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CONTINUED FRACTIONS FOR FINITE SUMS

Ann Verdoodt

Abstract

Our aim in this paper is to construct continued fractions for sums of the type
n n
2 bi 2P or Y b;/z°® , where (b,) is a sequence such that b, is different
i=0 i=0 '
from zero if n is different from zero , and c(n) is an element of N .
Résumé
Le but est de construire des fractions continues pour des sommes du type
n n
Y by 2D or 2 bi/z*® , ot ( b, ) est une suite telle que b, est différent de
i=0 i=0
zéro pour n différent de zéro , et c(n) est un élémentde N.

1. Introduction

[ ag, aj, a3, .... ] denotes the continued fraction ay+ ————-—1-—1———— ,
ap + a, +
1
and [ ay, 3y, ..., a, ] denotes ay + i
a; +
as + ... a + l
n-1 a,

The a;'s are called the partial quotients ( or simply the quotients ) , and [ a, ay, .., 2, ] is

called a finite continued fraction .
n
Our aim in this paper is to construct continued fractions for sums of the type Z b; z® or
i=0

n
Z b;/2°" , where c(i) is an element of N .
i=0
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n
In section 2, we find continued fractions for finite sums of the type 2 bz ( c)=1)
: : =0

n
or 2 b; z9' (c(i) = q' ), where (b, ) is a sequence such that b, is different from zero if n is
i=0
different from zero , and where q is a natural number different from zero and one .

n
Therefore , we start by giving a continued fraction for the sum Z b; T3, where b; is
i=0
different from zero for all i different from zero ( b; is a constant in T ) . This can be found in

theorem 1.

If we replace b; by b; Z' in theorem 1 , and we put T equal to one , we find a continued

n
fraction for Z b; Z' (theorem2), and if we replace b; by b; z4' in theorem 1 , and we put
i=0 '

n
T equal to one , we find a continued fraction for: Z b; z¢' ( theorem 3 ) (qis a natural
i=0
number different from zero and one ) .

n
In section 3 we find continued fractions for finite sums of the type 2 -z%,—) , for some
i=0
sequences ( b, ) and ( c(n) ) , where c(n) is a natural number .

In theorem 4 , we find a result for c(i) equal to 2i (foralli).
\2

Finally , in theorem 5 , we give a continued fraction for Z z%ﬁ , where ¢(0) equéls Zero ,
i=0
and c(n+1) - 2¢(n) 2 0.

The results in this paper are extensions of results that can be found in [2],[3]and [4].

Acknowledgement : I thank professor Van Hamme for the help and the advice he gave me

during the preparation of this paper .
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n
2. Continued fractions for sums of the type 2 b; z!
i=0

All the pfoéfs in sections 2 and 3 can be given with the aid of the following simple lemma :

Lemma
Leti) po=a, q=1, pi=aa+l, q=a,

Pn=anPa1+ P2y Gn=2Gni+ G2 (n22),

then we have

if) 5: = [ g, a1, onr 2y ]

i) PaQut-Pn1 Q=D+ (n21)

") = a0, 2] (021)

These well-known results can e.g. be found in [1] .

n
First we give a continued fraction for the sum 2 b; T3, where b; is different from zero for
‘ i=0
all i different from zero (b;isa constantin T ) :
Theorem 1
Let (b, ) be a sequence such thatb, # 0 foralln>0.
Define a sequence ( X,) by putting xg=[beT],x; =[be T, b‘l‘T-3] , and if

. 2 .
Xa= [ 2, ay, ..., 30 ] then setting Xy = [ a0, 2y, ..., 2201 , = b /byy T3, 200y, .0, -1 ] .

n
Then x, = Z b, T3 forallne N.
i=0

Proof

For n = 0 the theorem clearly holds .

n
If n is at least one , we prove that x, = Z b; T¥ and gong=b] T3" .
) i=0

We prove this by induction . For n = 1 the assertion holds .
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Suppose it holds for I <n < j . We then prove the assertion for n = j*l.

