JOÃO B. PROLLA
SAMIUEL NAVARRO

Approximation results in the strict topology

<http://www.numdam.org/item?id=AMBP_1997__4_2_61_0>
Approximation Results in the Strict Topology

João B. Prolla and Samuel Navarro*

Abstract: In this paper we prove results of the Weierstrass-Stone type for subsets W of the vector space V of all continuous and bounded functions from a topological space X into a real normed space E, when V is equipped with the strict topology β. Our main results characterize the β-closure of W when (1) W is β-truncation stable; (2) $E = \mathbb{R}$ and W is a subalgebra; (3) $E = \mathbb{R}$ and W is the convex cone of all positive elements of some algebra; (4) W is uniformly bounded; (5) X is a completely regular Hausdorff space and W is convex.

§1. Introduction and definitions

Let X be a topological space and let E be a real normed space. We denote by $B(X; E)$ the normed space of all bounded E-valued functions on X, equipped with the supremum norm

$$
\|f\|_X = \sup\{|f(x)|; x \in X\}
$$

*Partially supported by FONDECYT grant 1950546 and DICYT-USACH
for each \(f \in B(X; E) \). We denote by \(B_0(X; E) \) the subset of all \(f \in B(X; E) \) that vanish at infinity, i.e., those \(f \) such that for every \(\varepsilon > 0 \), the set \(K = \{ t \in X; ||f(t)|| \geq \varepsilon \} \) is compact (or empty). And we denote by \(B_{00}(X; E) \) the subset of all \(f \in B(X; E) \) which have compact support. We denote by \(C(X; E) \) the vector space of all continuous \(E \)-valued functions on \(X \), and set

\[
C_b(X; E) = C(X; E) \cap B(X; E),
C_0(X; E) = C(X; E) \cap B_0(X; E),
C_{00}(X; E) = C(X; E) \cap B_{00}(X; E).
\]

We denote by \(I(X) \) the set of all \(\varphi \in B(X; \mathbb{R}) \) such that \(0 \leq \varphi(x) \leq 1 \), for all \(x \in X \). We then define

\[
D(X) = C_b(X; \mathbb{R}) \cap I(X),
D_0(X) = B_0(X; \mathbb{R}) \cap I(X).
\]

The strict topology \(\beta \) on \(C_b(X; E) \) is the locally convex topology determined by the family of seminorms

\[
p_\varphi(f) = \sup\{\varphi(x)||f(x)||; x \in X\}
\]

for \(f \in C_b(X; E) \), when \(\varphi \) ranges over \(D_0(X) \). Clearly, given \(\varphi \in D_0(X) \) there is a compact subset \(K \) such that \(\varphi(x) < \varepsilon \) for all \(x \not\in K \). Therefore, our strict topology is coarser than the strict topology introduced by R. Giles [3]. To see that they actually coincide, let \(\psi \in B(X; \mathbb{R}) \) be such that, for each \(\varepsilon > 0 \) there is a compact subset \(K \) such that \(\psi(x) < \varepsilon \) for all \(x \not\in K \). We may assume \(||\psi||_X < 1 \). Choose compact sets \(K_n \) with \(\phi = K_0 \subset K_1 \subset K_2 \subset \ldots \) such that \(|\psi(x)| < 2^{-n} \), for all \(x \not\in K_n \).

Let \(\psi_n \in B_0(X; \mathbb{R}) \) be the characteristic function of \(K_n \) multiplied by \(2^{-n} \), i.e., \(\psi_n(x) = 2^{-n} \), if \(x \in K_n \); and \(\psi_n(x) = 0 \) if \(x \not\in K_n \). Let \(\varphi = \sum_{n=1}^{\infty} \psi_n \). For each \(\varepsilon > 0 \), we claim that the set \(K = \{ x \in X; \varphi(x) \geq \varepsilon \} \) is compact (or empty). If \(\varepsilon > 1 \), then \(K = \phi \). If \(\varepsilon = 1 \), then \(K = K_1 \), because \(\varphi(t) = 1 \) precisely for \(t \in K_1 \). If \(\varepsilon < 1 \),
let \(n \geq 0 \) be such that \(2^{-(n+1)} \leq \varepsilon < 2^{-n} \). Then \(K = K_{n+1} \). Hence \(\varphi \in D_0(X) \).

We claim now that \(\psi(x) \leq \varphi(x) \) for all \(x \in X \). We first notice that \(\varphi(x) = 0 \) if, and only if \(x \not\in \bigcup_{n=1}^{\infty} K_n \). Indeed, if the point \(x \not\in \bigcup_{n=1}^{\infty} K_n \), then \(\psi_k(x) = 0 \) for all \(n = 1, 2, 3, \ldots \), and so \(\varphi(x) = 0 \). Conversely, if \(\varphi(x) = 0 \), then \(\psi_n(x) = 0 \) for all \(n = 1, 2, 3, \ldots \) and therefore \(x \not\in K_n \) for all \(n = 1, 2, 3, \ldots \). Hence \(x \not\in \bigcup_{n=1}^{\infty} K_n \). Let now \(x \in X \). If \(\varphi(x) = 0 \), then \(x \not\in K_n \) for all \(n = 1, 2, 3, \ldots \) and so \(|\psi(x)| < 2^{-n} \) for all \(n = 1, 2, 3, \ldots \). Hence \(\psi(x) = 0 \) and so \(\psi(x) = \varphi(x) \). Suppose now \(\varphi(x) > 0 \).

Then \(x \in \bigcup_{n=1}^{\infty} K_n \). Let \(N \) be the smallest positive integer \(n \geq 1 \) such that \(x \in K_n \). If \(N = 1 \), then \(x \in K_1 \) and so \(\varphi(x) = 1 > \psi(x) \). If \(N > 1 \), then \(x \in K_N \) and \(x \not\in K_{N-1} \).

Hence

\[
\varphi(x) = \sum_{n=N}^{\infty} 2^{-n} = 2^{-(N-1)}
\]

and \(\psi(x) < 2^{-(N-1)} \), since \(x \not\in K_{N-1} \). Therefore \(\psi(x) < \varphi(x) \), whenever \(\varphi(x) > 0 \).

