J. Araujo
Wim H. Schikhof

The Weierstrass-Stone approximation theorem for p-adic C^n-functions

Annales mathématiques Blaise Pascal, tome 1, nº 1 (1994), p. 61-74

<http://www.numdam.org/item?id=AMBP_1994__1_1_61_0>
Abstract. Let K be a non-Archimedean valued field. Then, on compact subsets of K, every K-valued C^n-function can be approximated in the C^n-topology by polynomial functions (Theorem 1.4). This result is extended to a Weierstrass-Stone type theorem (Theorem 2.10).

INTRODUCTION

The non-archimedean version of the classical Weierstrass Approximation Theorem - the case $n = 0$ of the Abstract - is well known and named after Kaplansky ([1], 5.28). To investigate the case $n = 1$ first let us return to the Archimedean case and consider a real-valued C^1-function f on the unit interval. To find a polynomial function P such that both $|f - P|$ and $|f' - P'|$ are smaller or equal than a prescribed $\varepsilon > 0$ one simply can apply the standard Weierstrass Theorem to f' obtaining a polynomial function Q for which $|f' - Q| \leq \varepsilon$. Then $x \mapsto P(x) := f(0) + \int_0^x Q(t)dt$ solves the problem.

Now let $f : X \to K$ be a C^1-function where K is a non-archimedean valued field and $X \subseteq K$ is compact.

Lacking an indefinite integral the above method no longer works. There do exist continuous linear antiderivations ([3], §64) but they do not map polynomials into polynomials ([3], Ex. 30.C). A further complicating factor is that the natural norm for C^1-functions on X is given by

$$f \mapsto \max\{|f(x)| : x \in X\} \vee \max\{|f(x) - f(y)| : x, y \in X, x \neq y\}$$

rather than the more classical formula

$$f \mapsto \max\{|f(x)| : x \in X\} \vee \max\{|f'(x)| : x \in X\}.$$

(Observe that in the real case both formulas lead to the same norm thanks to the Mean Value Theorem, see [3], §§26,27 for further discussions.)
Thus, to obtain non-archimedean \(C^n \)-Weierstrass-Stone Theorems for \(n \in \{1, 2, \ldots \} \) our methods will necessarily deviate from the 'classical' ones.

0. PRELIMINARIES

1. Throughout \(K \) is a non-archimedean complete valued field whose valuation \(| \cdot | \) is not trivial. For \(a \in K, r > 0 \) we write \(B(a, r) := \{ x \in K : |x-a| \leq r \} \), the 'closed' ball about \(a \) with radius \(r \). 'Clopen' is an abbreviation for 'closed and open'. The function \(x \mapsto x (x \in K) \) is denoted \(\mathcal{X} \). The \(K \)-valued characteristic function of a subset \(Y \) of \(K \) is written \(\xi_Y \). For a set \(Z \), a function \(f : Z \to K \) and a set \(W \subset Z \) we define \(\| f \|_W := \sup \{ |f(x)| : x \in W \} \) (allowing the value \(\infty \)). The cardinality of a set \(\Gamma \) is \(\#\Gamma \).

\[N_0 := \{0, 1, 2, \ldots\}, N := \{1, 2, 3, \ldots\}. \]

We now recall some facts from [2], [3] on \(C^n \)-theory.

2. For a set \(Y' \subset K, n \in N \) we set \(\nabla^n Y := \{(y_1, y_2, \ldots, y_n) \in Y^n : i \neq j \Rightarrow y_i \neq y_j\} \).

For \(f : Y \to K, n \in N_0 \) we define its \(n \)th difference quotient \(\Phi_n f : \nabla^{n+1} Y \to K \) inductively by \(\Phi_0 f := f \) and the formula

\[
\Phi_n f(y_1, \ldots, y_{n+1}) = \frac{\Phi_{n-1} f(y_1, y_3, \ldots, y_{n+1}) - \Phi_{n-1} f(y_2, y_3, \ldots, y_{n+1})}{y_1 - y_2}
\]

\(f \) is called a \(C^n \)-function if \(\Phi_n f \) can be extended to a continuous function on \(Y^{n+1} \).

The set of all \(C^n \)-functions \(Y \to K \) is denoted \(C^n(Y \to K) \). The function \(f : Y \to K \) is a \(C^\infty \)-function if it is in \(C^\infty(Y \to K) := \bigcap_{n=0}^{\infty} C^n(Y \to K) \). The space \(C^0(Y \to K) \), consisting of all continuous functions \(Y \to K \) is sometimes written as \(C(Y \to K) \).