Xje1 = [ ag, 2y, .@2j+1,]

[ a0, ay, ...y @iy, 335, - [A2iy, .oy ar ] ( using the definition of a continued fraction )

= ~Gai-1 P2i + Gai.2 Paj.| - .
Q20 92 F Qai2 Goiy (by i), ii) and iv) of the lemma )

_ ~q2i.1 (32iPai.) + Pai-a ) + Gojz Paicy

T G201 (2iQa0 + Q2i2) F Gaiz Qi (By 1) of the lemma )
now we have oy Qaiz - Poiy Qoiy = (-1)32=1 ( by iii) of the lemma )
= P 1
q2i-1 2i(q2i.1)”
i(Qoig)? = - T3 Bi_ blTI) = T3+ -1
now a?J(Q?J-l) - bj+1 ( j ) == j+1
+1 »
= [a,ay, .., 2 ] + T3 b = 2 b; T3 ( by the induction hypothesis )
i=0

We still have to prove gaj+1.; = bj;" T30+ | Let k be at least one .

Then py and g, are polynomials in U="T-! . deg q > deg q.;, and the term with the highest
degree in -qx’is given by ac.ay.....a,;. This follows from i) .

If r is a polynomial in U that divides py and qy , then r must be a constant in U . This

immediately follows from iii). If r divides py and g , then r divides (-1)%!. So r must be a constant.

j+1
Since 2 b T3 =[ag, a, wodgiey] = 2L e have

i=0 ottt
. . [yaitlaat
G pmipan g g b’+l+§ i
j+1. i - i ~ 1
%T_,L = T = 2 IU3'+l = ER
i=0 i=0

and we conclude that qj+1., = C U¥*! = C T-3*! where C is a constant .
By the previous remark , we have that

Qi+t =C T3 =C UM = a,.a,. ... 851,

= DA 2 i P = - ( Qi 2.

( by the induction hypothesis , since ., = b’jl TV=a.a,... .ag.)
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, b i+
-( b'jl T¥ 2. (-T¥ b——:l- )= 'I;J'n which we wanted to prove .
J N

We immediately have the following

Proposition

Let xo=[ay],x1=[ag,a; Jand if x,=[ ay, aj, ..., a&n.; ], then

Xnel = ;[;yao, Ay, .eer Q201 , A2, =201, ey =A] ] .

If n is at least two , then the continued fraction of x,, consists only of the partial quotients
asn-1, a2, -am-2, ..., 4, -a; and ag.

Then the distribution of the partial quotients for x,, is as follows (n22):

partial quotient

anm-1  am2 -am-2  a;3 -am3 ... @i - ... a4 -4 Qg
number of occurrences

1 1 1 2 2 oo 202 202 202 22 ]
Proof

We give a proof by induction onn .

x2=[ 2g, 31, @, a3 ] = [ ag, a1, a3, -3; ] , S0 the quotients ay, a; , -a;, 8, occur once .

So for n equal to 2 the assertion holds . Suppose it holds for 2 < n < j .Then we prove it holds
for n = j+1 . Since xj; = [ a9, 2, ..., aj+1.1 ] = [ 29, a4, ..., B2i.1 » A2, -A2iip, ooy -2 ] , 0L S
clear that the partial quotients a)jand ay occur only once .

In the partial quotients aj, ..., a,j.; we have

partial quotient

-1 a2 “Qi2 A3 -3 ... A “Ai ... -a)
number of occurrences

1 1 1 2 2 ve. 202 242 22 242

so in the partial quotients -ay, ..., -2,j.; we have

partial quotient
-2gj-1 ag-2 -asj-2 as-3 -25-3 ... @i - ... -a,
number of occurrences

1 1 1 2 2 . 252 22 212 22
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This proves the proposition .
Using theorem 1, we immediately have the following :

Theorem 2
Let (b, ) be a sequence such that b, is different from zero for all n different from zero .
Define a sequence ( x,) by putting Xo=[by], x; =[by, b]’z-‘] and if x,= [ ay, a,, ..., ayn ]

then setting Xy, = [ a, ay, ..., 2., , - bﬁ !/ bayr 2%, -agn,y, ..., -2y ],
n

then x, = Z bz forallne N.
i=0 :

Proof

Replace b; by b; Z' in theorem 1, and put T equal to one .

Some examples

n

1)Let x, = ZXi(i.e.b; =1foralli) .Thenay=1,a, = x! and am=-xr1(n2>1)
i=0
ni

2) Let x, = 2 7—‘7 (ie. lim x,=ex).