Given any non-empty subset \(S \subset C(X; E) \) we denote by \(x \equiv y \pmod{S} \) the equivalence relation defined by \(f(x) = f(y) \) for all \(f \in S \). For each \(x \in X \), the equivalence class of \(x \pmod{S} \) is denoted by \([x]_S\), i.e.,

\[
[x]_S = \{ t \in X \; ; \; x \equiv t \pmod{S} \}
\]

For any non-empty subset \(K \subset X \) and any \(f : X \to E \), we denote by \(f_K \) its restriction to \(K \). If \(S \subset C(X; E) \) and \(K \subset X \), then for each \(x \in K \) one has

\[
[x]_{S_K} = K \cap [x]_S.
\]

If \(S \subset C_b(X; R) \), we define \(S^+ \) by

\[
S^+ = \{ f \in S \; ; \; f \geq 0 \}.
\]

If \(S = C_b(X; R) \), we write \(S^+ = C^+_b(X; R) \).
Definition 1. Let $S \subseteq C_b(X; \mathbb{R})$ and let $W \subseteq C_b(X; E)$ be given. We say that W is β-localizable under S if, for every $f \in C_b(X; E)$, the following are equivalent:

1. f belongs to the β-closure of W;
2. for every $\varphi \in D_0(X)$, every $\varepsilon > 0$ and every $x \in X$, there is some $g_x \in W$ such that $\varphi(t)||f(t) - g_x(t)|| < \varepsilon$ for all $t \in [x]_S$.

Remark. Clearly, (1) \Rightarrow (2) in any case. Hence a set W is β-localizable under S if, and only if, (2) \Rightarrow (1). Notice also that if W is β-localizable under S and $T \subseteq S$, then W is β-localizable under T. Indeed, $T \subseteq S$ implies $[x]_T \subseteq [x]_S$.

Definition 2. We say that a set $W \subseteq C_b(X, E)$ is β-truncation stable if, for every $f \in W$ and every $M > 0$, the function $T_M \circ f$ belongs to the β-closure of W, where $T_M : E \to E$ is the mapping defined by

$$
T_M(v) = \begin{cases}
 v, & \text{if } ||v|| < 2M; \\
 \frac{v}{||v||}2M, & \text{if } ||v|| \geq 2M
\end{cases}
$$

Notice that, when $E = \mathbb{R}$, the mapping $T_M : \mathbb{R} \to \mathbb{R}$ is given by

$$
T_M(r) = \begin{cases}
 r, & \text{if } ||r|| < 2M; \\
 2M, & \text{if } r > 2M; \\
 -2M, & \text{if } r > -2M.
\end{cases}
$$

Remark that, for every $f \in C_b(X; E)$, one has $||T_M \circ f||_X \leq 2M$.

Notice that when $W \subseteq C_b^+(X; \mathbb{R})$, then W is β-truncation stable if, for every $f \in W$ and every constant $M > 0$, the function $P_M \circ f$ belongs to the β-closure of W, where $P_M : \mathbb{R} \to \mathbb{R}_+$ is the mapping defined by $P_M = \max(0, T_M)$, i.e.,

$$
P_M(r) = \begin{cases}
 0, & \text{if } r < 0; \\
 r, & \text{if } 0 \leq r \leq 2M; \\
 2M, & \text{if } r > 2M.
\end{cases}
$$
Definition 3. Let \(W \subseteq C_b(X; E) \) be a non-empty subset. A function \(\psi \in D(X) \) is called a multiplier of \(W \) if \(\psi f + (1 - \psi)g \) belongs to \(W \), for each pair, \(f \) and \(g \), of elements of \(W \).

Definition 4. A subset \(S \subseteq D(X) \) is said to have property \(V \) if

(a) \(\psi \in S \) implies \((1 - \psi) \in S \);

(b) the product \(\varphi \psi \) belongs to \(S \), for any pair, \(\varphi \) and \(\psi \), of elements of \(S \).

Notice that the set of all multipliers of a subset \(W \subseteq C_b(X; E) \) has property \(V \). Indeed, condition (a) is clear and the equation

\[
(\varphi \psi) f + (1 - \varphi \psi) g = \varphi [\psi f + (1 - \psi) g] + (1 - \varphi) g
\]

show that (b) holds as well.

When \(X \) is locally compact, R.C. Buck [1] proved a Weierstrass-Stone Theorem for subalgebras of \(C_b(X; \mathbb{R}) \) equipped with the strict topology. This result was extended and generalized by Glicksberg [4], Todd [7], Wells [8] and Giles [3]. See also Buck [2], where modules are dealt with, and Prolla [5], where the strict topology is considered as an example of weighted spaces.

Our versions of the Weierstrass-Stone Theorem are analogues of Chapter 4 of Prolla [6] for arbitrary subsets of \(C(X; E) \) equipped with the uniform convergence topology, \(X \) compact. Whereas the previous results dealt only with algebras or vector spaces which are modules over an algebra, our results now go much further: we are able to cover the case of convex sets (when \(X \) is completely regular) or \(\beta \)-truncation stable sets (when \(X \) is just a topological space). The latter case cover both algebras and the convex cones obtained by taking the set of positive elements.
§2. \(\beta\)-truncation stable subsets

Theorem 1. Let \(W \subset C_0(X; E)\) be a \(\beta\)-truncation stable non-empty subset, and let \(A\) be the set of all multipliers of \(W\). Then \(W\) is \(\beta\)-localizable under \(A\).

Proof. Let \(f \in C_0(X; E)\) be given and assume condition (2) of Definition 1, with \(S = A\). Let \(\varphi \in D_0(X)\) and \(\varepsilon > 0\) be given. Without loss of generality we may assume that \(\varphi\) is not identically zero. Choose \(M > 0\) so big that \(M > \|f\|_X, M > \varepsilon\) and the compact set \(K = \{t \in X; \varphi(t) \geq \varepsilon/(6M)\}\) is non-empty. Consider the non-empty subset \(W_K \subset C(K; E)\). Clearly, the set \(A_K \subset D(K)\) is a set of multipliers of \(W_K\). Take a point \(x \in K\). By condition (2) applied to \(\varphi^2/(12M)\), there exists \(g_x \in W\) such that \(\varphi(t)^2/(12M)\) for all \(t \in [x]^A\). Let \(M \subset D(K)\) be the set of all multipliers of \(W_K \subset C(K; E)\). Then \(M\) has property \(V\). Now \(A_K \subset M\) implies

\[
[x]_M \subset [x]_{A_K} = [x]_A \cap K.
\]

