JOÃO B. PROLLA
SAMUEL NAVARRO

Approximation results in the strict topology

<http://www.numdam.org/item?id=AMBP_1997__4_2_61_0>
Approximation Results in the Strict Topology

João B. Prolla and Samuel Navarro*

Abstract: In this paper we prove results of the Weierstrass-Stone type for subsets W of the vector space V of all continuous and bounded functions from a topological space X into a real normed space E, when V is equipped with the strict topology β. Our main results characterize the β-closure of W when (1) W is β-truncation stable; (2) $E = \mathbb{R}$ and W is a subalgebra; (3) $E = \mathbb{R}$ and W is the convex cone of all positive elements of some algebra; (4) W is uniformly bounded; (5) X is a completely regular Hausdorff space and W is convex.

§1. Introduction and definitions

Let X be a topological space and let E be a real normed space. We denote by $B(X; E)$ the normed space of all bounded E-valued functions on X, equipped with the supremum norm

$$||f||_X = \sup\{||f(x)||; x \in X\}$$

*Partially supported by FONDECYT grant 1950546 and DICYT-USACH
for each \(f \in B(X; E) \). We denote by \(B_0(X; E) \) the subset of all \(f \in B(X; E) \) that vanish at infinity, i.e., those \(f \) such that for every \(\varepsilon > 0 \), the set \(K = \{ t \in X; ||f(t)|| \geq \varepsilon \} \) is compact (or empty). And we denote by \(B_{00}(X; E) \) the subset of all \(f \in B(X; E) \) which have compact support. We denote by \(C(X; E) \) the vector space of all continuous \(E \)-valued functions on \(X \), and set

\[
C_b(X; E) = C(X; E) \cap B(X; E), \\
C_0(X; E) = C(X; E) \cap B_0(X; E), \\
C_{00}(X; E) = C(X; E) \cap B_{00}(X; E)
\]

We denote by \(I(X) \) the set of all \(\varphi \in B(X; \mathbb{R}) \) such that \(0 \leq \varphi(x) \leq 1 \), for all \(x \in X \). We then define

\[
D(X) = C_b(X; \mathbb{R}) \cap I(X), \\
D_0(X) = B_0(X; \mathbb{R}) \cap I(X).
\]

The strict topology \(\beta \) on \(C_b(X; E) \) is the locally convex topology determined by the family of seminorms

\[
p_\varphi(f) = \sup\{ \varphi(x)||f(x)||; x \in X \}
\]

for \(f \in C_b(X; E) \), when \(\varphi \) ranges over \(D_0(X) \). Clearly, given \(\varphi \in D_0(X) \) there is a compact subset \(K \) such that \(\varphi(x) < \varepsilon \) for all \(x \not\in K \). Therefore, our strict topology is coarser than the strict topology introduced by R. Giles [3]. To see that they actually coincide, let \(\psi \in B(X; \mathbb{R}) \) be such that, for each \(\varepsilon > 0 \) there is a compact subset \(K \) such that \(\psi(x) < \varepsilon \) for all \(x \not\in K \). We may assume \(||\psi||_X < 1 \). Choose compact sets \(K_n \) with \(\phi = K_0 \subset K_1 \subset K_2 \subset \ldots \) such that \(|\psi(x)| < 2^{-n} \), for all \(x \not\in K_n \).

Let \(\psi_n \in B_0(X; \mathbb{R}) \) be the characteristic function of \(K_n \) multiplied by \(2^{-n} \), i.e., \(\psi_n(x) = 2^{-n} \), if \(x \in K_n \); and \(\psi_n(x) = 0 \) if \(x \not\in K_n \). Let \(\varphi = \sum_{n=1}^{\infty} \psi_n \). For each \(\varepsilon > 0 \), we claim that the set \(K = \{ x \in X; \varphi(x) \geq \varepsilon \} \) is compact (or empty). If \(\varepsilon > 1 \), then \(K = \phi \). If \(\varepsilon = 1 \), then \(K = K_1 \), because \(\varphi(t) = 1 \) precisely for \(t \in K_1 \). If \(\varepsilon < 1 \),
let $n \geq 0$ be such that $2^{-(n+1)} \leq \varepsilon < 2^{-n}$. Then $K = K_{n+1}$. Hence $\varphi \in D_0(X)$. We claim now that $\psi(x) \leq \varphi(x)$ for all $x \in X$. We first notice that $\varphi(x) = 0$ if, and only if $x \not\in \bigcup_{n=1}^{\infty} K_n$. Indeed, if the point $x \not\in \bigcup_{n=1}^{\infty} K_n$, then $\psi_k(x) = 0$ for all $n = 1, 2, 3, \ldots$, and so $\varphi(x) = 0$. Conversely, if $\varphi(x) = 0$, then $\psi_n(x) = 0$ for all $n = 1, 2, 3, \ldots$ and therefore $x \not\in K_n$ for all $n = 1, 2, 3, \ldots$. Hence $x \not\in \bigcup_{n=1}^{\infty} K_n$. Let now $x \in X$. If $\varphi(x) = 0$, then $x \not\in K_n$ for all $n = 1, 2, 3, \ldots$ and so $|\psi(x)| < 2^{-n}$ for all $n = 1, 2, 3, \ldots$. Hence $\psi(x) = 0$ and so $\psi(x) = \varphi(x)$. Suppose now $\varphi(x) > 0$. Then $x \in \bigcup_{n=1}^{\infty} K_n$. Let N be the smallest positive integer $n \geq 1$ such that $x \in K_n$. If $N = 1$, then $x \in K_1$ and so $\varphi(x) = 1 > \psi(x)$. If $N > 1$, then $x \in K_N$ and $x \not\in K_{N-1}$. Hence

$$\varphi(x) = \sum_{n=N}^{\infty} 2^{-n} = 2^{-(N-1)}$$

and $\psi(x) < 2^{-(N-1)}$, since $x \not\in K_{N-1}$. Therefore $\psi(x) < \varphi(x)$, whenever $\varphi(x) > 0$.

