Pei-Chu Hu
Chung-Chun Yang

Notes on a generalized abc-conjecture over function fields

Annales mathématiques Blaise Pascal, tome 8, n° 1 (2001), p. 61-71

<http://www.numdam.org/item?id=AMBP_2001__8_1_61_0>
Notes on a generalized abc-conjecture over function fields

Pei-Chu Hu & Chung-Chun Yang*

Abstract

In this note, we weaken a condition in the generalized abc-conjecture proposed by us in a previous paper, and prove its analogue for non-Archimedean entire functions, as well as a generalized Mason's theorem for polynomials.

1 Introduction

In all the paper, \(\kappa \) will denote an algebraically closed field of characteristic zero.

Let \(a \) be a non-zero integer. Then

\[|a| = p_1^{i_1} \cdots p_n^{i_n} \]

holds for distinct primes \(p_1, \ldots, p_n \). For a positive integer \(k \), define

\[r_k(a) = \prod_{\nu=1}^{n} p_{\nu}^{\min\{i_{\nu}, k\}}. \]
Conjecture 1.1 ([6],[10],[11]) Let $a_j (j = 0, \cdots, k)$ be nonzero integers such that the greatest common factor of a_0, \ldots, a_k is 1,

$$a_1 + \cdots + a_k = a_0,$$

and no proper subsum of (1) is equal to 0. Then for $\varepsilon > 0$, there exists a number $C(k, \varepsilon)$ such that $\max_{0 \leq j \leq k} \{|a_j|\} \leq C(k, \varepsilon) \left(\prod_{i=0}^{k} r_{k-1} (a_i) \right)^{1+\varepsilon}$,

$$\max_{0 \leq j \leq k} \{|a_j|\} \leq C(k, \varepsilon) r_{k-1}^{(k-1)/2} (a_0 \cdots a_k)^{1+\varepsilon}.$$

If $k = 2$, this corresponds to the well known abc-conjecture which also is a consequence of the Vojta's Conjecture (see Vojta [19]). Some special cases of Conjecture 1.1 were given in [8] and [9]. In this note, we will prove the analogue of Conjecture 1.1 for entire functions defined over non-Archimedean fields:

Theorem 1.1 Let κ be complete for a non-trivial non-Archimedean absolute value $|\cdot|$. Let $f_j (j = 0, \cdots, k)$ be entire functions on κ such that f_0, \ldots, f_k have no common zeros, $f_j (j = 1, \cdots, k)$ be linearly independent on κ and $f_1 + \cdots + f_k = f_0$. (2)

Then the Nevanlinna functions $T(r, f_j)$ and $N_k(r, f_j)$ satisfy

$$\max_{0 \leq j \leq k} \{T(r, f_j)\} \leq \sum_{i=0}^{k} N_{k-1} \left(r, \frac{1}{f_i} \right) - \frac{k(k-1)}{2} \log r + O(1)$$

$$\max_{0 \leq j \leq k} \{T(r, f_j)\} \leq N_{k(k-1)/2} \left(r, \frac{1}{f_0 f_1 \cdots f_k} \right) - \frac{k(k-1)}{2} \log r + O(1).$$

For the meaning of the above notations, we refer the reader to § 2. Under a stronger condition that f_0, f_j have no common zeros for $j = 1, \ldots, k$, some special cases of Theorem 1.1 were given in [7], [9]. If f is a polynomial, it is easy to show

$$\deg(f) = \lim_{r \to \infty} \frac{T(r, f)}{\log r}, \quad r_k (f) := \lim_{r \to \infty} \frac{N_k \left(r, \frac{1}{f} \right)}{\log r}.$$

As a direct consequence of Theorem 1.1, we obtain

Theorem 1.2 Let $f_j (j = 0, \cdots, k)$ be polynomials on κ such that f_0, \ldots, f_k have no common zeros, $f_j (j = 1, \cdots, k)$ be linearly independent on κ and $f_1 + \cdots + f_k = f_0$. (3)