Hence \(\varphi(t)^2/(12M)\) holds for all \(t \in K\) such that \(t \in [x]_M\). Now \(\varphi(t) \geq \varepsilon/(6M)\) for all \(t \in K\) and therefore

\[
\|f(t) - g_x(t)\| < \varepsilon/2
\]

for all \(t \in [x]_M\). By Theorem 1, Chapter 4, of Prolla [6] applied to \(W_K \subset C(K; E)\) and to the set \(M \subset D(K)\), there is \(g_1 \in W\) such that

\[
\|f(t) - g_1(t)\| < \varepsilon/2
\]

for all \(t \in K\). Let \(h = T_M \circ g_1\). By hypothesis, \(h\) belongs to the \(\beta\)-closure of \(W\), and there is \(g \in W\) such that \(p_\varphi(h - g) < \varepsilon/2\). We claim that \(p_\varphi(f - h) < \varepsilon/2\). Let

$t \in K$. Then

\[\|g_1(t)\| \leq \|f(t) - g_1(t)\| + \|f(t)\| < \varepsilon/2 + M < 2M \]

and so \(h(t) = T_M(g_1(t)) = g_1(t) \). Hence

\[\varphi(t)\|f(t) - h(t)\| = \varphi(t)\|f(t) - g_1(t)\| \leq \|f(t) - g_1(t)\| < \varepsilon/2. \]

Suppose now \(t \not\in K \). Then

\[\varphi(t)\|f(t) - h(t)\| < \frac{\varepsilon}{6M}\|f(t) - h(t)\| \leq \frac{\varepsilon}{6M}(\|f\|_X + \|h\|_X) < \frac{\varepsilon}{6M}3M = \frac{\varepsilon}{2}, \]

because \(\|h\|_X \leq 2M \), and \(\|f\|_X < M \).

This establishes our claim that \(p_\varphi(f - h) < \frac{\varepsilon}{2} \). Hence \(p_\varphi(f - g) < \varepsilon \), and \(f \) belongs to the \(\beta \)-closure of \(W \). \(\Box \)

Theorem 2. Let \(W \subset C_0(X; E) \) be a \(\beta \)-truncation stable non-empty subset, and let \(B \) be any non-empty set of multipliers of \(W \). Then \(W \) is \(\beta \)-localizable under \(B \).

Proof. Let \(A \) be the set of all multipliers of \(W \). By Theorem 1 the set \(W \) is \(\beta \)-localizable under \(A \). Now \(B \subset A \), so \(W \) is also \(\beta \)-localizable under \(B \). \(\Box \)

§3. The case of subalgebras

Lemma 1. If \(B \subset C_0(X; \mathbb{R}) \) is a uniformly closed subalgebra, and \(T : \mathbb{R} \to \mathbb{R} \) is a continuous mapping, with \(T(0) = 0 \), then \(T \circ f \) belongs to \(B \), for every \(f \in B \).
Proof. Let $f \in B$ and $\varepsilon > 0$ be given. Choose $k \geq ||f||_X$. By Weierstrass' Theorem, there exists an algebraic polynomial p such that $|T(t) - p(t)| < \varepsilon$ for all $t \in \mathbb{R}$ with $|t| \leq k$, and we may assume $p(0) = T(0) = 0$. Hence, for every $x \in X$, we have $|T(f(x)) - p(f(x))| < \varepsilon$, because $|f(x)| \leq k$. Now $p \circ f$ belongs to B, and therefore $T \circ f$ belongs to the uniform closure of B, that is B itself. \hfill \Box

Corollary 1. Every subalgebra $W \subset C_b(X; \mathbb{R})$ is β-truncation stable.

Proof. Let $f \in W$ and $M > 0$ be given. Let B be the β-closure of W in $C_b(X; \mathbb{R})$. We know that B is then a uniformly closed subalgebra. By Lemma 1 applied to $T = T_M$, we see that $T_M \circ f$ belongs to the β-closure of W as claimed. \hfill \Box

Corollary 2. Every uniformly closed subalgebra of $C_b(X; \mathbb{R})$ is a lattice.

Proof. Since

$$\max(f, g) = \frac{1}{2}[f + g + |f - g|]$$

$$\min(f, g) = \frac{1}{2}[f + g - |f - g|]$$

it suffices to show that $|f| \in B$, for every $f \in B$. This follows from Lemma 1, by taking $T : \mathbb{R} \to \mathbb{R}$ to be the mapping $T(t) = |t|$, for $t \in \mathbb{R}$. \hfill \Box

Theorem 3. Every subalgebra $W \subset C_b(X; \mathbb{R})$ is β-localizable under itself.

Proof. Let $f \in C_b(X; \mathbb{R})$ and assume that condition (2) of Definition 1 holds with $S = W$. Notice that for every $x \in X$ one has

$$[x]_W = [x]_B$$

where B is the β-closure of W. Let now

$$V = \{\psi \in B; ||\psi||_X \leq 1\} \quad \text{and} \quad A = \{\psi \in B; 0 \leq \psi \leq 1\}.$$
It is easy to see that

\[[x]_B = [x]_V \subseteq [x]_A, \]

for each \(x \in X \). Notice that, by Corollary 2, every \(\psi \in V \) can be written in the form \(\psi = \psi^+ - \psi^- \), with \(\psi^+ \) and \(\psi^- \) in \(A \). Hence \([x]_A \subseteq [x]_V \) is also true. Hence \(f \) satisfies condition (2) of Definition 1 with respect to \(S = A \). Now \(A \) is a set of multipliers of \(B \), and the algebra \(B \), by Corollary 1, is \(\beta \)-truncation stable. Hence, by Theorem 3, the function \(f \) belongs to the \(\beta \)-closure of \(B \), that is \(B \) itself. We have proved that \(f \) belongs to the \(\beta \)-closure of \(W \). Hence \(W \) is \(\beta \)-localizable under \(S = W \).

\[\Box \]

Corollary 3. Let \(W \subset C_b(X; \mathbb{R}) \) be a subalgebra, and let \(f \in C_b(X; \mathbb{R}) \) be given. Then \(f \) belongs to the \(\beta \)-closure of \(W \) if, and only if, the following conditions are satisfied:

1. For each pair, \(x \) and \(y \), of elements of \(X \) such that \(f(x) \neq f(y) \), there is some \(g \in W \) such that \(g(x) \neq g(y) \);
2. For each \(x \in X \) such that \(f(x) \neq 0 \) there is some \(g \in W \) such that \(g(x) \neq 0 \).