1
i=0 n—se

Thenag=1 ,a, =x! anda2n=-nT+,l x*1(n21)

i i 2
3)Letx, = Z (-(lz)i)); (ie. lim x,=cosx).

i=0 n—

Thenag=1,2,=-2x? and ape=(-1n ZHDA+D) 00 oy

(2n)!
1 (-1)i 21
4) Letx, = w (i.e. lim x,=sinx).
i=0 ’ f=poe

Thenag=x ,a;=-6x3 and ay=(-1) (211(;?11_%;‘,‘* 2) x>l (n21)

In an analogous way as in the previous theorem , we have
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Theorem 3
Let ( b,) be a sequence such that b, is different from zero for all n different from zero ,and letq
be a natural number different from zero apd one. »
Define a sequence ( X, ) by putting Xy = [ boz ], X1 =[bpz, b‘ll z9] and if x,=[ ag, ay, ..., aynq ]

. 2,
then setting Xp.1 = [ 2o, a1, ..., .1, = D /bpyy 29"@D, -apn y, ..., =21 ] .

n
Then x,= Z b; z9 forallne N.
i=0

Proof

Replace b; by b; z¢' in theorem 1, and put T equal to one .

An Example
In [4] we find the following :

Let F, be the finite field of cardinality q . Let A = Fi[X], K= Fy(X) , K, =F((1/X))

and let Q be the completion of an algebraic closure of K, . Then A, K, K 4, Q are well-
known analogous of Z , Q, R, C respectively .

Let [i] = X4 .X ( the symbol [i] does not have the same meaning as in Xo = [ao] ) . This is just
the product of monic irreducible elérﬁents of A of degree dividing i .

Let Do=1,D;=[i] DJ ifi> 0. This is the product of monic elements of A of degree i .

. . . z" v
Let us introduce the following function : e(Y) = Y (Ye Q).
T 1
i=0
Then Thakur gives the following theorem :

Define a seduehce X, by sétting x; =[0, YID,] and if x,=[ay, ay, ..., an.; ] then setting

n i ' :
Xne1 = [ 29, a4, -, Q0 -Y*‘"‘q'z’DM,/D:, -am., ..., -2 ] , then x,= z Y-D— forallne N.
' 1

i=1

In particular, e(Y) =Y + lim x,.

n—yo0

¢

If we putb; = D7 ifi>0, and by = 0 in theorem 3 , then we find the result of Thakur .
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b;
0]

n
3. Continued fractions for sums of the type z
: i=0

In this section , b; is a constant in z, and c(i) is a natural number Our first theorem in thxs

section axves the continued fraction for the sum Z 2, (ie. c(1) 2iforalli):
i=0

Theorem 4

Let (b, ) be a sequence such that b, is different from zero for all n . A continued fraction for

the sum Z —i can be given as follows :

biz b
Put xo=[0, zby),x, =[0, g{y, b% +B—?— 1 and if X, = [ ay, a, ..., ax ] then setting
o i
2k+!
Xt = [ g, Ay, <oy Ak 5 B3k + Yicer, kal 2k - ‘Yk::l »82k42,...,82k+1] Where Yiyp = byyy EQFW ’
1
Ak, = ykﬂaolgm ifiiseven,and ay,= yk'f, k4 ifiisodd (2<i<2k),
k
b:
then x, = 2 25'; forallke N.
i=0
Proof
. n
If we have x, = [ ag, a1, ..., amn ] = g—zf , we show by induction that x, equals 2 %; ,and
? ‘ i=0
that g« equals z2" ;.O: .Forn=0, 1 this follows by an easy calculation .
1
Suppose the assertion holds for 0 <n <k . Then we show it holds for n = k+1 .
k+1 b
The first part of the proof , i.e. showing that x,; = z ;g; is analogous to the first part of
i=0

the proof of [2], theorem 1 .
' 2 -
Xkl = [ g, @y, «ey B2kep 5 B2k + Vicr s Vier! B2k = Vial »32Ks5250.0r82k+1]

2 a2
=[ a, ay, ..., ask.1,ak + Yie1, Y+t A2k = Yirl 5Yiert [Q2k1,0k 2,32k.3, ... ,32,24] ]

( using the definition of a continuéd fraction )

- Caxle B2 _ by
Now if [ ay, aj, ..., ak ] = O then [ ag, ay, ..., ask; ] = Qo and so
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(azk + Y+ 1)P2k.1+P2k.2 _ Dokt YiwiPok.y
(agk + Yis1)q2k.1+q2k.2 Q2 + Yies192k-1