Then $\max_{0 \leq j \leq k} \{\deg(f_j)\} \leq \sum_{i=0}^{k} r_{k-1} (f_i) - \frac{k(k-1)}{2}$,

$$\max_{0 \leq j \leq k} \{\deg(f_j)\} \leq r_{k(k-1)/2} (f_0 \cdots f_k) - \frac{k(k-1)}{2}.$$
When \(k = 2 \), it reduces to a Mason's theorem (see [12], [13], [14], [15] and [18]) which has been generalized recently to fields of any characteristic \(p \) by Boutabaa and Escassut [2]. If \(k \geq 2 \), the following example

\[
 f_0(z) = (z + 1)^{k-1}, \quad f_{i+1}(z) = k - 1iz^i \quad (i = 0, \ldots, k - 1),
\]

which obviously satisfy the conditions in Theorem 1.2, shows that the inequalities in the theorem, in fact, become equality for this example. Under the stronger assumption that \(f_j \), \(f_0 \) have no common zeros for \(j = 1, \ldots, k \), Theorem 1.2 was obtained by Hu-Yang [9]. For any positive integer \(k \) and any polynomial \(f \) on \(\kappa \), note that

\[
 r_k(f) \leq k r_1(f).
\]

Theorem 1.2 yields immediately the following:

Theorem 1.3 Let \(f_1, f_2, \ldots, f_k \) (\(k \geq 2 \)) be linearly independent polynomials in \(\kappa \). Put \(f_0 = f_1 + f_2 + \cdots + f_k \) and assume that \(f_0, \ldots, f_k \) have no common zeros. Then the following inequalities \(\max_{0 \leq j \leq k} \{ \deg(f_j) \} \leq (k - 1) \sum_{i=0}^{k} r_1(f_i) - \frac{k(k-1)}{2} \), \(\max_{0 \leq j \leq k} \{ \deg(f_j) \} \leq \frac{k(k-1)}{2} (r_1(f_0 \cdots f_k) - 1) \), hold.

The inequality (1.3) was obtained independently by J. F. Voloch [20], W. D. Brownawell and D. Masser [4]. Earlier R. C. Mason [16] derived this estimate with \(k(k-1) \) replaced by \(4k \). J. Browkin and J. Brzeźniński [3] conjectured that the value \(\frac{1}{2}k(k-1) \) in (1.3) would be replaced by \(2k - 3 \). If the restriction on the linear independence of polynomials \(f_1, \ldots, f_k \) is removed, we have

Theorem 1.4 For fixed integer \(k \geq 1 \), let \(f_j \) (\(j = 0, \ldots, k \)) be non-zero polynomials on \(\kappa \) such that \(f_1 + \cdots + f_k = f_0 \). Assume also that not all the \(f_j \) are constants, and the \(f_j \) are pairwise relatively prime. Then

\[
 \max_{0 \leq j \leq k} \{ \deg(f_j) \} \leq (d - 1) (r_1(f_0 \cdots f_k) - 1),
\]

where \(d \) is the dimension of the vector space spanned by the \(f_i \) over \(\kappa \).

As an application of Theorem 1.2, we can derive the following:

Theorem 1.5 Given polynomials \(f_1, f_2, \ldots, f_k \) (\(k \geq 2 \)) in \(\kappa \) and positive integers \(l_j (1 \leq j \leq k) \) such that
(a) \(f_{11}, f_{22}, \ldots, f_{kk} \) are linearly independent over \(\mathbb{K} \);

(b) \(f_0, f_{11}, f_{22}, \ldots, f_{kk} \) have no common zeros, where

\[
f_0 = \sum_{j=1}^{k} f_{jj}.
\]

Then the following inequality

\[
\left\{1 - \sum_{j=1}^{k} \frac{k-1}{l_j}\right\}_{1 \leq j \leq k} \max_{1 \leq j \leq k} \deg (f_{jj}) \leq \tau_{k-1}(f_0) - \frac{k(k-1)}{2} \tag{5}
\]

holds.

Obviously, the inequality (5) implies

\[
\left\{1 - \sum_{j=1}^{k} \frac{k-1}{l_j}\right\}_{1 \leq j \leq k} \max_{1 \leq j \leq k} \deg (f_{jj}) \leq \deg \left(\sum_{j=1}^{k} f_{jj}\right) - \frac{k(k-1)}{2}. \tag{6}
\]

For the case

\[
k = 2, \quad l_1 = 2, \quad l_2 = 3, \tag{7}
\]

and

\[
f_1 = f, \quad f_2 = -g, \tag{8}
\]

the inequality (6) yields

\[
\frac{1}{2} \deg (g) \leq \deg \left(f^2 - g^3\right) - 1, \tag{9}
\]

which was proved for complex case by Davenport [5]. In fact, Davenport proved that (9) is true as long as \(f^2 - g^3 \neq 0 \) (also see [1],[18]).