Proof. Clearly, if \(f \in W^\beta \), then (1) and (2) are satisfied. Conversely, assume that conditions (1) and (2) are verified.

Let \(x \in X \) be given. By condition (1) the function \(f \) is constant on \([x]_W \). Let \(f(x) \) be its value. If \(f(x) = 0 \), then \(g_x = 0 \) belongs to \(W \) and \(f(t) = f(x) = 0 = g_x(t) \) for all \(t \in [x]_W \). If \(f(x) \neq 0 \), by condition (2) there is \(g \in W \) such that \(g(x) \neq 0 \). Define \(g_x = [f(x)/g(x)]g \). Then \(g_x \in W \) and \(g_x(t) = f(x) = f(t) \) for all \(t \in [x]_W \). Hence \(f \) satisfies condition (2) of Definition 1 with respect to \(S = W \). By Theorem 3, we conclude that \(f \) belongs to the \(\beta \)-closure of \(W \).

\[\Box \]

Corollary 3 implies the following results.
Corollary 4. Let \(A \) be a subalgebra of \(C_b(X; \mathbb{R}) \) which for each \(x \in X \) contains a function \(g \) with \(g(x) \neq 0 \), and let \(f \in C_b(X; \mathbb{R}) \) be given. Then \(f \) belongs to the \(\beta \)-closure of \(A \) if, and only if, for each pair, \(x \) and \(y \), of elements of \(X \) such that \(f(x) \neq f(y) \), there is some \(g \in A \) such that \(g(x) \neq g(y) \).

Corollary 5. Let \(A \) be a subalgebra of \(C_b(X; \mathbb{R}) \) which separates the points of \(X \) and for each \(x \in X \) contains a function \(g \) with \(g(x) \neq 0 \). Then \(A \) is \(\beta \)-dense in \(C_b(X; \mathbb{R}) \).

Corollary 6. If \(X \) is a locally compact Hausdorff space, then \(C_{00}(X; \mathbb{R}) \) is \(\beta \)-dense in \(C_b(X; \mathbb{R}) \).

Lemma 2. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function such that \(f(t) \geq 0 \) for all \(t \in \mathbb{R} \) and \(f(0) = 0 \). If \(k > 0 \) and \(\varepsilon > 0 \) are given, there is a real algebraic polynomial \(p \) such that \(p(t) \geq 0 \) for all \(0 \leq t \leq k \), \(p(0) = 0 \) and \(|p(t) - f(t)| \leq \varepsilon \) for all \(0 \leq t \leq k \).

Proof. Define \(g : [0,1] \to \mathbb{R} \) by setting \(g(u) = f(ku) \), for each \(u \in [0,1] \). Clearly, \(g(u) \geq 0 \), for all \(0 \leq u \leq 1 \) and \(g(0) = 0 \). Now, given \(\varepsilon > 0 \), choose \(n \) so that the \(n \)-th Bernstein polynomial of \(g \), written \(B_n g \), is such that

\[
|(B_n g)(u) - g(u)| < \varepsilon
\]

for all \(0 \leq u \leq 1 \). For \(t \in \mathbb{R} \), define \(p(t) = (B_n g)(t/k) \). Since \(B_n g \geq 0 \) in \([0,1] \), it follows that \(p(t) \geq 0 \), for \(t \in [0,k] \). Since \((B_n g)(0) = g(0) = f(0) = 0 \), we see that \(p(0) = 0 \). It remains to notice that, for any \(0 \leq t \leq k \) we have \(0 \leq t/k \leq 1 \) and

\[
|p(t) - f(t)| = |(B_n g)(t/k) - g(t/k)| < \varepsilon
\]

Lemma 3. If \(A \subset C_b(X; \mathbb{R}) \) is a subalgebra, then \(A^+ \) is \(\beta \)-truncation stable.
Proof. Let $f \in A^+$ and $M > 0$ be given. We claim that $P_M \circ f$ belongs to the β-closure of A^+. Let $k > 0$ be such that $0 \leq f(x) \leq k$ for all $x \in X$. Let $\varphi \in D_0(X)$ and $\varepsilon > 0$ be given. By Lemma 2 above there exists a polynomial $p : \mathbb{R} \to \mathbb{R}$ such that $p(t) \geq 0$ for all $0 \leq t \leq k$, $p(0) = 0$ and $|p(t) - P_M(t)| < \varepsilon$ for all $0 \leq t \leq k$.

Let $x \in X$. Then $\varphi(x) \leq 1$ and so $\varphi(x)|p(f(x)) - P_M(f(x))| < \varepsilon$. Now $p \circ f$ belongs to A (since $p(0) = 0$) and $p(f(x)) \geq 0$ for all $x \in X$, since $0 \leq f(x) \leq k$. Hence $p \circ f \in A^+$. This ends the proof that $P_M \circ f$ belongs to the β-closure of A^+ as claimed.

Theorem 4. If $A \subset C_b(X; \mathbb{R})$ is a subalgebra, then A^+ is localizable under itself.

Proof. Let $f \in C_b(X; \mathbb{R})$ be given satisfying condition (2) of Definition 1 with respect to $S = A^+$. Define $B = \{f \in A; 0 \leq f \leq 1\}$. It is easy to see that $[x]_S = [x]_B$, for every $x \in X$. Hence f satisfies condition (2) of Definition 1 with respect to B, which is a set of multipliers of A^+. By Lemma 3, the set A^+ is β-truncation stable. Therefore A^+ is β-localizable under B, by Theorem 2. Hence f belongs to the β-closure of A^+.

Theorem 4. Let $A \subset C_b(X; \mathbb{R})$ be a subalgebra and let $f \in C_b^+(X; \mathbb{R})$ be given. Then f belongs to the β-closure of A^+ if, and only if, the following two conditions hold:

1. for each pair, x and y, of elements of X such that $f(x) \neq f(y)$, there is some $g \in A^+$ such that $g(x) \neq g(y)$;
2. for each $x \in X$ such that $f(x) > 0$ there is some $g \in A^+$ such that $g(x) > 0$.