Given any non-empty subset $S \subset C(X; E)$ we denote by $x \equiv y \pmod{S}$ the equivalence relation defined by $f(x) = f(y)$ for all $f \in S$. For each $x \in X$, the equivalence class of $x \pmod{S}$ is denoted by $[x]_S$, i.e.,

$$[x]_S = \{ t \in X \ ; \ x \equiv t \pmod{S} \}$$

For any non-empty subset $K \subset X$ and any $f : X \to E$, we denote by f_K its restriction to K. If $S \subset C(X; E)$ and $K \subset X$, then for each $x \in K$ one has

$$[x]_{S_K} = K \cap [x]_S.$$

If $S \subset C_b(X; \mathbb{R})$, we define S^+ by

$$S^+ = \{ f \in S \ ; \ f \geq 0 \}.$$

If $S = C_b(X; \mathbb{R})$, we write $S^+ = C_b^+(X; \mathbb{R})$.

Approxi...
Definition 1. Let $S \subset C_b(X; \mathbb{R})$ and let $W \subset C_b(X; E)$ be given. We say that W is β-localizable under S if, for every $f \in C_b(X; E)$, the following are equivalent:

1. f belongs to the β-closure of W;
2. for every $\varphi \in D_0(X)$, every $\varepsilon > 0$ and every $x \in X$, there is some $g_x \in W$ such that $\varphi(t)||f(t) - g_x(t)|| < \varepsilon$ for all $t \in [x]_S$.

Remark. Clearly, (1) \Rightarrow (2) in any case. Hence a set W is β-localizable under S if, and only if, (2) \Rightarrow (1). Notice also that if W is β-localizable under S and $T \subset S$, then W is β-localizable under T. Indeed, $T \subset S$ implies $[x]_S \subset [x]_T$.

Definition 2. We say that a set $W \subset C_b(X, E)$ is β-truncation stable if, for every $f \in H_\beta$ and every $M > 0$, the function $T_M \circ f$ belongs to the β-closure of W, where $T_M : E \to E$ is the mapping defined by

$$
T_M(v) = \begin{cases} v, & \text{if } ||v|| < 2M; \\ \frac{v}{||v||}2M, & \text{if } ||v|| \geq 2M. \end{cases}
$$

Notice that, when $E = \mathbb{R}$, the mapping $T_M : \mathbb{R} \to \mathbb{R}$ is given by

$$
T_M(r) = \begin{cases} r, & \text{if } ||r|| < 2M; \\ 2M, & \text{if } r > 2M; \\ -2M, & \text{if } r > -2M. \end{cases}
$$

Remark that, for every $f \in C_b(X; E)$, one has $||T_M \circ f||_X \leq 2M$.

Notice that when $W \subset C^+_b(X; \mathbb{R})$, then W is β-truncation stable if, for every $f \in W$ and every constant $M > 0$, the function $P_M \circ f$ belongs to the β-closure of W, where $P_M : \mathbb{R} \to \mathbb{R}_+$ is the mapping defined by $P_M = \max(0, T_M)$, i.e.,

$$
P_M(r) = \begin{cases} 0, & \text{if } r < 0; \\ r, & \text{if } 0 \leq r \leq 2M; \\ 2M, & \text{if } r > 2M. \end{cases}
$$
Definition 3. Let $W \subset C_b(X; E)$ be a non-empty subset. A function $\psi \in D(X)$ is called a multiplier of W if $\psi f + (1 - \psi)g$ belongs to W, for each pair, f and g, of elements of W.

Definition 4. A subset $S \subset D(X)$ is said to have property V if

(a) $\psi \in S$ implies $(1 - \psi) \in S$;
(b) the product $\varphi \psi$ belongs to S, for any pair, φ and ψ, of elements of S.

Notice that the set of all multipliers of a subset $W \subset C_b(X; E)$ has property V. Indeed, condition (a) is clear and the equation

$$(\varphi \psi)f + (1 - \varphi \psi)g = \varphi[\psi f + (1 - \psi)g] + (1 - \varphi)g$$

show that (b) holds as well.

When X is locally compact, R.C. Buck [1] proved a Weierstrass-Stone Theorem for subalgebras of $C_b(X; \mathbb{R})$ equipped with the strict topology. This result was extended and generalized by Glicksberg [4], Todd [7], Wells [8] and Giles [3]. See also Buck [2], where modules are dealt with, and Prolla [5], where the strict topology is considered as an example of weighted spaces.

Our versions of the Weierstrass-Stone Theorem are analogues of Chapter 4 of Prolla [6] for arbitrary subsets of $C(X; E)$ equipped with the uniform convergence topology, X compact. Whereas the previous results dealt only with algebras or vector spaces which are modules over an algebra, our results now go much further: we are able to cover the case of convex sets (when X is completely regular) or β-truncation stable sets (when X is just a topological space). The latter case cover both algebras and the convex cones obtained by taking the set of positive elements.
of an algebra.

§ 2. β-truncation stable subsets

Theorem 1. Let $W \subset C_b(X; E)$ be a β-truncation stable non-empty subset, and let A be the set of all multipliers of W. Then W is β-localizable under A.

Proof. Let $f \in C_b(X; E)$ be given and assume condition (2) of Definition 1, with $S = A$. Let $\varphi \in D_0(X)$ and $\varepsilon > 0$ be given. Without loss of generality we may assume that φ is not identically zero. Choose $M > 0$ so big that $M > \|f\|_X, M > \varepsilon$ and the compact set $K = \{ t \in X ; \varphi(t) \geq \varepsilon/(6M) \}$ is non-empty. Consider the non-empty subset $W_K \subset C(K; E)$. Clearly, the set $A_K \subset D(K)$ is a set of multipliers of W_K. Take a point $x \in K$. By condition (2) applied to $\varphi/(12M)$, there exists $g_x \in W$ such that $\varphi/(12M)$ for all $t \in [x]_A$. Let $M \subset D(K)$ be the set of all multipliers of $W_K \subset C(K; E)$. Then M has property V. Now $A_K \subset M$ implies