FROM NOW ON IN THIS PAPER \(X \) IS A NONEMPTY COMPACT SUBSET OF \(K \) WITHOUT ISOLATED POINTS.

3. Since \(X \) has no isolated points we have for an \(f \in C^n(X \to K) \) that the continuous extension of \(\Phi_n f \) to \(X^{n+1} \) is unique; we denote this extension by \(\overline{\Phi}_n f \). Also we write

\[
D_n f(a) := \overline{\Phi}_n f(a, a, \ldots, a) \quad (a \in X)
\]

The following facts are proved in [2] and [3].

Proposition 0.3.

(i) For each \(n \in N_0 \) the space \(C^n(X \to K) \) is a \(K \)-algebra under pointwise operations.

(ii) \(C^0(X \to K) \supset C^1(X \to K) \supset \ldots \)
(iii) If $f \in C^n(X \to K)$ then f is n times differentiable and $j!D_jf = f^{(j)}$ for each $j \in \{0,1,\ldots,n\}$. More generally, if $i,j \in \{0,1,\ldots,n\}$, $i+j \leq n$ then $\binom{i+j}{i}D_iD_jf = D_{i+j}f$.

(iv) If $f \in C^n(X \to K)$ then for $x,y \in X$ we have Taylor's formula

$$f(x) = f(y) + (x-y)D_if(y) + \cdots + (x-y)^{n-1}D_{n-1}f(y) + (x-y)^n \rho_1f(x,y),$$

where $\rho_1f(x,y) = \overline{f}f(x,y,y,\ldots,y)$.

4. Since X is compact the difference quotients $\Phi_i f$ ($0 \leq i \leq n$) are bounded if $f \in C^n(X \to K)$. We set

$$\|f\|_{n,X} := \max\{\|\Phi_i f\|_{\nu+i+1,X} : 0 \leq i \leq n\}.$$

Then $\|f\|_{0,X} = \|f\|_X$. We quote the following from [2] and [3]. Recall that a function $f : X \to K$ is a local polynomial if for every $a \in X$ there is a neighbourhood U of a such that $f \mid X \cap U$ is a polynomial function.

Proposition 0.4. Let $n \in \mathbb{N}_0$.

(i) The function $\|\cdot\|_{n,X}$ is a norm on $C^n(X \to K)$ making it into a K-Banach algebra.

(ii) The local polynomials form a dense subset of $C^n(X \to K)$.

(iii) The function

$$f \mapsto \|f\|_{n,X} := \max_{0 \leq i \leq n-1} \|D_i f\|_X \vee \|\rho_1 f\|_X$$

(see Proposition 0.3 (iv)) also is a norm on $C^n(X \to K)$. We have

$$\|f\|_{n,X} = \max\{\|D_i f\|_{n-i,X} : 0 \leq i \leq n\} \quad (f \in C^n(X \to K)).$$

Remarks

1. Proposition 0.4 (ii) will also follow from Proposition 2.8.

2. In general $\|\cdot\|_{n,X}$ is not equivalent to $\|\cdot\|_{n,X}$ for $n \geq 3$ (see [3], Example 83.2).
1 THE WEIERSTRASS THEOREM FOR C^n-FUNCTIONS

The following product rule for difference quotients is easily proved by induction with respect to j. Let $f, g : X \to K$, let $j \in \mathbb{N}_0$. Then for all $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1} X$ we have

$$\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^{j} \Phi_k f(x_1, \ldots, x_{k+1}) \Phi_{j-k} g(x_{k+1}, \ldots, x_{j+1}).$$

Or, less precise,

$$\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^{j} \Phi_k f(x_k) \Phi_{j-k} g(u_{j-k})$$

for certain $z_k \in \nabla^{k+1} X$, $u_{j-k} \in \nabla^{j-k+1} X$.

In the sequel we need an extension of this formula to finite products of functions. The proof is straightforward by induction with respect to N.