[ g, ay, ..., a2kj,a0k + Yie1] =

( by i) and ii) of the lemma )

(Ve 22k - YD) (P2k + Vet Pok1)+Poxt
) -
(Yert 32k = Yo 1)(Q2k + Yies1G2k.1)+qae s

; 2 -1
Then [ ag, ay, ..., k.1,80k + Va1 Yirl 32k = Vet ] =
( by i) and ii) of the lemma )
And so
2 1,2
[ a9, ay, ..., ask.1,82k + Vi1 Vsl a2k = Vi1 »Ykrt [32k.1,32K.2,80K.3, .. ,82,31] ]

_ @k (ok. Pak + Yie1 Aok Qok.g Pok-g = Yi+1 Qok-1 Pak + Qok.a Pak + Vi1 Q2k.2 P2k -y
sk qok- G2k + Y+t A2k Qok. Qok-g = Yk+1 Qok-1 Q2K+ Qaka ok + Yi+1 G2k-2 Q2k .}

( by iv) of the lemma )

If we use the following equalities

(Pn - Po-2)An-1 = 3nPn-1G0-1 (9n - Gn-2)Pa = anPnla-1
(G - Gn2)0n = 89GnGn1 (Qn - Gn2)Gnt = 24Gny ( by i) of the lemma )

then we find that the numerator equals qak Pk + Yis1 ( by iii) of the lemma ) and the

denominator equals (qzk)2 .

So we conclude
. e k b ® )zm ® )2k+l k+1 b
= Bk L E S NI P S— 20 = E =i
Xk+1 ok + ((hk) 2 + zzkﬂ(bo)Z"“ bk"‘l (bl)z + — 72

ket

* We still have to show qk+1 = 22! %Q;ZT;
R

In the same way as in the proof of theorem 1, we find that qu+1 = C z2X*! where C is a constant .
Let ¢; be the coefficient of z in a; .

Then for C, the coefficient of z2**!in q,k+1.we have

2 2 2 2 2
C = o0 ... Olak.10k(Vics1002K) (Yice 106k 1) (Vier 1 02k 2) (Vics 1062K-3) oo (Vick101)

2k+1

and we conclude qok+t = 22! {:)lo—))—zm . This finishes the p?oof .
1

2k 2 2k+1
= (00 ... Ok 02k)? = ( coefficient of z2* in ok )? = ( ((%?-))—2; ) = %%m
1 1
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Some examples

1) If we put b; equal to one forall i, and z is an integer at least 3 , then we find

theorem 1 of [2] :
v

1 1 1
Let B(u,v) =2 = +—2-‘+Glz+...+u12v (u23,uaninteger)
i=0

Then B(u,0) = [0,u], B(u,1) = [0,u-1,u+1], and if B(u,v) = [ag, 2y, ... ya5] = Pa

Gn
then B(u,v+1) = [ag, ay, ... , gy, a+1, a5-1, a,., a,. 2 oo az, a;]

2) Putb; = Al. Thenwehavexo [0,ul,x;=[0,u- 7«. )._ +—~] andlka-[ao,a,,. saxl],
then Xee1 = [ ag, a,, ey azlg_l s &k + 'Yk+l! 'Yk+l,32k = ‘Ykﬁ'l ,azk+2,..53?.2k+l] R where Y+l = A.k-”-zhl ,

2 epoe e . ape e . g
ki = Yie1@2k4p if iis even, and ask,;= ykf, k4 ifiisodd (25i<2k),

k

i
then xk=z 3’21 forallke N.
i=0

For some some sequences (b, ) and (c(n) ), we can give a continued fraction for the sum

A

2 lei(i) as follows :
i=0

Theorem 5
Let (b,) be a sequence such that b, # 0 foralln,and bg#0,1,-1,and 1/2, and let (c(n) )
be a sequence such that ¢(0) =0, and c(n+1) - 2c(n) 2 0. ‘