$$[x]_M \subset [x]_{A_K} = [x]_A \cap K.$$

Hence $\varphi(t)||f(t) - g_x(t)|| < \varepsilon^2/(12M)$ holds for all $t \in K$ such that $t \in [x]_M$. Now $\varphi(t) \geq \varepsilon/(6M)$ for all $t \in K$ and therefore

$$||f(t) - g_x(t)|| < \varepsilon/2$$

for all $t \in [x]_M$. By Theorem 1, Chapter 4, of Prolla [6] applied to $W_K \subset C(K; E)$ and to the set $M \subset D(K)$, there is $g_1 \in W$ such that

$$||f(t) - g_1(t)|| < \varepsilon/2$$

for all $t \in K$. Let $h = T_M \circ g_1$. By hypothesis, h belongs to the β-closure of W, and there is $g \in W$ such that $p_\varphi(h - g) < \varepsilon/2$. We claim that $p_\varphi(f - h) < \varepsilon/2$. Let

...
$t \in K$. Then

$$||g_1(t)|| \leq ||f(t) - g_1(t)|| + ||f(t)|| < \varepsilon/2 + M < 2M$$

and so $h(t) = T_M(g_1(t)) = g_1(t)$. Hence

$$\varphi(t)||f(t) - h(t)|| = \varphi(t)||f(t) - g_1(t)|| \leq ||f(t) - g_1(t)|| < \varepsilon/2.$$

Suppose now $t \notin K$. Then

$$\varphi(t)||f(t) - h(t)|| < \frac{\varepsilon}{6M} ||f(t) - h(t)||$$

$$\leq \frac{\varepsilon}{6M}(||f||_X + ||h||_X) < \frac{\varepsilon}{6M}3M = \frac{\varepsilon}{2},$$

because $||h||_X \leq 2M$, and $||f||_X < M$.

This establishes our claim that $p_\varphi(f - h) < \frac{\varepsilon}{2}$. Hence $p_\varphi(f - g) < \varepsilon$, and f belongs to the β-closure of W.

\square

Theorem 2. Let $W \subset C_b(X; E)$ be a β-truncation stable non-empty subset, and let B be any non-empty set of multipliers of W. Then W is β-localizable under B.

Proof. Let A be the set of all multipliers of W. By Theorem 1 the set W is β-localizable under A. Now $B \subset A$, so W is also β-localizable under B.

\square

§3. The case of subalgebras

Lemma 1. If $B \subset C_b(X; \mathbb{R})$ is a uniformly closed subalgebra, and $T : \mathbb{R} \to \mathbb{R}$ is a continuous mapping, with $T(0) = 0$, then $T \circ f$ belongs to B, for every $f \in B$.

Proof. Let \(f \in B \) and \(\varepsilon > 0 \) be given. Choose \(k \geq ||f||_X \). By Weierstrass' Theorem, there exists an algebraic polynomial \(p \) such that \(|T(t) - p(t)| < \varepsilon \) for all \(t \in \mathbb{R} \) with \(|t| \leq k \), and we may assume \(p(0) = T(0) = 0 \). Hence, for every \(x \in X \), we have \(|T(f(x)) - p(f(x))| < \varepsilon \), because \(|f(x)| \leq k \). Now \(p \circ f \) belongs to \(B \), and therefore \(T \circ f \) belongs to the uniform closure of \(B \), that is \(B \) itself.

Corollary 1. Every subalgebra \(W \subset C_b(X; \mathbb{R}) \) is \(\beta \)-truncation stable.

Proof. Let \(f \in W \) and \(M > 0 \) be given. Let \(B \) be the \(\beta \)-closure of \(W \) in \(C_b(X; \mathbb{R}) \). We know that \(B \) is then a uniformly closed subalgebra. By Lemma 1 applied to \(T = T_M \), we see that \(T_M \circ f \) belongs to the \(\beta \)-closure of \(W \) as claimed.

Corollary 2. Every uniformly closed subalgebra of \(C_b(X; \mathbb{R}) \) is a lattice.

Proof. Since
\[
\max(f, g) = \frac{1}{2} \left(f + g + |f - g| \right)
\]
\[
\min(f, g) = \frac{1}{2} \left(f + g - |f - g| \right)
\]
it suffices to show that \(|f| \in B \), for every \(f \in B \). This follows from Lemma 1, by taking \(T : \mathbb{R} \to \mathbb{R} \) to be the mapping \(T(t) = |t| \), for \(t \in \mathbb{R} \).

Theorem 3. Every subalgebra \(W \subset C_b(X; \mathbb{R}) \) is \(\beta \)-localizable under itself.

Proof. Let \(f \in C_b(X; \mathbb{R}) \) and assume that condition (2) of Definition 1 holds with \(S = W \). Notice that for every \(x \in X \) one has
\[
[x]_W = [x]_B
\]
where \(B \) is the \(\beta \)-closure of \(W \). Let now
\[
V = \{ \psi \in B; ||\psi||_X \leq 1 \} \quad \text{and} \quad A = \{ \psi \in B; 0 \leq \psi \leq 1 \}.
\]
It is easy to see that

\[[x]_B = [x]_V \subset [x]_A , \]

for each \(x \in X \). Notice that, by Corollary 2, every \(\psi \in V \) can be written in the form \(\psi = \psi^+ - \psi^- \), with \(\psi^+ \) and \(\psi^- \) in \(A \). Hence \([x]_A \subset [x]_V \) is also true. Hence \(f \) satisfies condition (2) of Definition 1 with respect to \(S = A \). Now \(A \) is a set of multipliers of \(B \), and the algebra \(B \), by Corollary 1, is \(\beta \)-truncation stable. Hence, by Theorem 3, the function \(f \) belongs to the \(\beta \)-closure of \(B \), that is \(B \) itself. We have proved that \(f \) belongs to the \(\beta \)-closure of \(W \). Hence \(W \) is \(\beta \)-localizable under \(S = W \).