Lemma 1.1. (Product Rule) Let $h_1, \ldots, h_N : X \to K$, let $j \in \mathbb{N}_0$. Then for all $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1} X$ we have

$$\Phi_j(\prod_{s=1}^{N} h_s)(x_1, \ldots, x_{j+1}) = \sum_{\sigma} \prod_{s=1}^{N} \Phi_{j_s} h_s(z_{\sigma,s})$$

where the sum is taken over all $\sigma := (j_1, \ldots, j_N) \in \mathbb{N}_0^N$ for which $j_1 + \cdots + j_N = j$ and where $z_{\sigma,s} \in \nabla^{j_s+1} X$ for each $s \in \{1, \ldots, N\}$. (In fact, $z_{\sigma,1} = (x_1, \ldots, x_{j_1+1})$, $z_{\sigma,2} = (x_{j_1+1}, \ldots, x_{j_1+j_2+1}), \ldots, z_{\sigma,N} = (x_{j_1+\cdots+j_{N-1}+1}, \ldots, x_{j+1})$.)

The following key lemma grew out of [1], 5.28.

Lemma 1.2. Let $0 < \delta < 1$, $0 < \varepsilon < 1$, let $B = B_0 \cup B_1 \cup \cdots \cup B_m$ where B_0, \ldots, B_m are pairwise disjoint 'closed' balls in K of radius δ. Then, for each $n \in \{0, 1, \ldots\}$ there exists a polynomial function $P : K \to K$ such that $\|P - \xi_{B_0}\|_{n,B} \leq \varepsilon$.

Proof. We may assume $0 \in B_0$. Choose $c_1 \in B_1, \ldots, c_m \in B_m$; we may assume that $|c_1| \leq |c_2| \leq \cdots \leq |c_m|$. Then $\delta < |c_1|$. We shall prove the following statement by induction with respect to n.

Let $k \in \mathbb{N}$ be such that $(\delta/|c_1|)^k \leq \varepsilon \delta^n$, $k > n$. Let $t_1, t_2, \ldots, t_m \in \mathbb{N}$ be such that for all $\ell \in \{1, \ldots, m\}$

$$\left| \frac{c_\ell}{c_1} \right|^{kt_1} \left| \frac{c_\ell}{c_2} \right|^{kt_2} \cdots \left| \frac{c_\ell}{c_{\ell-1}} \right|^{kt_{\ell-1}} \left(\frac{\delta}{|c_1|} \right)^{t_\ell} \leq \varepsilon \delta^n$$

(1)
It is easily seen that such \(k, t_1, \ldots, t_m \) exist since \(\delta / |c_1| < 1 \). Then the formula
\[
P(x) = \prod_{i=1}^{m} \left(1 - \left(\frac{x}{c_i}\right)^{k_i}\right)^{t_i}
\]
defines a polynomial function \(P : K \to K \) for which
\[
\|P - \xi_{B_0}\|_{n, B} \leq \varepsilon.
\]
The case \(n = 0 \) is proved in [1], 5.28. To prove the step \(n - 1 \to n \) we first observe that from the induction hypothesis (with \(\varepsilon \) replaced by \(\varepsilon \delta \)) it follows that
\[
\|P - \xi_{B_0}\|_{n-1, B} \leq \varepsilon \delta
\]
So it remains to be shown that
\[
|\Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{n+1})| \leq \varepsilon
\]
for all \((x_1, \ldots, x_{n+1}) \in \mathcal{V}^{n+1} B_t \). If \(|x_i - x_j| > \delta \) for some \(i, j \in \{1, \ldots, n+1\} \) we have, using (2),
\[
|\Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{n+1})| = |x_i - x_j|^{-1} |\Phi_n-1(P - \xi_{B_0})(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n+1}) - \Phi_n-1(P - \xi_{B_0})(x_1, \ldots, x_i, x_{i+1}, \ldots, x_{n+1})| \leq \delta^{-1} \varepsilon \delta = \varepsilon.
\]
So this reduces the proof of (3) to the case where \(|x_i - x_j| \leq \delta \) for all \(i, j \in \{1, \ldots, n+1\} \); in other words we may assume that \(x_1, \ldots, x_{n+1} \) are all in the same \(B_\ell \) for some \(\ell \in \{0, 1, \ldots, m\} \). But then, after observing that \(n \geq 1 \), we have \(\Phi_n \xi_{B_0}(x_1, \ldots, x_{n+1}) = 0 \) so it suffices to prove the following.

If \(\ell \in \{0, 1, \ldots, m\} \) and \(x_1, \ldots, x_{n+1} \in B_\ell \) are pairwise distinct then
\[
|\Phi_n P(x_1, \ldots, x_{n+1})| \leq \varepsilon
\]
To prove it we introduce, with \(\ell \in \{1, \ldots, m\} \) fixed, the constants \(M_i \) (\(i \in \{1, \ldots, n\} \)) by
\[
M_i := \begin{cases}
1 & \text{if } i > \ell \\
\delta / |c_1| & \text{if } i = \ell \\
|c_i / c_1|^k & \text{if } i < \ell
\end{cases}
\]
and use the following three steps.