2 Basic facts

Let \(\mathbb{K} \) be an algebraically closed field of characteristic zero, complete for a non-trivial non-Archimedean absolute value \(| \cdot | \). Define

\[
\mathbb{K}[0; r] = \{ z \in \mathbb{K} \mid |z| \leq r \}.
\]
Let $A(\kappa)$ be the set of entire functions on κ. Then each $f \in A(\kappa)$ can be given by a power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad (a_n \in \kappa),$$

such that for any $z \in \kappa$, one has $|a_n z^n| \to 0$ as $n \to \infty$. Define the maximum term:

$$\mu(r, f) = \max_{n \geq 0} |a_n| r^n$$

with the associated central index:

$$n \left(r, \frac{1}{f} \right) = \max \{ n \mid |a_n| r^n = \mu(r, f) \}.$$

Then $n \left(r, \frac{1}{f} \right)$ just is the counting function of zeros of f, which denotes the number of zeros (counting multiplicity) of f with absolute value $\leq r$. Fix a real ρ_0 with $\rho_0 > 0$. Define the valence function of zeros of f by

$$N \left(r, \frac{1}{f} \right) = \int_{\rho_0}^{r} \frac{n(t, \frac{1}{f})}{t} dt \quad (r > \rho_0).$$

The field of fractions of $A(\kappa)$ will be denoted by $M(\kappa)$. An element f in the set $M(\kappa)$ will be called a meromorphic function on κ. Take $f \in M(\kappa)$. Since greatest common divisors of any two elements in $A(\kappa)$ exist, then there are $g, h \in A(\kappa)$ with $f = \frac{g}{h}$ such that g and h have no any common zeros in the ring $A(\kappa)$. We can uniquely extend μ to a meromorphic function $f = \frac{g}{h}$ by defining

$$\mu(r, f) = \frac{\mu(r, g)}{\mu(r, h)} \quad (0 \leq r < \infty).$$

Then the following Jensen formula

$$N \left(r, \frac{1}{f} \right) - N(r, f) = \log \mu(r, f) - \log \mu(\rho_0, f)$$

holds, where

$$N(r, f) = N \left(r, \frac{1}{h} \right).$$

Note that

$$\mu(r, f_1 f_2) = \mu(r, f_1) \mu(r, f_2), \quad f_1, f_2 \in M(\kappa).$$
Thus the Jensen formula implies
\[
N\left(r, \frac{1}{f_1 f_2}\right) - N(r, f_1 f_2) = N\left(r, \frac{1}{f_1}\right) + N\left(r, \frac{1}{f_2}\right) - N(r, f_1) - N(r, f_2).
\] (13)

Define the compensation function by
\[
m(r, f) = \max\{0, \log \mu(r, f)\}.
\]
As usual, we define the characteristic function:
\[
T(r, f) = m(r, f) + N(r, f) \quad (\rho_0 < r < \infty).
\]
Then the following formula (see [8])
\[
T(r, f) = \max\left\{N\left(r, \frac{1}{f-a}\right), N\left(r, \frac{1}{f-b}\right)\right\} + O(1) \quad (14)
\]
holds for any two distinct elements \(a, b \in \kappa \cup \{\infty\}\). In particular, if \(f\) is a non-constant entire function in \(\kappa\), then
\[
N\left(r, \frac{1}{f-a}\right) = T(r, f) + O(1) \quad (15)
\]
for all \(a \in \kappa\).

We also denote the number of distinct zeros of \(f-a\) on \(\kappa[0; r]\) by \(\Pi (r, \frac{1}{f-a})\)
and define
\[
\Pi\left(r, \frac{1}{f-a}\right) = \int_{\rho_0}^{r} \frac{\Pi(t, \frac{1}{f-a})}{t} \, dt \quad (r > \rho_0).
\]
Let \(n_k(r, \frac{1}{f-a})\) denote the the number of zeros of \(f-a\) on \(\kappa[0; r]\), where a zero of \(f-a\) with multiplicity \(m\) will be counted as \(\min\{m, k\}\) in \(n_k(r, \frac{1}{f-a})\).
Write
\[
N_k\left(r, \frac{1}{f-a}\right) = \int_{\rho_0}^{r} \frac{n_k(t, \frac{1}{f-a})}{t} \, dt \quad (r > \rho_0).
\]
The following result is a non-Archimedean analogue of a result of Nevanlinna[17]:

Lemma 2.1 ([8], [9]) Let \(f_j (j = 1, \cdots, k)\) be linearly independent meromorphic functions on \(\kappa\) such that
\[
f_1 + \cdots + f_k = 1. \quad (16)
\]
Then

\[T(r, f_j) < \sum_{i=1}^{k} N\left(r, \frac{1}{f_i}\right) - \sum_{i \neq j} N(r, f_i) + N(r, W) \]

\[-N\left(r, \frac{1}{W}\right) - \frac{k(k-1)}{2} \log r + O(1), \quad 1 \leq j \leq k \quad (17) \]

where \(W \) is the Wronskian of \(f_1, ..., f_k \).