Corollary 3. Let \(W \subset C_b(X; \mathbb{R}) \) be a subalgebra, and let \(f \in C_b(X; \mathbb{R}) \) be given. Then \(f \) belongs to the \(\beta \)-closure of \(W \) if, and only if, the following conditions are satisfied:

1. for each pair, \(x \) and \(y \), of elements of \(X \) such that \(f(x) \neq f(y) \), there is some \(g \in W \) such that \(g(x) \neq g(y) \);
2. for each \(x \in X \) such that \(f(x) \neq 0 \) there is some \(g \in W \) such that \(g(x) \neq 0 \).

Proof. Clearly, if \(f \in \overline{W}^{\beta} \), then (1) and (2) are satisfied. Conversely, assume that conditions (1) and (2) are verified.

Let \(x \in X \) be given. By condition (1) the function \(f \) is constant on \([x]_W \). Let \(f(x) \) be its value. If \(f(x) = 0 \), then \(g_x = 0 \) belongs to \(W \) and \(f(t) = f(x) = 0 = g_x(t) \) for all \(t \in [x]_W \). If \(f(x) \neq 0 \), by condition (2) there is \(g \in W \) such that \(g(x) \neq 0 \). Define \(g_x = [f(x)/g(x)]g \). Then \(g_x \in W \) and \(g_x(t) = f(x) = f(t) \) for all \(t \in [x]_W \). Hence \(f \) satisfies condition (2) of Definition 1 with respect to \(S = W \). By Theorem 3, we conclude that \(f \) belongs to the \(\beta \)-closure of \(W \).

Corollary 3 implies the following results.
Corollary 4. Let A be a subalgebra of $C_b(X; \mathbb{R})$ which for each $x \in X$ contains a function g with $g(x) \neq 0$, and let $f \in C_b(X; \mathbb{R})$ be given. Then f belongs to the β-closure of A if, and only if, for each pair, x and y, of elements of X such that $f(x) \neq f(y)$, there is some $g \in A$ such that $g(x) \neq g(y)$.

Corollary 5. Let A be a subalgebra of $C_b(X; \mathbb{R})$ which separates the points of X and for each $x \in X$ contains a function g with $g(x) \neq 0$. Then A is β-dense in $C_b(X; \mathbb{R})$.

Corollary 6. If X is a locally compact Hausdorff space, then $C_{00}(X; \mathbb{R})$ is β-dense in $C_b(X; \mathbb{R})$.

Lemma 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(t) \geq 0$ for all $t \in \mathbb{R}$ and $f(0) = 0$. If $k > 0$ and $\varepsilon > 0$ are given, there is a real algebraic polynomial p such that $p(t) \geq 0$ for all $0 \leq t \leq k$, $p(0) = 0$ and $|p(t) - f(t)| \leq \varepsilon$ for all $0 \leq t \leq k$.

Proof. Define $g : [0, 1] \to \mathbb{R}$ by setting $g(u) = f(ku)$, for each $u \in [0, 1]$. Clearly, $g(u) \geq 0$, for all $0 \leq u \leq 1$ and $g(0) = 0$. Now, given $\varepsilon > 0$, choose n so that the n-th Bernstein polynomial of g, written $B_n g$, is such that

$$|(B_n g)(u) - g(u)| < \varepsilon$$

for all $0 \leq u \leq 1$. For $t \in \mathbb{R}$, define $p(t) = (B_n g)(t/k)$. Since $B_n g \geq 0$ in $[0, 1]$, it follows that $p(t) \geq 0$, for $t \in [0, k]$. Since $(B_n g)(0) = g(0) = f(0) = 0$, we see that $p(0) = 0$. It remains to notice that, for any $0 \leq t \leq k$ we have $0 \leq t/k \leq 1$ and

$$|p(t) - f(t)| = |(B_n g)(t/k) - g(t/k)| < \varepsilon$$

Lemma 3. If $A \subset C_b(X; \mathbb{R})$ is a subalgebra, then A^+ is β-truncation stable.
Proof. Let $f \in A^+$ and $M > 0$ be given. We claim that $P_M \circ f$ belongs to the $eta$-closure of A^+. Let $k > 0$ be such that $0 \leq f(x) \leq k$ for all $x \in X$. Let $\varphi \in D_0(X)$ and $\varepsilon > 0$ be given. By Lemma 2 above there exists a polynomial $p : \mathbb{R} \to \mathbb{R}$ such that $p(t) \geq 0$ for all $0 \leq t \leq k$, $p(0) = 0$ and $|p(t) - P_M(t)| < \varepsilon$ for all $0 \leq t \leq k$. Let $x \in X$. Then $\varphi(x) \leq 1$ and so $\varphi(x)|p(f(x)) - P_M(f(x))| < \varepsilon$. Now $p \circ f$ belongs to A (since $p(0) = 0$) and $p(f(x)) \geq 0$ for all $x \in X$, since $0 \leq f(x) \leq k$. Hence $p \circ f \in A^+$. This ends the proof that $P_M \circ f$ belongs to the $eta$-closure of A^+ as claimed.

Theorem 4. If $A \subset C_b(X; \mathbb{R})$ is a subalgebra, then A^+ is localizable under itself.

Proof. Let $f \in C_b(X; \mathbb{R})$ be given satisfying condition (2) of Definition 1 with respect to $S = A^+$. Define $B = \{f \in A; 0 \leq f \leq 1\}$. It is easy to see that $[x]_S = [x]_B$, for every $x \in X$. Hence f satisfies condition (2) of Definition 1 with respect to B, which is a set of multipliers of A^+. By Lemma 3, the set A^+ is β-truncation stable. Therefore A^+ is β-localizable under B, by Theorem 2. Hence f belongs to the β-closure of A^+.

Theorem 4. Let $A \subset C_b(X; \mathbb{R})$ be a subalgebra and let $f \in C_b^+(X; \mathbb{R})$ be given. Then f belongs to the β-closure of A^+ if, and only if, the following two conditions hold:

1. for each pair, x and y, of elements of X such that $f(x) \neq f(y)$, there is some $g \in A^+$ such that $g(x) \neq g(y)$;
2. for each $x \in X$ such that $f(x) > 0$ there is some $g \in A^+$ such that $g(x) > 0$.