—ra2 Lo L — _P2 _ Po
PUtXO"‘['bOvbo'l,bo‘l‘l]—[ao,a[,az] -q2 = a0 ,

and if X, =[ ag, a, ..., 8, ] = P—n 2—3,

then setting Xy41 = [ g, ay, ...,39, O, 28N -1, 1, a,-1, ap.q, ..., 22, 1], v

2
where d(v) = c(v+1) - 2¢(v), o, = bb

s
“ b

zev)
then x, = Z zc(l) forall vin N, and q(v) = ?- ifvz1l, qo=

1
e (bo)?
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Remarks

I)Thespecialformofbo,xo=bo=[-b(z),bio- 1,51-5+1]=[a0,a;, a,] is needed since in the

expression [ ag, aj, ..., 8, ] = gﬂ the integer n must be even .
n

2) The value of nis n = 2v+! + 2v + 2 ( this can be easily seen by induction )

1 1

3) The only partial quotients that appear are b3, Bl_o -1,—+1, By 516 -2, 0, 24V -1, and 1 ,

bo

s0 by must be different fromO0,1,-1,and 1/2.

Proof
For vequal to 0, 1 or 2 we find this result by an easy computation .

We prove the theorem by inductionon v .

\4 .
b; . zc)
Suppose we have x, = 2 o =lana,.,ax]= Bo - Pw i =7
et Z 9 9w v
i=0
v+1 b
Then we show that Xy4; = [ ag, @y, ..s@p, Oy 29M -1, 1, 2,-1, ap.q, ..., 3, 4] = Z—c'(r)
i=0

. Zc(v+l)
with Quv+) = -b__—

v+l

v+l

The first part of the proof , i.e. showing that x,,; = Z Zbg'(,—) , is analogous to the first part of

i=0
the proof of the theorem in [3] .

Now , by repeated use of i) an ii) of the lemma , we have

(0t 29M -1)py + Pa-1
(av Zd(v) -1 )Qn + qn-l

[ ag, ay, ..., 25,00, 29M -1] =

0y 24V p, + p.y

[ a, ay, ..., 2,00, 2V -1, 1] =
av zd(v) Qn+ qn-l

2,0y 29 pp + 23Pn. - P
an(xv Zd(v) qn + anqn-l - qn

[ ag, @y, «.., 8,0y Z8M -1, 1, a,-1] =

Xve1 = [ ag, ap, ..., 8p, 0y 29V -1, 1, a,-1,24.1, ..., ;]

= [ a9, A1y ooy anaav Zd(v) -l’ 11 an'l’[an-l, seey al]]

(using the definition of a continued fraction )

81
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- anqn.10y 24V py + gy o0, 24V Pn+ 24Qn-1Pn.1 - Gn-1Pa + Gn-2Pn-1
apqn-lav AN Qn+ anzav A qn + an(qn-l)2 = qn-lqn + 9n-2qn-1

( by i),ii) and iv) of the lemma)

(by i) and iii) of the lemma since n is even )

\4
1 (by)?b ze - (by)?
So x =&+———~—=Z + Saait—  since = , O, = ¥
TG gz L 20 * 0 b, i S0 o=y ==, oy = G
v+1
- 2 b
= ZC(i)
i=0
. ze(v+) . ZC(v+1) .
We still have to prove qu.1) = Qonez =m , and since b = (q)? o124 | it suffices

to prove that qan,, = (ga)2 0t 29,

We can not use the same trick here as in the proofs of theorems 1 and 4, since we do not

necessarily have dég qk;l > deg Qx ( gk as a polynomial in z )

We already know that Qo+t = (04, 290 -Dan+ Qn-15 Gos2 = 0, 29 dn+ G-

Repeated use of i) of the lemma gives
Gne3 = Quepet = 890 2%V Qo + AnQnct - Qo= 110,29 @y~ qy  ( Where we puta, =r,)
Oned = Qes2psz = (20120 +1)0 2909 Qy - 841Gz + Qoog = 1204, 299 q + G s
( where we put a,;a,+1 =1,)
An+s = Qene2y+3 = (an-2(@n125+1) + a,)00, 29 g, + 2,5, 5 - q;,;z

=130, 24" qy - Qoy (Where we put a,5(a, 12,+1) +a, =13)
etc...