Proof. If f belongs to the β-closure of A^+ the two conditions (1) and (2) above are easily seen to hold. Conversely, assume that conditions (1) and (2) above hold. Let $x \in X$ be given. By condition (1), the function f is constant on $[x]_S$ where $S = A^+$. Let $f(x) \geq 0$ be its constant value. If $f(x) = 0$, then $g_x = 0$ belongs to
A^+ and f(t) = f(x) = 0 = g_x(t) for all t \in [x]_S. If f(x) > 0, then by condition (2) there is g_x \in A^+ such that g(x) > 0. Let g_x = [f(x)/g(x)]g. Then g_x \in A^+ and

g_x(t) = f(x) = f(t) for all t \in [x]_S. Hence f satisfies condition (2) of Definition 1 with respect to W = A^+ and S = A^+. By Theorem 4, we conclude that f belongs to the \beta\text{-closure of } A^+.

\section{The case of uniformly bounded subsets}

\textbf{Theorem 5.} Let \(W \) be a uniformly bounded subset of \(C_b(X; E) \) and let \(A \) be the set of all multipliers of \(W \). Then \(W \) is \(\beta\text{-localizable under } A \).

\textbf{Proof.} Let \(f \in C_b(X; E) \) be given and assume that condition (2) of Definition 1 holds with \(S = A \). Let \(\varepsilon > 0 \) and \(\varphi \in D_0(X) \) be given. Choose \(M > 0 \) so big that \(M > \|f\|_X \) and \(M > k = \sup\{\|g\|_X; g \in W\} \), and the compact set \(K = \{t \in X; \varphi(t) \geq \varepsilon/(2M)\} \) is non-empty. (Without loss of generality we may assume that \(\varphi \) is not identically zero). Consider the non-empty set \(W_K \subset C(K; E) \). Clearly, the set \(A_K \) is a set of multipliers of \(W_K \). Take a point \(x \in K \). By condition (2) applied to \(\varepsilon^2/(2M) \), there exists some \(g_x \in W \) such that

\[\varphi(t)\|f(t) - g_x(t)\| < \varepsilon^2/(2M) \]

for all \(t \in [x]_A \). Hence \(\|f(t) - g_x(t)\| < \varepsilon \) for all \(t \in [x]_{A_K} \), since \(\varphi(t) \geq \varepsilon/(2M) \) for all \(t \in K \). Let now \(M \) be the set of all multipliers of \(W_K \subset C(K; E) \). Since \(A_K \subset M \), it follows that \([x]_M \subset [x]_{A_K} \) and so \(\|f(t) - g_x(t)\| < \varepsilon \) for all \(t \in [x]_M \). By Theorem 1, Chapter 4 of Prolla [6] there is \(g \in W \) such that \(\|f(t) - g(t)\| < \varepsilon \) for all \(t \in K \). We claim that \(\varphi_x(t - g) < \varepsilon \). Let \(x \in X \). If \(x \in K \), then \(\varphi(x) \leq 1 \) and

\[\varphi(t)\|f(t) - g(t)\| \leq \|f(t) - g(x)\| < \varepsilon. \]

If \(x \not\in K \), then

\[\varphi(x)\|f(x) - g(x)\| \leq \frac{\varepsilon}{2M} [\|f\|_X + \|g\|_X] < \varepsilon. \]
Hence f belongs to the β-closure of W and so W is β-localizable under A. \square

Theorem 6. Let W be a uniformly bounded subset of $C_b(X; E)$ and let B be any non-empty set of multipliers of W. Then W is β-localizable under B.

Proof. Let A be the set of all multipliers of W. Since $B \subset A$ and by Theorem 5 the set W is β-localizable under A, it follows that W is also β-localizable under B. \square

Theorem 7. Let A be a non-empty subset of $D(X)$ with property V and let $f \in D(X)$. Then f belongs to the β-closure of A if, and only if, the following two conditions hold:

1. For every pair of points, x and y, of X such that $f(x) \neq f(y)$, there exists $g \in A$ such that $g(x) \neq g(y)$;
2. For every $x \in X$ such that $0 < f(x) < 1$, there exists $g \in A$ such that $0 < g(x) < 1$.

Proof. It is easy to see that conditions (1) and (2) are necessary for f to belong to the β-closure of A. Conversely, assume that f satisfies conditions (1) and (2).

Let $\varphi \in D_0(X)$ and $\varepsilon > 0$ be given. Without loss of generality we may assume that φ is not identically zero. Choose $\delta > 0$ so small that $2\delta < \varepsilon$ and the compact set $K = \{t \in X; \varphi(t) \geq \delta\}$ is non-empty. Clearly, A_K has property V. Since conditions (1) and (2) hold, we may apply Theorem 1, Chapter 8, Prolla [6] to conclude that f_K belongs to the uniform closure of A_K. Hence there is some $g \in A$ such that $|f(t) - g(t)| < \varepsilon$ for all $t \in K$. We claim that $p_\varphi(f - g) < \varepsilon$. Let $x \in X$. If $x \in K$, then $\varphi(x) \leq 1$ and $\varphi(x)|f(x) - g(x)| \leq |f(x) - g(x)| < \varepsilon$.

If $x \not\in K$, then $\varphi(x) < \delta$ and

$$\varphi(x)|f(x) - g(x)| \leq \delta[\|f\|_X + \|g\|_X] \leq 2\delta < \varepsilon.$$

Hence f belongs to the β-closure of A. \square

Remark. We say that a subset $A \subset D(X)$ has property VN if $fg + (1 - f)h \in A$
for all \(f, g, h \in A \). Clearly, if \(A \) has property \(VN \) and contains 0 and 1, then \(A \) has property \(V \).

Corollary 6. Let \(A \) be a non-empty subset of \(D(X) \) with property \(V \), and let \(W \) be its \(\beta \)-closure. Then \(W \) has property \(VN \) and \(W \) is a lattice.