Proof. If f belongs to the β-closure of A^+ the two conditions (1) and (2) above are easily seen to hold. Conversely, assume that conditions (1) and (2) above hold. Let $x \in X$ be given. By condition (1), the function f is constant on $[x]_S$ where $S = A^+$. Let $f(x) \geq 0$ be its constant value. If $f(x) = 0$, then $g_x = 0$ belongs to
A^+ and $f(t) = f(x) = 0 = g_x(t)$ for all $t \in [x]_S$. If $f(x) > 0$, then by condition (2) there is $g_x \in A^+$ such that $g(x) > 0$. Let $g_x = [f(x)/g(x)]g$. Then $g_x \in A^+$ and $g_x(t) = f(x) = f(t)$ for all $t \in [x]_S$. Hence f satisfies condition (2) of Definition 1 with respect to $W = A^+$ and $S = A^+$. By Theorem 4, we conclude that f belongs to the β-closure of A^+.

§4. The case of uniformly bounded subsets

Theorem 5. Let W be a uniformly bounded subset of $C_b(X; E)$ and let A be the set of all multipliers of W. Then W is β-localizable under A.

Proof. Let $f \in C_b(X; E)$ be given and assume that condition (2) of Definition 1 holds with $S = A$. Let $\varepsilon > 0$ and $\varphi \in D_0(X)$ be given. Choose $M > 0$ so big that $M > \|f\|_X$ and $M > k = \sup\{\|g\|_X; g \in W\}$, and the compact set $K = \{t \in X; \varphi(t) \geq \varepsilon/(2M)\}$ is non-empty. (Without loss of generality we may assume that φ is not identically zero). Consider the non-empty set $W_K \subset C(K; E)$. Clearly, the set A_K is a set of multipliers of W_K. Take a point $x \in K$. By condition (2) applied to $\varepsilon^2/(2M)$, there exists some $g_x \in W$ such that

$$\varphi(t)\|f(t) - g_x(t)\| < \varepsilon^2/(2M)$$

for all $t \in [x]_A$. Hence $\|f(t) - g_x(t)\| < \varepsilon$ for all $t \in [x]_{A_K}$ since $\varphi(t) \geq \varepsilon/(2M)$ for all $t \in K$. Let now M be the set of all multipliers of $W_K \subset C(K; E)$. Since $A_K \subset M$, it follows that $[x]_M \subset [x]_{A_K}$ and so $\|f(t) - g_x(t)\| < \varepsilon$ for all $t \in [x]_M$. By Theorem 1, Chapter 4 of Prolla [6] there is $g \in W$ such that $\|f(t) - g(t)\| < \varepsilon$ for all $t \in K$. We claim that $p_\varphi(t - g) < \varepsilon$. Let $x \in X$. If $x \in K$, then $\varphi(x) \leq 1$ and

$$\varphi(x)\|f(x) - g(x)\| \leq \|f(x) - g(x)\| < \varepsilon.$$

If $x \notin K$, then

$$\varphi(x)\|f(x) - g(x)\| \leq \frac{\|f\|_X}{2M}[\|f\|_X + \|g\|_X] < \varepsilon.$$
Hence f belongs to the β-closure of W and so W is β-localizable under A.

Theorem 6. Let W be a uniformly bounded subset of $C_b(X; E)$ and let B be any non-empty set of multipliers of W. Then W is β-localizable under B.

Proof. Let A be the set of all multipliers of W. Since $B \subseteq A$ and by Theorem 5 the set W is β-localizable under A, it follows that W is also β-localizable under B.

Theorem 7. Let A be a non-empty subset of $D(X)$ with property V and let $f \in D(X)$. Then f belongs to the β-closure of A if, and only if, the following two conditions hold:

1. For every pair of points, x and y, of X such that $f(x) \neq f(y)$, there exists $g \in A$ such that $g(x) \neq g(y)$;
2. For every $x \in X$ such that $0 < f(x) < 1$, there exists $g \in A$ such that $0 < g(x) < 1$.

Proof. It is easy to see that conditions (1) and (2) are necessary for f to belong to the β-closure of A. Conversely, assume that f satisfies conditions (1) and (2).

Let $\varphi \in D_0(X)$ and $\varepsilon > 0$ be given. Without loss of generality we may assume that φ is not identically zero. Choose $\delta > 0$ so small that $2\delta < \varepsilon$ and the compact set $K = \{t \in X; \varphi(t) \geq \delta\}$ is non-empty. Clearly, A_K has property V. Since conditions (1) and (2) hold, we may apply Theorem 1, Chapter 8, Prolla [6] to conclude that f_K belongs to the uniform closure of A_K. Hence there is some $g \in A$ such that $|f(t) - g(t)| < \varepsilon$ for all $t \in K$. We claim that $p_\varphi(f - g) < \varepsilon$. Let $x \in X$. If $x \in K$, then $\varphi(x) \leq 1$ and $\varphi(x)|f(x) - g(x)| \leq |f(x) - g(x)| < \varepsilon$.

If $x \notin K$, then $\varphi(x) < \delta$ and

$$\varphi(x)|f(x) - g(x)| \leq \delta[|f||x| + |g||x|] \leq 2\delta < \varepsilon.$$

Hence f belongs to the β-closure of A.

Remark. We say that a subset $A \subseteq D(X)$ has property VN if $fg + (1 - f)h \in A$.

\textit{Approximation Results in the Strict Topology.}
for all $f, g, h \in A$. Clearly, if A has property VN and contains 0 and 1, then A has property V.

Corollary 6. Let A be a non-empty subset of $D(X)$ with property V, and let W be its β-closure. Then W has property VN and W is a lattice.

Proof.