Continuing this way , we find

ns2)+k = MOy 2900 @, + (-1)K qn-(l;;l) s Q(n+2)+k+1= T Oy id(v) Qq + (-1)k¢l Qn-(k+2)

Then Quizkez = @nkeTkr1 )0 299 g + (1)K 2 g0 11Qngea + (1K Qo
= ragOly 290 g + (-1)k#2 Gn-(k+3)

and finally we have 920= Q(as2)n-2 = To-20 29 qy + Qg 1)
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Q20+1 = Gne2ytn-1 = In.10 24 G - Qo ( We remark that n is even )
and SO Q2n42 = Q(ns2)+n = TnlOly 28 qy - axq;r*‘ Q) = 1,0, 24V g
So if we want to show that Qo2 = (qn)? Oy 24 , we must show that r, equals q,.
For the sequence (r,) we have rp=1,r= 8y, Iy = g2+ l=ayn+r,
I3 = a5.2(8p.184+1) + @, = ay00 + 1y, and continuing this way we find ry, .-‘=Aa,,_(k+1)rk+[ +Iy.
From this it follows that [ 1, a,, ..., 3;] = l,kcl, wees Cal =:%n (weputa = §n+,.i)
with to=Co» To=1, ti=cc+1l, r=c¢,
th=Calpi+ 2, I =Cplp+ 02 (n22),

Now n can be written as n = 2k+2 ( see remark 2 following theorem 5 ) and so

[ ag, &y, ... @n] = [ @, Ay, oy A, 0y 29D -1, 1, 2 -1 24, ..y @1] = gﬁ

and then [ 1, alr ceey ak,av_‘zd(v’l) "l’ 11 ak-l’ak-l’ esey al] = [ 1) al’ ceey an] = qﬁ
n

where the q; (0 <i<n) stay the same since q; does not depend on a,.
So [ 1, a ., agpag-1,1,00,,29 D -Lag a g, vy 3] = [ 1, 8, ooy 2] = t;l::
and we conclude ; =1; for0<i<k-1.
We have to show q, =1, . Now ( by repeated use of i) of the lemma )
G = Q1+ Qe2, k= Qk - Qx5
Qirl = Oy Z8VD Q- Qe+ Gt s Tkt =Gk s
Quez = 01290 Gy + Qi Tiwz = 0y 28D g - Qe 3
Qie3 = Qrazyel = Ova1Z8D gy + aQeey - Qi = a0y 12900 Gy - G
= R;0ty.120-D qy - qr2 , Where we put ay=R,,
T3 = Tyt = A0y Zd D g+ g2 = R;vavilld("‘” Qe+ dk-2 ;

Qred = Qa2 = (@ 1)004.1 290D g - a1 Qi + Qe

= (ak-1ax+1) 0y Z40D g + Qi3

= Rp0ty.1z4-) qy + qx.3 where we put (ar. a+1) =Ry,
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Teed = Laa2p2 = (Qer@eb 104 z90D g+ a1qy; - Qo

= (B 12+ 1) 001 29D gy - g3 = Ryl 128D g - gpe 3

If we continue this way , we find Qks2)+i = Ri0ty. 120D g + (-1)i Qk-+1) » and

Tke2pi = ROy 129D g - (-1)! Queery (0Si<k,Ry=1), and so we have

Q2% = es2psie2 = ROy 129D Qi Qo) » Qaknt = oyt = Rty 429D G- ey (we
remark that k is even ) and ’thus Qoks2 = Qres2ysk = ROy 120D gy - 2,q0 + qy = Ryt 1 240-D g,
and = fgi2pk2 = ReaOly 128D G- Query s Bagar = Tapepes = Ry g0ty -12"(‘;‘” Qx+ qrx and

thus Togr = raapk = Rty 12900 qu + 21qo - q; = Ryt 240D gy ,

So we conclude that qay, =q, equals ry,, =r, . This finishes the proof .

The case b; equal to one , where z is an integer at least two , is studied by Shallit ( [3]):
Let ( c(k) ) be a sequence of positive integers such that c(v+1) > 2¢(v) for all v = v', where v'
is a non-negative integer . Let d(v) = c(v+1) - 2¢(v) . Define S(u,v) as follows :

\4
S(u,v) = 2 u<® , where u is an ixiteger ,u22. Then Shallit proved the following theorem :
i=0
Suppose v > v' . If S(u,v) = [ 2y, ay; ..., a,] and n is even , then

S(u,v+1) = [ ag, ay, ..., 2y, wd-1,1, a,-1, a,;, ap.2, .. , A2, 34].
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