Proof. (a) \(W \) has property \(VN \): Let \(f, g, \varphi \) belong to \(W \), and let \(h = \varphi f + (1 - \varphi)g \). Assume \(h(x) \neq h(y) \). Then at least one of the following three equalities is necessarily false: \(\varphi(x) = \varphi(y) \), \(f(x) = f(y) \) and \(g(x) = g(y) \). Since \(\varphi \), \(f \) and \(g \) belong all three to \(W \), there exists \(a \in A \) such that \(a(x) \neq a(y) \). Hence \(h \) satisfies condition (1) of Theorem 7. Suppose now that \(0 < h(x) < 1 \). If \(0 < \varphi(x) < 1 \), then \(0 < a(x) < 1 \) for some \(a \in A \), because \(\varphi \) belongs to the \(\beta \)-closure of \(A \). Assume that \(\varphi(x) = 0 \). Then \(h(x) = g(x) \) and so \(0 < g(x) < 1 \). Since \(g \in W \), it follows that \(0 < a(x) < 1 \) for some \(a \in A \). Similarly, if \(\varphi(x) = 1 \) then \(h(x) = f(x) \) and so \(0 < f(x) < 1 \). Since \(f \in W \), there is \(a \in A \) such that \(0 < a(x) < 1 \). Hence \(h \) satisfies condition (2) of Theorem 7. By Theorem 7 above, the function \(h \) belongs to \(W \).

(b) \(W \) is lattice: Let \(f \) and \(g \) belong to \(W \). Let \(h = \max(f, g) \). Let \(x \) and \(y \) be a pair of points of \(X \) such that \(h(x) \neq h(y) \). Then at least one of the two equalities \(f(x) = f(y), g(x) = g(y) \) must be false. Since \(f \) and \(g \) both belong to the \(\beta \)-closure of \(A \), there exists \(a \in A \) such that \(a(x) \neq a(y) \). On the other hand, let \(x \in X \) be such that \(0 < h(x) < 1 \). If \(f(x) \geq g(x) \), then \(h(x) = f(x) \) and so \(0 < f(x) < 1 \). Since \(f \in W \), there exists \(a \in A \) such that \(0 < a(x) < 1 \). Assume now \(f(x) < g(x) \). Then \(h(x) = g(x) \) and so \(0 < g(x) < 1 \). Since \(g \in W \), there exists \(a \in A \) such that \(0 < a(x) < 1 \). By Theorem 7 above, the function \(h \) belongs to \(W \). Similarly, one shows that the function \(\min(f, g) \) belongs to \(W \).

Corollary 7. Let \(A \) be a \(\beta \)-closed non-empty subset of \(D(X) \) with property \(V \). Then \(A \) has property \(VN \) and \(A \) is a lattice.
Proof. Immediate from Corollary 6.

§5. The case of convex subsets

In this section we suppose that X is a completely regular Hausdorff space. We denote its Stone-Čech compactification by βX, and by $\beta : C_b(X; IR) \to C(\beta X; IR)$ the linear isometry which to each $f \in C_b(X; IR)$ assigns its (unique) continuous extension to βX. Since β is an algebra (and lattice) isomorphism, the image $\beta(A)$ of any subset $A \subset C_b(X, IR)$ with property V is contained in $D(\beta X)$ and has property V. If $B = \beta(A)$, then for each $x \in X$ one has

$$[x]_A = [x]_B \cap X.$$

If Y denotes the quotient space of βX by the equivalence relation $x \equiv y$ if and only if $x = y$ for all $y \in B$, then Y is a compact Hausdorff space.

If $x \in X$ and $K_x \subset X$ is a compact subset disjoint from $[x]_A$, then $\pi(K_x)$ is a compact subset in Y which does not contain the point $\pi(x)$. (Here we have denoted by π the canonical projection $\pi : \beta X \to Y$. Indeed, if $x \in K_x$, then $\pi(x) = \pi(y)$ for some $y \in K_x$. Now $y \in [x]_B$ because that $y \in [x]_A$. But $K_x \cap [x]_A = \phi$, and we have reached a contradiction. Hence $\pi(x) \notin \pi(K_x)$. We will apply these remarks in the proof of the following lemma.

Lemma 4. Let $A \subset D(X)$ be a subset with property V and containing some constant $0 < c \leq 1$. Let $x \in X$ and let $K_x \subset X$ be a compact subset, disjoint from $[x]_A$. Then, there exists an open neighborhood $W(x)$ of $[x]_A$ in X, disjoint from K_x and such that given $0 < \delta < 1$ there is $\varphi \in A$ such that

1. $\varphi(t) < \delta$, for all $t \in K_x$;
2. $\varphi(t) > 1 - \delta$, for all $t \in W(x)$.

Proof. Let $N(x)$ be the complement of K_x in βX. Then $N(x)$ is an open neigh-
We know that \(\pi(K_x) \) is a compact subset of \(Y \) which does not contain the point \(y = \pi(x) \). Let \(f \in C(Y; \mathbb{R}) \) be a mapping such that \(0 \leq f \leq 1, f(y) = 0 \) and \(f(t) = 1 \) for all \(t \in \pi(K_x) \). Let \(g = f \circ \pi \). By Theorem 1, Chapter 8, Prolla [6], the function \(g \) belongs to the uniform closure of \(B \) in \(D(\beta X) \). Notice that \(a(x) = 0 \) and \(g(u) = 1 \), for all \(u \in K_x \). Define \(N(x) = \{ t \in \beta X; g(t) < 1/4 \} \). Clearly, \([x]_B \subset N(x) \), since \(g(t) = 0 \) for all \(t \in [x]_B \).

It is also clear that \(N(x) \) is disjoint from \(K_x \). Let us define \(W(x) = N(x) \cap X \). Then \(W(x) \) is an open neighborhood of \([x]_A \) in \(X \), which is disjoint from \(K_x \).

Given \(0 < \delta < 1 \), let \(p \) be a polynomial determined by Lemma 1, Chapter 1, Prolla [6], applied to \(a = 1/4 \) and \(b = 3/4 \), and \(\varepsilon = \delta/2 \). Let
\[
 h(t) = p(g(t)), \quad \text{for all } t \in \beta X.
\]
Since \(\overline{B} \) has property \(V \), it follows that \(h \in \overline{B} \). If \(t \in K_x \), then \(g(t) = 1 \) and so \(h(t) < \delta/2 \). If \(t \in W(x) \), then \(g(t) < 1/4 \) and so \(h(t) > 1 - \delta/2 \). Choose now \(\psi \in B \) with \(||\psi - h||_X < \delta/2 \), and let \(\varphi \in A \) be such that \(\beta(\varphi) = \psi \). Then \(\varphi \in A \) satisfies conditions (1) and (2).