(a) *W has property VN:* Let f, g, φ belong to W, and let $h = \varphi f + (1 - \varphi)g$. Assume $h(x) \neq h(y)$. Then at least one of the following three equalities is necessarily false: $\varphi(x) = \varphi(y)$, $f(x) = f(y)$ and $g(x) = g(y)$. Since φ, f and g belong all three to W, there exists $a \in A$ such that $a(x) \neq a(y)$. Hence h satisfies condition (1) of Theorem 7. Suppose now that $0 < h(x) < 1$. If $0 < \varphi(x) < 1$, then $0 < a(x) < 1$ for some $a \in A$, because φ belongs to the β-closure of A. Assume that $\varphi(x) = 0$. Then $h(x) = g(x)$ and so $0 < g(x) < 1$. Since $g \in W$, it follows that $0 < a(x) < 1$ for some $a \in A$. Similarly, if $\varphi(x) = 1$ then $h(x) = f(x)$ and so $0 < f(x) < 1$. Since $f \in W$, there is $a \in A$ such that $0 < a(x) < 1$. Hence h satisfies condition (2) of Theorem 7. By Theorem 7 above, the function h belongs to W.

(b) *W is lattice:* Let f and g belong to W. Let $h = \max(f, g)$. Let x and y be a pair of points of X such that $h(x) \neq h(y)$. Then at least one of the two equalities $f(x) = f(y)$, $g(x) = g(y)$ must be false. Since f and g both belong to the β-closure of A, there exists $a \in A$ such that $a(x) \neq a(y)$. On the other hand, let $x \in X$ be such that $0 < h(x) < 1$. If $f(x) \geq g(x)$, then $h(x) = f(x)$ and so $0 < f(x) < 1$. Since $f \in W$, there exists $a \in A$ such that $0 < a(x) < 1$. Assume now $f(x) < g(x)$. Then $h(x) = g(x)$ and so $0 < g(x) < 1$. Since $g \in W$, there exists $a \in A$ such that $0 < a(x) < 1$. By Theorem 7 above, the function h belongs to W. Similarly, one shows that the function $\min(f, g)$ belongs to W. \[\Box\]

Corollary 7. Let A be a β-closed non-empty subset of $D(X)$ with property V. Then A has property VN and A is a lattice.
Proof. Immediate from Corollary 6.

§5. The case of convex subsets

In this section we suppose that X is a completely regular Hausdorff space. We denote its Stone-Čech compactification by βX, and by $\beta : C_b(X; \mathbb{R}) \to C(\beta X; \mathbb{R})$ the linear isometry which to each $f \in C_b(X; \mathbb{R})$ assigns its (unique) continuous extension to βX. Since β is an algebra (and lattice) isomorphism, the image $\beta(A)$ of any subset $A \subset C_b(X, \mathbb{R})$ with property V is contained in $D(\beta X)$ and has property V. If $B = \beta(A)$, then for each $x \in X$ one has

$$[x]_A = [x]_B \cap X.$$

If Y denotes the quotient space of βX by the equivalence relation $x \equiv y$ if and only if $\varphi(x) = \varphi(y)$, for all $\varphi \in B$, then Y is a compact Hausdorff space.

If $x \in X$ and $K_x \subset X$ is a compact subset disjoint from $[x]_A$, then $\pi(K_x)$ is a compact subset in Y which does not contain the point $\pi(x)$. (Here we have denoted by π the canonical projection $\pi : \beta X \to Y$. Indeed, if $\pi(x) \in \pi(K_x)$, then $\pi(x) = \pi(y)$ for some $y \in K_x$. Now $y \notin [x]_B$ because that $y \in [x]_A$. But $K_x \cap [x]_A = \emptyset$, and we have reached a contradiction. Hence $\pi(x) \notin \pi(K_x)$. We will apply these remarks in the proof of the following lemma.

Lemma 4. Let $A \subset D(X)$ be a subset with property V and containing some constant $0 < c < 1$. Let $x \in X$ and let $K_x \subset X$ be a compact subset, disjoint from $[x]_A$. Then, there exists an open neighborhood $W(x)$ of $[x]_A$ in X, disjoint from K_x and such that given $0 < \delta < 1$ there is $\varphi \in A$ such that

1. $\varphi(t) < \delta$, for all $t \in K_x$;
2. $\varphi(t) > 1 - \delta$, for all $t \in W(x)$.

Proof. Let $N(x)$ be the complement of K_x in βX. Then $N(x)$ is an open neigh-
borhood of $[x]_A$ in βX. We know that $s(K_x)$ is a compact subset of Y which does not contain the point $y = \pi(x)$. Let $f \in C(Y; R)$ be a mapping such that $0 \leq f \leq 1$, $f(y) = 0$ and $f(t) = 1$ for all $t \in s(K_x)$. Let $g = f \circ \pi$. By Theorem 1, Chapter 8, Prolla [6], the function g belongs to the uniform closure of B in $D(\beta X)$. Notice that $a(x) = 0$ and $g(u) = 1$, for all $u \in K_x$. Define $N(x) = \{ t \in \beta X; g(t) < 1/4 \}$. Clearly, $[x]_B \subseteq N(x)$, since $g(t) = 0$ for all $t \in [x]_B$. It is also clear that $N(x)$ is disjoint from K_x. Let us define $W(x) = N(x) \cap X$. Then $W(x)$ is an open neighborhood of $[x]_A$ in X, which is disjoint from K_x.

Given $0 < \delta < 1$, let p be a polynomial determined by Lemma 1, Chapter 1, Prolla [6], applied to $a = 1/4$ and $b = 3/4$, and $\varepsilon = \delta/2$. Let $h(t) = p(g(t))$, for all $t \in \beta X$. Since \overline{B} has property V, it follows that $h \in \overline{B}$. If $t \in K_x$, then $g(t) = 1$ and so $h(t) < \delta/2$. If $t \in W(x)$, then $g(t) < 1/4$ and so $h(t) > 1 - \delta/2$. Choose now $\psi \in B$ with $||\psi - h||_X < \delta/2$, and let $\varphi \in A$ be such that $\beta(\varphi) = \psi$. Then $\varphi \in A$ satisfies conditions (1) and (2). □

Theorem 8. Let $W \subseteq C_b(X; E)$ be a non-empty subset and let A be a set of multipliers of W which has property V and contains some constant $0 < c < 1$. Then W is β-localizable under A.