3 Proof of the main theorems

Proof of Theorem 1.1. Applying Lemma 2.1 to \(f_1/f_0, ..., f_k/f_0 \), we obtain

\[T\left(r, \frac{f_j}{f_0}\right) < \sum_{i=1}^{k} N\left(r, \frac{f_0}{f_i}\right) - \sum_{i \neq j} N\left(r, \frac{f_i}{f_0}\right) + N(r, W) \]

\[-N\left(r, \frac{1}{W}\right) - \frac{k(k-1)}{2} \log r + O(1), \quad 1 \leq j \leq k, \quad (18) \]

where \(W = W(f_1/f_0, ..., f_k/f_0) \) is the Wronskian of \(f_1/f_0, ..., f_k/f_0 \). Note that

\[W = W\left(\frac{f_1}{f_0}, ..., \frac{f_k}{f_0}\right) = \frac{W_1}{f_0^k}, \]

where \(W_1 = W(f_1, ..., f_k) \) is the Wronskian of \(f_1, ..., f_k \). By the formula (13), we obtain easily \(N\left(r, \frac{f_0}{f_i}\right) - N\left(r, \frac{f_i}{f_0}\right) = N\left(r, \frac{1}{f_i}\right) - N\left(r, \frac{1}{f_0}\right), \)

\(N(r, W) - N\left(r, \frac{1}{W}\right) = kN\left(r, \frac{1}{f_0}\right) - N\left(r, \frac{1}{W_1}\right) \), and hence, for \(1 \leq j \leq n \), we obtain

\[T\left(r, \frac{f_j}{f_0}\right) \leq \sum_{i=0}^{n} N\left(r, \frac{1}{f_i}\right) - N\left(r, \frac{1}{W_1}\right) + N\left(r, \frac{f_0}{f_j}\right) \]

\[-N\left(r, \frac{1}{f_j}\right) - \frac{k(k-1)}{2} \log r + O(1). \quad (19) \]

Obviously, for each \(j = 1, ..., k \), we can choose entire functions \(h_j, \tilde{f}_0j \) and \(\tilde{f}_j \) such that \(\tilde{f}_0j \) and \(\tilde{f}_j \) have no common zeros, and

\[f_0 = h_j \tilde{f}_0j, \quad f_j = h_j \tilde{f}_j. \]
By simple observation, we find
\[N \left(r, \frac{1}{f_j} \right) - N \left(r, \frac{f_0}{f_j} \right) = N \left(r, \frac{1}{h_j} \right). \] (20)
Noting that, by (14) and (15),
\[T \left(r, \frac{f_j}{f_0} \right) + N \left(r, \frac{1}{h_j} \right) = \max \left\{ N \left(r, \frac{1}{f_0} \right), N \left(r, \frac{1}{f_j} \right) \right\} + O(1) \]
\[= \max \{ T(r, f_0), T(r, f_j) \} + O(1). \] (21)
Thus Theorem 1.1 follows from (19), (21) and the following estimates
\[\sum_{i=0}^{k} \mu_{f_i}^0 - \mu_{W_1}^0 \leq \sum_{i=0}^{k} \mu_{f_i,k-1}^0, \] (22)
\[\sum_{i=0}^{k} \mu_{f_i}^0 - \mu_{W_1}^0 \leq \mu_{f_0 \cdots f_{k-1}}^0, \] (23)
where \(\mu_f^a \) is the \(a \)-valued multiplicity of an element \(f \in \mathcal{M}(\kappa) \), and
\[\mu_{f,k}^a(z) = \min \{ \mu_f^a(z), k \}. \]
Take \(z_0 \in \kappa \). Then \(\mu_{f_s}^0(z_0) = 0 \) for some \(s \in \{0, \ldots, n\} \) since \(f_0, \ldots, f_k \) have no common zeros. Note that, by the identity (2),
\[W_1 = W(f_1, \ldots, f_{s-1}, f_0, f_{s+1}, \ldots, f_n). \]
Obviously we have
\[\mu_{f_i(j)}^0(z_0) \geq \mu_{f_i}^0(z_0) - \mu_{f_i,j}^0(z_0) \geq \mu_{f_i}^0(z_0) - \mu_{f_i,k-1}^0(z_0), \quad i \neq s, \quad 1 \leq j \leq k - 1, \]
and, hence,
\[\mu_{W_1}^0(z_0) \geq \sum_{i \neq s} \{ \mu_{f_i}^0(z_0) - \mu_{f_i,k-1}^0(z_0) \}, \]
that is, \(\sum_{i=0}^{k} \mu_{f_i}^0(z_0) - \mu_{W_1}^0(z_0) = \sum_{i \neq s} \mu_{f_i}^0(z_0) - \mu_{W_1}^0(z_0) \)
\[\leq \sum_{i \neq s} \mu_{f_i,k-1}^0(z_0) = \sum_{i=0}^{k} \mu_{f_i,k-1}^0(z_0). \] The inequality (23) can be obtained similarly by comparing the multiplicities of zeros of \(f_0 \cdots f_k \) and \(W_1 \). Then Theorem 1.1 follows from (19), (21), (22) and (23).
Proof of Theorem 1.4. In the sequel, we will use the notation
\[f_i \equiv 0 \{ f_{i_1}, \ldots, f_{i_{s_i}} \} \] (24)
to denote that \(\{i_1, \ldots, i_{s_i}\} \subset \{0, 1, \ldots, k\} - \{i\} \) are distinct, \(f_{i_1}, \ldots, f_{i_{s_i}} \) linearly independent, and
\[f_i = \sum_{\alpha=1}^{s_i} c_\alpha f_{i_\alpha}, \quad c_\alpha \in \kappa - \{0\} \] (1 \(\leq \alpha \leq s_i \)).