Step 1. For each \(j \in \{0, 1, \ldots, n\}, i \in \{1, \ldots, n\} \) we have
\[
\|\Phi_j(1 - \left(\frac{x}{c_i}\right)^k)\|_{\mathcal{V}^{j+1} B_\ell} \leq \begin{cases}
1 & \text{if } \ell = 0, j = 0 \\
\delta^{-j} (\frac{\delta}{|c_1|})^k & \text{if } \ell = 0, j > 0 \\
\delta^{-j} M_i & \text{if } \ell > 0.
\end{cases}
\]
Proof.

a. The case \(j = 0 \). Then for \(x \in B_{\ell} \) we have
- if \(i > \ell \) then \(|1 - \left(\frac{x}{c_{i}} \right)^{k}| = 1 \)
- if \(i = \ell \) then \(|1 - \left(\frac{x}{c_{i}} \right)^{k}| = \frac{|c_{i} - x|^{k}}{|c_{i}|^{k}} \leq \frac{\delta}{|c_{i}|} \leq \delta \)
- if \(i < \ell \) then \(|1 - \left(\frac{x}{c_{i}} \right)^{k}| = \left| \frac{x}{c_{i}} \right|^{k} = \frac{\delta}{|c_{i}|} \)
and the statement follows.

b. The case \(j > 0 \). Then \(\Phi_{j}(1) = 0 \) so that

\[
\Phi_{j}(1 - \left(\frac{X}{c_{i}} \right)^{k}) = \frac{1}{c_{i}^{k}} \Phi_{j}(X^{k})
\]

Let \((x_{1}, \ldots, x_{j+1}) \in \nabla^{j+1} B_{\ell} \). By the Product Rule 1.1, \(\Phi_{j}(X^{k})(x_{1}, \ldots, x_{j+1}) \) is a sum of terms of the form \(\prod_{s=1}^{k} (\Phi_{j,s}(X))(x_{s}) \). Such a term is 0 if one of the \(j_{s} \) is \(> 1 \), so we only have to deal with \(j_{s} = 0 \) (then \(\Phi_{j,s}(X) = X \)) or \(j_{s} = 1 \) (then \(\Phi_{j,s}(X) = 1 \)). The latter case occurs \(j \) times (as \(\sum_{s=1}^{k} j_{s} = j \)) and it follows that

\[
\prod_{s=1}^{k} (\Phi_{j,s}(X))(x_{s}) \text{ is a product of } k-j \text{ distinct terms taken from } \{x_{1}, \ldots, x_{j+1}\} \text{ (observe that, indeed, } j < k \text{ since } j \leq n < k \), so its absolute value is } \leq |c_{i}|^{k-j}.
\]
It follows that \(\|\Phi_{j}(1 - (\frac{X}{c_{i}})^{k})\|_{\nabla^{j+1} B_{\ell}} \leq |c_{i}|^{k-j}/|c_{i}|^{k} \) from which we conclude
- if \(\ell = 0 \) : \(|c_{i}|^{k-j}/|c_{i}|^{k} \leq \delta^{k-j}/|c_{i}|^{k} = \delta^{-j}(\delta/|c_{i}|)^{k} \),
- if \(i > \ell > 0 \) : \(|c_{i}|^{k-j}/|c_{i}|^{k} \leq |c_{i}^{-j}| < \delta^{-j} = \delta^{-j}M_{i} \)
- if \(i = \ell > 0 \) : \(|c_{i}|^{k-j}/|c_{i}|^{k} \leq |c_{i}^{-j}| \leq |c_{i}^{-j}| = \delta^{-j}(\frac{\delta}{|c_{i}|})^{j} \leq \delta^{-j}M_{i} \)
- if \(i < \ell \) : \(|c_{i}|^{k-j}/|c_{i}|^{k} \leq |c_{i}^{-j}|^{k} \leq \delta^{-j}M_{i} \)
and step 1 is proved.