Proof. Assume that condition (2) of Definition 1 is true with $S = A$. For each $x \in X$, there is some $g_x \in W$ such that, for all $t \in [x]_A$, one has $\varphi(t)||f(t) - g_x(t)|| < \varepsilon/2$. Consider the compact subset K_x of X defined by

$$K_x = \{ t \in X; \varphi(t)||f(t) - g_x(t)|| \geq \frac{\varepsilon}{2} \}.$$

Clearly, K_x is disjoint from $[x]_A$. Now for each $x \in X$, select an open neighborhood $W(x)$ of $[x]_A$, disjoint from K_x, according to Lemma 4.

Select and fix a point $x_1 \in X$. Let $K = K_{x_1}$. By compactness of K, there exists a finite set $\{ x_2, \ldots, x_m \} \subseteq K$ such that

$$K \subseteq W(x_2) \cup W(x_3) \cup \ldots \cup W(x_m)$$
Let \(k = \sum_{i=1}^{m} p_i(f - g_{x_i}) \) and let \(0 < \delta < 1 \) be so small that \(\delta k < \varepsilon/2 \).

By Lemma 4, there are \(\varphi_2, \ldots, \varphi_m \in A \) such that
(a) \(\varphi_i(t) < \delta \), for all \(t \in K_{x_i} \);
(b) \(\varphi_i(t) > 1 - \delta \), for all \(t \in W(x_i) \)
for \(i = 2, \ldots, m \). Define

\[
\begin{align*}
\psi_2 &= \varphi_2 \\
\psi_3 &= (1 - \varphi_2)\varphi_3 \\
&\vdots \\
\psi_m &= (1 - \varphi_2)(1 - \varphi_3)\ldots(1 - \varphi_{m-1})\varphi_m.
\end{align*}
\]

Clearly, \(\psi_i \in A \) for all \(i = 2, \ldots, m \). Now

\[
\psi_2 + \ldots + \psi_j = 1 - (1 - \varphi_2)(1 - \varphi_3)\ldots(1 - \varphi_j)
\]
for all \(j \in \{2, \ldots, m\} \), can be easily seen by induction. Define

\[
\psi_1 = (1 - \varphi_2)(1 - \varphi_3)\ldots(1 - \varphi_m)
\]
then \(\psi_1 \in A \) and \(\psi_1 + \psi_2 + \ldots + \psi_m = 1 \).

Notice that

(c) \(\psi_i(t) < \delta \) for all \(t \in K_{x_i} \),
for each \(i = 1, 2, \ldots, m \). Indeed, if \(i > 2 \) then (c) follows from (a). If \(i = 1 \), then for \(t \in K \), we have \(t \in W(x_j) \) for some \(j = 2, \ldots, m \). By (b), one has \(1 - \varphi_j(t) < \delta \) and so

\[
\psi_1(t) = (1 - \varphi_j(t)) \prod_{i \neq j}(1 - \varphi_i(t)) < \delta.
\]

Let us write \(g_i = g_{x_i} \) for \(i = 1, 2, \ldots, m \).

Define \(g = \psi_1 g_1 + \psi_2 g_2 + \ldots + \psi_m g_m \).

Notice that

\[
g = \varphi_2 g_2 + (1 - \varphi_2)[\varphi_3 g_3 + (1 - \varphi_3)[\varphi_4 g_4 + \ldots + (1 - \varphi_{m-1})[\varphi_m g_m + (1 - \varphi_m)g_1] \ldots]].
\]
Hence $g \in W$. Let $x \in X$ be given. Then

$$
\varphi(x)\|f(x) - g(x)\| = \varphi(x)\left\| \sum_{i=1}^{m} \psi_i(x)(f(x) - g_i(x)) \right\|
\leq \varphi(x)\| \sum_{i=1}^{m} \psi_i(x)\|(f(x) - g_i(x))\|
$$

Define $I = \{1 \leq \tau \leq m; x \notin K_{x_i}\}; J = \{1 \leq i \leq m; x \in K_{x_i}\}$.

If $i \in I$, then $x \notin K_{x_i}$ and

$$
\varphi(x)\|f(x) - g_i(x)\| < \frac{\varepsilon}{2}
$$

and therefore

$$
(*) \sum_{i \in I} \varphi(x)\psi_i(x)\|f(x) - g_i(x)\| \leq \frac{\varepsilon}{2} \sum_{i \in I} \psi_i(x) \leq \frac{\varepsilon}{2}
$$

If $i \in J$, then by (c), $\psi_i(x) < \delta$ and so

$$
(**) \sum_{i \in J} \varphi(x)\psi_i(x)\|f(x) - g_i(x)\| \leq \delta k < \frac{\varepsilon}{2}
$$

From (*) and (**) we get $\varphi(x)\|f(x) - q(x)\| < \varepsilon$. \hfill \Box

Theorem 9. Let $W \subset C_b(X; E)$ be a non-empty convex subset and let A be the set of all multipliers of W. Then W is β-localizable under A.

Proof. The set A has property V and, since W is convex, every constant $0 < c < 1$ belongs to A. \hfill \Box

Theorem 10. Let $W \subset C_b(X; E)$ be a non-empty convex subset and let B be any non-empty set of multipliers of W. Then W is β-localizable under B.

Proof. Similar to that of Theorem 6, using now Theorem 9 instead of Theorem 5.
Corollary 8. Let $W \subseteq C_b(X; E)$ be a non-empty convex subset such that the set of all multipliers of W separates the points of X. Then, for each $f \in C_b(X; \mathbb{R})$ the following are equivalent:

1. f belongs to the β-closure of W;
2. for each $\varepsilon > 0$ and each $x \in X$, there is some $g \in W$ such that $\|f(x) - g(x)\| < \varepsilon$.

