is a

126
Cale bases in algebraic orders

product of primary elements (D. D. Anderson and L. A. Mahaney [2]). In particular, the class group of a one-dimensional weakly factorial Noetherian domain is trivial [2, Theorem 12]. The following corollary generalizes the quadratic case worked out by A. Faisant [7, Corollaire].

Corollary 3.4: Let R be a weakly factorial order with conductor \mathfrak{f}. Then each $x \in \text{Cop}_R(\mathfrak{f})$ is a product of prime elements of R in a unique way up to units.

Proof: We get $|C(R)| = 1$. Let $x \in \text{Cop}_R(\mathfrak{f})$. Then, $Rx = \prod_{P_i \in D_R(\mathfrak{f})\setminus\{0\}} P_i^{a_i}$, where each P_i is a principal ideal generated by a prime element $p_i \in \mathcal{Q}_1$ (notation of Theorem 3.2). It follows that $x = u \prod_{p_i \in \mathcal{Q}_1} p_i^{a_i}$, $u \in U(R)$. □

Corollary 3.5:

1. Let R be an inside factorial order with integral closure \overline{R}. Let \mathcal{Q} be the Cale basis defined in Theorem 3.2. Any overring S of R contained in \overline{R} is inside factorial and \mathcal{Q} is still a Cale basis for S.

2. Let R_1 and R_2 be two inside factorial orders with the same integral closure. Then $R = R_1 \cap R_2$ is inside factorial. Moreover, there exists a common Cale basis for R_1 and R_2.

Proof: (1) Since $R \hookrightarrow \overline{R}$ is a root extension, so is $S \hookrightarrow \overline{R}$ and S is inside factorial by Theorem 2.3. Moreover, the spectral map $\text{Spec}(\overline{R}) \rightarrow \text{Spec}(S)$ is bijective. Then, the construction of \mathcal{Q} in the proof of Theorem 3.2 shows that \mathcal{Q} is also a Cale basis for S.

We may also use [4, Proposition 5].

(2) Set $R = R_1 \cap R_2$. Then R is an order with the same integral closure \overline{R} as R_1 and R_2. Since $R_1 \hookrightarrow \overline{R}$ and $R_2 \hookrightarrow \overline{R}$ are root extensions, so is $R \hookrightarrow \overline{R}$ and R is inside factorial by Theorem 2.3. Part (1) gives that any Cale basis for R is also a Cale basis for R_1 and R_2.

□

Remark: The elements of the Cale basis \mathcal{Q} gotten in Theorem 3.2 are irreducible in R. The following examples show how they behave in the integral closure \overline{R}.

(1) Consider the quadratic order $R = \mathbb{Z}[\sqrt{-3}]$ with conductor $\mathfrak{f} = 2\overline{R}$, a maximal ideal in R and \overline{R}. Then R is weakly factorial and inside factorial.
[10, Corollary 2.2]. Let \(Q \) be the Cale basis of Theorem 3.2. Any element of \(Q \) belonging to \(\text{Cop}_R(f) \) is irreducible in \(R \) as well as in \(\overline{R} \). By Proposition 3.6 of the next subsection, 2 is the \(f \)-primary element of \(Q \) irreducible in both \(R \) and \(\overline{R} \). Then \(Q \) is a Cale basis for \(\overline{R} \) and its elements are also irreducible in \(\overline{R} \).

(2) Consider the quadratic order \(R = \mathbb{Z}[2i] \). Its conductor \(f = 2\overline{R} \) is a maximal ideal in \(R \). But \(f = \overline{R}(1 + i)^2 \) where \(\overline{R}(1 + i) \) is a maximal ideal in \(\overline{R} \). Then \(R \) is weakly factorial and inside factorial [10, Corollary 2.2]. Let \(Q \) be the Cale basis of Theorem 3.2. Any element of \(Q \) belonging to \(\text{Cop}_R(f) \) is irreducible in \(R \) as well as in \(\overline{R} \). By Proposition 3.6 of the next subsection, 2 is the \(f \)-primary element of \(Q \), irreducible in \(R \) but not in \(\overline{R} \) since \(2 = -i(1 + i)^2 \). Then \(Q \) is a Cale basis for \(\overline{R} \) and its elements need not be all irreducible in \(R \).

3.2 The quadratic case

In this subsection we keep notation of Theorem 3.2 for \(N \), \(Q_1 \) and \(Q_2 \). For a quadratic order, determination of elements of \(Q_2 \) and the number \(N \) is simple. The characterization of quadratic inside factorial orders is given in [4, Example 3].

Let \(d \) be a square-free integer and consider the quadratic number field \(K = \mathbb{Q}(\sqrt{d}) \). It is well-known that the ring of integers of \(K \) is \(\mathbb{Z}[\omega] \), where \(\omega = \frac{1}{2}(1 + \sqrt{d}) \) if \(d \equiv 1 \pmod{4} \) and \(\omega = \sqrt{d} \) if \(d \equiv 2, 3 \pmod{4} \). Moreover, \(\mathbb{Z}[\omega] \) is a free \(\mathbb{Z} \)-module with basis \(\{1, \omega\} \). A quadratic order in \(K \) is a subring \(R \) of \(\mathbb{Z}[\omega] \) which is a free \(\mathbb{Z} \)-module of rank 2 with basis \(\{1, n\omega\} \) where \(n \in \mathbb{N}^* \). Then \(\mathbb{Z}[\omega] \) is the integral closure \(\overline{R} \) of \(R = \mathbb{Z}[n\omega] \) and \(n\mathbb{Z}[\omega] \) is the conductor of \(R \). We denote by \(N(x) \) the norm of an element \(x \in \mathbb{Z}[\omega] \).