Theorem 8. Let \(W \subset C_b(X; E) \) be a non-empty subset and let \(A \) be a set of multipliers of \(W \) which has property \(V \) and contains some constant \(0 < c < 1 \). Then \(W \) is \(\beta \)-localizable under \(A \).

Proof. Assume that condition (2) of Definition 1 is true with \(S = A \). For each \(x \in X \), there is some \(g_x \in W \) such that, for all \(t \in [x]_A \), one has \(\varphi(t)||f(t) - g_x(t)|| < \varepsilon/2 \). Consider the compact subset \(K_x \) of \(X \) defined by

\[
 K_x = \{ t \in X; \varphi(t)||f(t) - g_x(t)|| \geq \frac{\varepsilon}{2} \}.
\]

Clearly, \(K_x \) is disjoint from \([x]_A\). Now for each \(x \in X \), select an open neighborhood \(W(x) \) of \([x]_A\), disjoint from \(K_x \), according to Lemma 4.

Select and fix a point \(x_1 \in X \). Let \(K = K_{x_1} \). By compactness of \(K \), there exists a finite set \(\{x_2, \ldots, x_m\} \subset K \) such that

\[
 K \subset W(x_2) \cup W(x_3) \cup \ldots \cup W(x_m)
\]
Let \(k = \sum_{i=1}^{m} p_{\varphi}(f - g_{x_{i}}) \) and let \(0 < \delta < 1 \) be so small that \(\delta k < \varepsilon / 2 \).

By Lemma 4, there are \(\varphi_{2}, \ldots, \varphi_{m} \in A \) such that

(a) \(\varphi_{i}(t) < \delta, \) for all \(t \in K_{x_{i}} \);

(b) \(\varphi_{i}(t) > 1 - \delta, \) for all \(t \in W(x_{i}) \)

for \(i = 2, \ldots, m \). Define

\[
\psi_{2} = \varphi_{2} \\
\psi_{3} = (1 - \varphi_{2})\varphi_{3} \\
\vdots \\
\psi_{m} = (1 - \varphi_{2})(1 - \varphi_{3})\ldots(1 - \varphi_{m-1})\varphi_{m}.
\]

Clearly, \(\psi_{i} \in A \) for all \(i = 2, \ldots, m \). Now

\[
\psi_{2} + \ldots + \psi_{j} = 1 - (1 - \varphi_{2})(1 - \varphi_{3})\ldots(1 - \varphi_{j})
\]

for all \(j \in \{2, \ldots, m\} \), can be easily seen by induction. Define

\[
\psi_{1} = (1 - \varphi_{2})(1 - \varphi_{3})\ldots(1 - \varphi_{m})
\]

then \(\psi_{1} \in A \) and \(\psi_{1} + \psi_{2} + \ldots + \psi_{m} = 1 \).

Notice that

(c) \(\psi_{i}(t) < \delta \) for all \(t \in K_{x_{i}} \),

for each \(i = 1, 2, \ldots, m \). Indeed, if \(i \geq 2 \) then (c) follows from (a). If \(i = 1 \), then for \(t \in K \), we have \(t \in W(x_{j}) \) for some \(j = 2, \ldots, m \). By (b), one has \(1 - \varphi_{j}(t) < \delta \) and so

\[
\psi_{1}(t) = (1 - \varphi_{j}(t)) \prod_{i \neq j}(1 - \varphi_{i}(t)) < \delta.
\]

Let us write \(g_{i} = g_{x_{i}} \) for \(i = 1, 2, \ldots, m \).

Define \(g = \psi_{1}g_{1} + \psi_{2}g_{2} + \ldots + \psi_{m}g_{m} \).

Notice that

\[
g = \varphi_{2}g_{2} + (1 - \varphi_{2})[\varphi_{3}g_{3} + (1 - \varphi_{3})[\varphi_{4}g_{4} + \ldots + \\
+(1 - \varphi_{m-1})[\varphi_{m}g_{m} + (1 - \varphi_{m})g_{1}]\ldots]].
\]
Hence \(g \in W \). Let \(x \in X \) be given. Then

\[
\varphi(x)\|f(x) - g(x)\| = \varphi(x)\left\| \sum_{i=1}^{m} \psi_i(x)(f(x) - g_i(x)) \right\|
\leq \varphi(x)\|\sum_{i=1}^{m} \psi_i(x)\|(f(x) - g_i(x))\|
\]

Define \(I = \{1 \leq r \leq m; x \notin K_{x_i}\} \); \(J = \{1 \leq i \leq m; x \in K_{x_i}\} \).

If \(i \in I \), then \(x \notin K_{x_i} \) and

\[
\varphi(x)\|f(x) - g_i(x)\| < \frac{\epsilon}{2}
\]

and therefore

\[
(*) \sum_{i \in I} \varphi(x)\psi_i(x)\|f(x) - g_i(x)\| \leq \frac{\epsilon}{2} \sum_{i \in I} \psi_i(x) \leq \frac{\epsilon}{2}.
\]

If \(i \in J \), then by (c), \(\psi_i(x) < \delta \) and so

\[
(**) \sum_{i \in J} \varphi(x)\psi_i(x)\|f(x) - g_i(x)\| \leq \delta k < \frac{\epsilon}{2}.
\]

From (*) and (**) we get \(\varphi(x)\|f(x) - q(x)\| < \epsilon \). \(\square \)

Theorem 9. Let \(W \subset C_b(X; E) \) be a non-empty convex subset and let \(A \) be the set of all multipliers of \(W \). Then \(W \) is \(\beta \)-localizable under \(A \).

Proof. The set \(A \) has property \(V \) and, since \(W \) is convex, every constant \(0 < c < 1 \) belongs to \(A \). \(\square \)

Theorem 10. Let \(W \subset C_b(X; E) \) be a non-empty convex subset and let \(B \) be any non-empty set of multipliers of \(W \). Then \(W \) is \(\beta \)-localizable under \(B \).