Proof. Clearly, (1) \Rightarrow (2). Suppose now that (2) holds. Let $\varphi \in D_0(X), \varepsilon > 0$ and $x \in X$ be given. Notice that $[x]_W = \{x\}$. If $\varphi(x) = 0$, for any $g \in W$ one has $\varphi(x)\|f(x) - g(x)\| = 0 < \varepsilon$. If $\varphi(x) > 0$, by (2) there is $g \in W$ such that $\|f(x) - g(x)\| < \varepsilon/\varphi(x)$. Hence $\varphi(x)\|f(x) - g(x)\| < \varepsilon$, and by Theorem 9, (1) is true. \hfill \square

Corollary 9. Let $S \subseteq X$ be a non-empty closed subset and let $V \subseteq E$ be a non-empty convex subset. Let $W = \{g \in C_b(X; E); g(S) \subseteq V\}$. Then, for each $f \in C_b(X; E)$ the following are equivalent:

1. f belongs to the β-closure of W;
2. for each $x \in S$, $f(x)$ belongs to the closure of V in E

Hence, $\overline{W}^\beta = \{f \in C_b(X; E); f(S) \subseteq \overline{V}\}$, where \overline{V} is the closure of V in E.

Proof. Clearly, (1) \Rightarrow (2). Conversely, assume that (2) holds. Clearly, W is a convex set such that $D(X)$ is the set of all multipliers of W. Since X is a completely regular Hausdorff space, $D(X)$ separates the points of X. Let $\varepsilon > 0$ and $x \in X$ be given. If $x \in S$ there is $v \in V$ such that $\|f(x) - v\| < \varepsilon$, and the constant mapping on X whose value is v belongs to W and $g(x) = v$. If $x \not\in S$, choose $\varphi \in C_b(X; \mathbb{R}), 0 \leq \varphi \leq 1, \varphi(t) = 1$ for all $t \in S$ and $\varphi(x) = 0$; and let $g \in C_b(X; E)$
be defined by \(g = \varphi \otimes v_0 + (1 - \varphi) \otimes f(x) \), where \(v_0 \in V \) is chosen arbitrarily. Then \(g(t) = v_0 \) for all \(t \in S \), and therefore \(g \in W \), and \(g(x) = f(x) \). Hence (2) of Corollary 8 is verified and so \(f \) belongs to the \(\beta \)-closure of \(W \). \(\Box \)

Corollary 10. Let \(W \subset C_b(X; E) \) be a non-empty convex subset such that the set of all multipliers of \(W \) separates the points of \(X \) and, for each \(x \in X \), the set \(W(x) = \{ g(x) ; g \in W \} \) is dense in \(E \). Then \(W \) is \(\beta \)-dense in \(C_b(X; E) \).

Proof. Apply Corollary 8. \(\Box \)

Corollary 11. The vector subspace \(W = C_b(X; \mathbb{R}) \otimes E \) is \(\beta \)-dense in \(C_b(X; E) \).

Proof. The set \(A \) of all multipliers of \(W \) is \(D(X) \), and \(W(x) = E \), for each \(x \in X \). It remains to apply Corollary 10. \(\Box \)

Corollary 12. If \(X \) is a locally compact Hausdorff space, then \(C_{00}(X; \mathbb{R}) \otimes E \) is \(\beta \)-dense in \(C_b(X; E) \).

Proof. Let \(W = C_{00}(X; \mathbb{R}) \otimes E \). As in the previous corollary, the set \(A \) of all multipliers of \(W \) is \(D(X) \), and for each \(x \in X \), \(W(x) = E \). \(\Box \)

Theorem 11. Let \(A \subset C_b(X; \mathbb{R}) \) be a subalgebra and let \(W \subset C_b(X; E) \) be a vector subspace which is an \(A \)-module, i.e., \(AW \subset W \). Then \(W \) is \(\beta \)-localizable under \(A \).

Proof. Let \(f \in C_b(X; E) \) be given. Assume that condition (2) of Definition 1 holds with \(S = A \). Without loss of generality we may assume that \(A \) is \(\beta \)-closed and contains the constants. Let \(M \) be the set of all multipliers of \(W \). We claim that, for each \(x \in X \), one has \([x]_M \subset [x]_A \). Indeed, let \(t \in [x]_M \) and let \(\varphi \in A \). If \(\varphi = 0 \), then \(\varphi \in M \) and \(\varphi(t) = \varphi(x) \). Assume \(\varphi \neq 0 \). Write \(\varphi = \varphi^+ - \varphi^- \),
where $\varphi^+ = \max(\varphi, 0)$ and $\varphi^- = \max(-\varphi, 0)$. By Corollary 2, §3, both φ^+ and φ^- belong to A. If $\varphi^+ = 0$, then φ^+ belongs to M and $\varphi^+(t) = \varphi^+(x)$. If $\varphi^+ \neq 0$, let $\psi = \varphi^+ / ||\varphi^+||_X$. Now ψ belongs to A and $0 \leq \psi \leq 1$. Hence $\psi \in M$ and therefore $\psi(t) = \psi(x)$. Consequently, one has $\varphi^+(t) = \varphi^+(x)$. Similarly, one proves that $\varphi^-(t) = \varphi^-(x)$. Hence $\varphi(t) = \varphi(x)$. This ends the proof that $[x]_M \subset [x]_A$ for all $x \in X$. Hence condition (2) of Definition 1 is verified with $S = M$. By Theorem 9, W is β-localizable under M. Hence f belongs to the β-closure of W.

Corollary 13. Let $W \subset C_b(X; E)$ be a vector subspace, and let

$$A = \{\psi \in C_b(X; \mathbb{R}); \psi g \in W \text{ for all } g \in W\}.$$

Then W is β-localizable under A.

Proof. Clearly A is a subalgebra of $C_b(X; \mathbb{R})$ and W is an A-module.

References

João B. Prolla
IMECC-UNICAMP
Caixa Postal 6065
13083-970 Campinas SP
Brasil

Samuel Navarro
Departamento de Matematicas
Universidad de Santiago
Casilla 5659 C-2
Santiago
Chile

\textit{Manuscrit reçu en Janvier 1997}