Proposition 3.6: Let \(R = \mathbb{Z}[n\omega] \) be a quadratic order with conductor \(f = n\mathbb{Z}[\omega] \), \(n \in \mathbb{N}^* \). Then \(Q_2 \) is the set of ramified and inert primes dividing \(n \).

In particular, \(\mathbb{Z}[n\omega] \hookrightarrow \mathbb{Z}[\omega] \) is a root extension if and only if no decomposed prime divides \(n \).

Proof: Let \(P \in \text{Max}(R) \), with \(p\mathbb{Z} = \mathbb{Z} \cap P \). There is only one maximal ideal lying over \(P \) in \(\overline{R} \) if \(p \) is ramified or inert. By [12, Proposition 12], we have \(P = p\mathbb{Z} + n\omega\mathbb{Z} \) when \(p|n \).

- If \(p \) is inert, then \(\overline{R}p \in \text{Max}(\overline{R}) \), so that \(p \) is irreducible in \(\overline{R} \) and in \(R \).
- If \(p \) is ramified, then \(\overline{R}p = p'\mathbb{Z} \), where \(p' \in \text{Max}(\overline{R}) \).
 - If \(p' \) is not a principal ideal, then \(p \) is irreducible in \(\overline{R} \) and in \(R \).
Cale bases in algebraic orders

- Let $P' = \overline{Rp'}$, $p' \in \overline{R}$. Then $p = up^2$ with $u \in \mathcal{U}(\overline{R})$. Indeed, p is still irreducible in R. Deny and let $x, y \in R$ be nonunits such that $p = xy$. It follows that $N(p) = p^2 = N(x)N(y)$ which gives $N(x) = N(y) = \pm p$. But $x \in R$ can be written $x = a + bn\omega$, $a, b \in \mathbb{Z}$.

If $d \equiv 2, 3 \pmod{4}$, we get $N(x) = a^2 - n^2b^2d$, with $p\mid n$ and $p\mid N(x)$, a contradiction. If $d \equiv 1 \pmod{4}$, we get $d = 1 + 4k$, $k \in \mathbb{Z}$. It follows that $N(x) = a^2 + abn - n^2b^2k$. The same argument leads to a contradiction.

Corollary 3.7: Let $R = \mathbb{Z}[n\omega]$ be a quadratic order, $n \in \mathbb{N}^*$, with conductor $f = n\mathbb{Z}[\omega]$. The integer N is

1. $N = 2e(R)s(R)$ if $e(R)$ is odd and if a ramified prime divides n
2. $N = e(R)s(R)$ if $e(R)$ is even or if no ramified prime divides n.

Remark: We can ask whether the integer N gotten in Theorem 3.2 or in Corollary 3.7 is the least integer n such that x^n is a product of elements of \mathcal{Q} in a unique way, for any nonzero nonunit x of an inside factorial order. We can answer in the quadratic case by an example.

Example: Consider $R = \mathbb{Z}[3i]$. Its integral closure is the PID $\overline{R} = \mathbb{Z}[i]$ and its conductor is $f = 3\overline{R} \in \text{Max}(R)$ since 3 is inert.

As $|\mathcal{U}(\overline{R})/\mathcal{U}(R)| = 2$, we get $|\mathcal{C}(R)| = 2$ by the class number formula $|\mathcal{C}(R)| = |\mathcal{C}(\overline{R})|\mathcal{U}(\overline{R})/\mathcal{U}(R)|^{-1}(1 + 3)$ (see [6, Chapter 9.6]), so that $N = 4$. Moreover, $2 = -i(1+i)^2$ is ramified in \overline{R} and $P = R \cap (1+i)\overline{R} = 2\mathbb{Z} + 3(1+i)\mathbb{Z}$ is a nonprincipal maximal ideal in R such that $P^2 = 2R$, with 2 and 3 irreducible in R. We get $2 \in \mathcal{Q}_1$ and $3 \in \mathcal{Q}_2$. Let $t = 3(1+i) \in R$. The only maximal ideals of R containing t are f and P. Now $t^2 = 3^2(2i)$, $t^3 = 3^3 \cdot 2(-1+i)$ and $t^4 = -3^4 \cdot 2^2$. Then t^4 is the least power which has, up to units of R, a unique factorization into elements of \mathcal{Q}. It follows that $N = e(R)s(R)$ is the least integer n such that x^n is a product of elements of \mathcal{Q} in a unique way, for any nonzero nonunit x of R.

References

Cale bases in algebraic orders

Martine Picavet-L’Hermitte
Université Blaise Pascal
Laboratoire de Mathématiques Pures
Les Cézeaux
63177 Aubière CEDEX
France
Martine.Picavet@math.univ-bpclermont.fr