Step 2. For each \(j \in \{0,1,\ldots,n\} \), \(i \in \{1,\ldots,n\} \) we have

\[
\|\Phi_{j}(1 - (\frac{X}{c_{i}})^{k})^{t_{i}}\|_{\nabla^{j+1} B_{\ell}} \leq \begin{cases}
1 & \text{if } \ell = 0, j = 0 \\
\delta^{-i}(\frac{\delta}{|c_{i}|})^{k} & \text{if } \ell = 0, j > 0 \\
\delta^{-j}M_{i}^{t_{i}} & \text{if } \ell > 0
\end{cases}
\]

Proof. The case \(j = 0 \) follows directly from Step 1, part a, so assume \(j > 0 \). By the Product Rule 1.1 applied to \(h_{s} = 1 - (\frac{X}{c_{i}})^{k} \) for all \(s \in \{1,\ldots,t_{i}\} \) we have for \((x_{1}, \ldots, x_{j+1}) \in \nabla^{j+1} B_{\ell} \) that \(\Phi_{j}(1 - (\frac{X}{c_{i}})^{k})^{t_{i}}(x_{1}, \ldots, x_{j+1}) \) is a sum of terms of the form

\[(5) \quad \prod_{s=1}^{t_{i}} \Phi_{j,s}(1 - (\frac{X}{c_{i}})^{k})(x_{s}) \]
where \(j_1 + \cdots + j_s = j \). If \(\ell = 0 \) it follows from Step 1 that the absolute value of (5) is
\[
\leq \prod \delta^{-j_i}(\frac{\delta}{|c_i|})^k
\]
where the product is taken over all \(s \) in the nonempty set \(\Gamma := \{ s \in \{1, \ldots, t_i\} : j_s > 0 \} \), so the product is
\[
\leq \delta^{-j}(\frac{\delta}{|c_i|})^k
\]
If \(\ell > 0 \) it follows from Step 1 that the absolute value of (5) is
\[
\leq \prod_{i=1}^{t_i} \delta^{-j_i} M_i = \delta^{-j} M_i^{t_i}.
\]
The statement of Step 2 follows.

\textbf{Step 3.} Proof of (4). Again, the Product Rule 1.1, now applied to \(h_i = (1 - (\frac{x_i}{c_i})^k)_{t_i} \) for \(i \in \{1, \ldots, m\} \) tells us that for \((x_1, \ldots, x_{n+1}) \in \nabla^{n+1} B_\ell \) the expression
\[
\Phi_n P(x_1, \ldots, x_{n+1})
\]
is a sum of terms of the form
\[
(6) \quad \prod_{i=1}^{m} \Phi_n \left(1 - \left(\frac{x_i}{c_i}\right)^k\right)^{t_i}(z_s)
\]
where \(n_1 + \cdots + n_m = n \). If \(\ell = 0 \) we have by Step 2 that the absolute value of (6) is
\[
\leq \prod \delta^{-n_i}(\frac{\delta}{|c_i|})^k
\]
where the product is taken over \(i \) in the nonempty set \(\Gamma := \{ i : n_i \neq 0 \} \), so the product is
\[
\leq \delta^{-n}(\frac{\delta}{|c_i|})^{k+1} \leq \delta^{-n}(\frac{\delta}{|c_i|})^k \leq \delta^{-n} \cdot \varepsilon \delta^n = \varepsilon,
\]
where we used the assumption \(\delta/|c_i|^k \leq \varepsilon \delta^n \). We see that \(|\Phi_n P(x_1, \ldots, x_{n+1})| \leq \varepsilon \) if \((x_1, \ldots, x_n) \in B_0\). Now let \(\ell > 0 \). By Step 2 we have that the absolute value of (6) is
\[
\leq \prod \delta^{-n_i} M_i^{t_i} = \delta^{-n} |\frac{x_1}{c_1}|^{k_1} \cdots |\frac{x_m}{c_m}|^{k_m} (\frac{\delta}{|c_i|})^{t_i}
\]
which is \(\leq \delta^{-n} \varepsilon \delta^n \) by (1). This proves (4) and the Lemma.

\textbf{Corollary 1.3.} For every locally constant \(f : X \to K \), for every \(n \in \mathbb{N}_0 \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(\|f - P\|_{n,X} \leq \varepsilon \).