We proceed the proof of Theorem 1.4 by induction on \(k \). For \(k = 1 \) it is obviously true since if \(f_0 = f_1 \), \(f_0 \) and \(f_1 \) relatively prime, then they both are constants. Assume the theorem is true for all cases \(k' \) with \(2 \leq k' < k \), and consider that of \(k + 1 \) polynomials. By the assumptions in Theorem 1.4, at least two of the \(f_i \) are non-constant. Note that if two of the \(f_i \) are constants, then we may either eliminate them if their sum is zero or replace them by their sum when it is not zero. Then the inductive hypothesis could be applied to yield the desired result. Thus we may assume that at most one of the \(f_i \) is a constant. For each \(i \in \{0, 1, \ldots, k\} \), it is easy to show that
\[f_i \equiv 0 \{ f_{i_1}, \ldots, f_{i_{s_i}} \} \]
for some \(i_1, \ldots, i_{s_i} \). Obviously, \(d \geq s_i \geq 2 \) and \(f_{i_1}, \ldots, f_{i_{s_i}} \) have no common zeros since the \(f_j \) are pairwise relatively prime. So by Theorem 1.3, we have
\[\max_{0 \leq \alpha \leq s_i} \{ \deg(f_{i_\alpha}) \} \leq (s_i - 1) \sum_{\alpha=0}^{s_i} r_1(f_{i_\alpha}) - \frac{s_i(s_i - 1)}{2}, \] (25)
where \(i_0 = i \). Therefore, we obtain
\[\max_{0 \leq \alpha \leq s_i} \{ \deg(f_{i_\alpha}) \} \leq (s_i - 1) \left(\sum_{\alpha=0}^{s_i} r_1(f_{i_\alpha}) - 1 \right) \leq (d - 1) \left(\sum_{i=0}^{k} r_1(f_i) - 1 \right) = (d - 1) (r_1(f_0 \cdots f_k) - 1) , \] that is, for each \(i \in \{0, 1, \ldots, k\} \), \(\deg(f_i) \leq (d - 1) (r_1(f_0 \cdot f_k) - 1) \). Hence Theorem 1.4 is proved.

Proof of Theorem 1.5. Theorem 1.2 implies
\[\max_{1 \leq j \leq k} \deg(f_{j_0}) \leq \max_{0 \leq j \leq k} \deg(f_{j}) \leq \sum_{j=0}^{k} r_{k-1}(f_{j}) - \frac{k(k-1)}{2}, \] (26)
where \(l_0 = 1 \). Note that
\[r_{k-1}(f_{j}) \leq (k - 1)r_1(f_j) \leq (k - 1) \deg(f_j) = \frac{k - 1}{l_j} \deg_1(f_j), \quad j \neq 0. \] (27)
Hence (5) follows from (26) and (27).

Acknowledgement: The authors are indebted to the anonymous referee for his/her careful reading of the manuscript, with helpful comments and suggestions.

References

Department of Mathematics
Shandong University
Jinan 250100, Shandong
China

Department of Mathematics
The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon
Hong Kong