Proof. Similar to that of Theorem 6, using now Theorem 9 instead of Theorem 5.
Corollary 8. Let $W \subset C_b(X; E)$ be a non-empty convex subset such that the set of all multipliers of W separates the points of X. Then, for each $f \in C_b(X; \mathbb{R})$ the following are equivalent:

1. f belongs to the β-closure of W;
2. for each $\varepsilon > 0$ and each $x \in X$, there is some $g \in W$ such that $||f(x) - g(x)|| < \varepsilon$.

Proof. Clearly, (1) \Rightarrow (2). Suppose now that (2) holds. Let $\varphi \in D_0(X), \varepsilon > 0$ and $x \in X$ be given. Notice that $[x]_W = \{x\}$. If $\varphi(x) = 0$, for any $g \in W$ one has $\varphi(x)||f(x) - g(x)|| = 0 < \varepsilon$. If $\varphi(x) > 0$, by (2) there is $g \in W$ such that $||f(x) - g(x)|| < \varepsilon / \varphi(x)$. Hence $\varphi(x)||f(x) - g(x)|| < \varepsilon$, and by Theorem 9, (1) is true.

Corollary 9. Let $S \subset X$ be a non-empty closed subset and let $V \subset E$ be a non-empty convex subset. Let $W = \{g \in C_b(X; E); g(S) \subset V\}$. Then, for each $f \in C_b(X; E)$ the following are equivalent:

1. f belongs to the β-closure of W;
2. for each $x \in S$, $f(x)$ belongs to the closure of V in E.

Hence, $W^\theta = \{f \in C_b(X; E); f(S) \subset \overline{V}\}$, where \overline{V} is the closure of V in E.

Proof. Clearly, (1) \Rightarrow (2). Conversely, assume that (2) holds. Clearly, W is a convex set such that $D(X)$ is the set of all multipliers of W. Since X is a completely regular Hausdorff space, $D(X)$ separates the points of X. Let $\varepsilon > 0$ and $x \in X$ be given. If $x \in S$ there is $v \in V$ such that $||f(x) - v|| < \varepsilon$, and the constant mapping on X whose value is v belongs to W and $g(x) = v$. If $x \not\in S$, choose $\varphi \in C_b(X; \mathbb{R}), 0 \leq \varphi \leq 1, \varphi(t) = 1$ for all $t \in S$ and $\varphi(x) = 0$; and let $g \in C_b(X; E)$
be defined by \(g = \varphi \otimes v_0 + (1 - \varphi) \otimes f(x) \), where \(v_0 \in V \) is chosen arbitrarily. Then \(g(t) = v_0 \) for all \(t \in S \), and therefore \(g \in W \), and \(g(x) = f(x) \). Hence (2) of Corollary 8 is verified and so \(f \) belongs to the \(\beta \)-closure of \(W \).

Corollary 10. Let \(W \subset C_b(X; E) \) be a non-empty convex subset such that the set of all multipliers of \(W \) separates the points of \(X \) and, for each \(x \in X \), the set \(W(x) = \{ g(x) ; g \in W \} \) is dense in \(E \). Then \(W \) is \(\beta \)-dense in \(C_b(X; E) \).

Proof. Apply Corollary 8.

Corollary 11. The vector subspace \(W = C_b(X; \mathbb{R}) \otimes E \) is \(\beta \)-dense in \(C_b(X; E) \).

Proof. The set \(A \) of all multipliers of \(W \) is \(D(X) \), and \(W(x) = E \), for each \(x \in X \). It remains to apply Corollary 10.

Corollary 12. If \(X \) is a locally compact Hausdorff space, then \(C_00(X; \mathbb{R}) \otimes E \) is \(\beta \)-dense in \(C_b(X; E) \).

Proof. Let \(W = C_00(X; \mathbb{R}) \otimes E \). As in the previous corollary, the set \(A \) of all multipliers of \(W \) is \(D(X) \), and for each \(x \in X, W(x) = E \).

Theorem 11. Let \(A \subset C_b(X; \mathbb{R}) \) be a subalgebra and let \(W \subset C_b(X; E) \) be a vector subspace which is an \(A \)-module, i.e., \(AW \subset W \). Then \(W \) is \(\beta \)-localizable under \(A \).

Proof. Let \(f \in C_b(X; E) \) be given. Assume that condition (2) of Definition 1 holds with \(S = A \). Without loss of generality we may assume that \(A \) is \(\beta \)-closed and contains the constants. Let \(M \) be the set of all multipliers of \(W \). We claim that, for each \(x \in X \), one has \([x]_M \subset [x]_A \). Indeed, let \(t \in [x]_M \) and let \(\varphi \in A \). If \(\varphi = 0 \), then \(\varphi \in M \) and \(\varphi(t) = \varphi(x) \). Assume \(\varphi \neq 0 \). Write \(\varphi = \varphi^+ - \varphi^- \),
where $\varphi^+ = \max(\varphi, 0)$ and $\varphi^- = \max(-\varphi, 0)$. By Corollary 2, §3, both φ^+ and φ^- belong to A. If $\varphi^+ = 0$, then φ^+ belongs to M and $\varphi^+(t) = \varphi^+(x)$. If $\varphi^+ \neq 0$, let $\psi = \varphi^+/\|\varphi^+\|_X$. Now ψ belongs to A and $0 \leq \psi \leq 1$. Hence $\psi \in M$ and therefore $\psi(t) = \psi(x)$. Consequently, one has $\varphi^+(t) = \varphi^+(x)$. Similarly, one proves that $\varphi^-(t) = \varphi^-(x)$. Hence $\varphi(t) = \varphi(x)$. This ends the proof that $[x]_M \subseteq [x]_A$ for all $x \in X$. Hence condition (2) of Definition 1 is verified with $S = M$. By Theorem 9, W is β-localizable under M. Hence f belongs to the β-closure of W.

Corollary 13. Let $W \subset C_b(X; E)$ be a vector subspace, and let

$$A = \{\psi \in C_b(X; IR); \psi g \in W \text{ for all } g \in W\}.$$

Then W is β-localizable under A.

Proof. Clearly A is a subalgebra of $C_b(X; IR)$ and W is an A-module.

References

João B. Prolla
IMECC-UNICAMP
Caixa Postal 6065
13083-970 Campinas SP
Brasil

Samuel Navarro
Departamento de Matematicas
Universidad de Santiago
Casilla 5659 C-2
Santiago
Chile

Manuscrit reçu en Janvier 1997