\textbf{Proof.} There exist a \(\delta \in (0,1) \), pairwise disjoint 'closed' balls \(B_1, \ldots, B_m \) of radius \(\delta \) covering \(X \) and \(\lambda_1, \ldots, \lambda_m \in K \) such that
\[
f(x) = \sum_{i=1}^{m} \lambda_i \xi_{B_i}(x) \quad (x \in X)
\]
By Lemma 1.2 there exist polynomials \(P_1, \ldots, P_m \) such that \(\|\xi_{B_i} - P_i\|_{n,X} \leq \varepsilon (|\lambda_i| + 1)^{-1} \) for each \(i \in \{1, \ldots, m\} \). Then \(P := \sum \lambda_i P_i \) is a polynomial function and \(\|f - P\|_{n,X} \leq \max_i \|\lambda_i (\xi_{B_i} - P_i)\|_{n,X} \leq \max_i |\lambda_i| (|\lambda_i| + 1)^{-1} \leq \varepsilon \).

\textbf{Theorem 1.4.} (\(C^n \)-\text{Weierstrass Theorem}) For each \(n \in \mathbb{N}_0 \), \(f \in C^n(X \to K) \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(\|f - P\|_{n,X} \leq \varepsilon \).

\textbf{Proof.} There is by Proposition 0.4 a local polynomial \(g : K \to K \) with \(\|f - g\|_{n,X} \leq \varepsilon \). This \(g \) has the form \(g = \sum_{i=1}^{m} Q_i h_i \) where \(Q_1, \ldots, Q_m \) are polynomials and \(h_1, \ldots, h_m \)

\[
\text{where } j_1 + \cdots + j_s = j. \text{ If } \ell = 0 \text{ it follows from Step 1 that the absolute value of (5) is}
\leq \prod \delta^{-j_i}(\frac{\delta}{|c_i|})^k \text{ where the product is taken over all } s \text{ in the nonempty set } \Gamma := \{ s \in \{1, \ldots, t_i\} : j_s > 0 \}, \text{ so the product is}
\leq \delta^{-j}(\frac{\delta}{|c_i|})^k \leq \delta^{-j}(\frac{\delta}{|c_i|})^k. \text{ If } \ell > 0 \text{ it}
follows from Step 1 that the absolute value of (5) is}
\leq \prod_{i=1}^{t_i} \delta^{-j_i} M_i = \delta^{-j} M_i^{t_i}. \text{ The statement of Step 2 follows.}

\textbf{Step 3.} Proof of (4). Again, the Product Rule 1.1, now applied to \(h_i = (1 - (\frac{x_i}{c_i})^k)_{t_i} \) for \(i \in \{1, \ldots, m\} \) tells us that for \((x_1, \ldots, x_{n+1}) \in \nabla^{n+1} B_\ell \) the expression
\[
\Phi_n P(x_1, \ldots, x_{n+1})
\]
is a sum of terms of the form
\[
(6) \quad \prod_{i=1}^{m} \Phi_n \left(1 - \left(\frac{x_i}{c_i}\right)^k\right)^{t_i}(z_s)
\]
where \(n_1 + \cdots + n_m = n \). If \(\ell = 0 \) we have by Step 2 that the absolute value of (6) is
\[
\leq \prod \delta^{-n_i}(\frac{\delta}{|c_i|})^k
\]
where the product is taken over \(i \) in the nonempty set \(\Gamma := \{ i : n_i \neq 0 \} \), so the product is
\[
\leq \delta^{-n}(\frac{\delta}{|c_i|})^{k+1} \leq \delta^{-n}(\frac{\delta}{|c_i|})^k \leq \delta^{-n} \cdot \varepsilon \delta^n = \varepsilon,
\]
where we used the assumption \(\delta/|c_i|^k \leq \varepsilon \delta^n \). We see that \(|\Phi_n P(x_1, \ldots, x_{n+1})| \leq \varepsilon \) if \((x_1, \ldots, x_n) \in B_0\). Now let \(\ell > 0 \). By Step 2 we have that the absolute value of (6) is
\[
\leq \prod \delta^{-n_i} M_i^{t_i} = \delta^{-n} |\frac{x_1}{c_1}|^{k_1} \cdots |\frac{x_m}{c_m}|^{k_m} (\frac{\delta}{|c_i|})^{t_i}
\]
which is \(\leq \delta^{-n} \varepsilon \delta^n \) by (1). This proves (4) and the Lemma.

\textbf{Corollary 1.3.} For every locally constant \(f : X \to K \), for every \(n \in \mathbb{N}_0 \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(\|f - P\|_{n,X} \leq \varepsilon \).

\textbf{Proof.} There exist a \(\delta \in (0,1) \), pairwise disjoint 'closed' balls \(B_1, \ldots, B_m \) of radius \(\delta \) covering \(X \) and \(\lambda_1, \ldots, \lambda_m \in K \) such that
\[
f(x) = \sum_{i=1}^{m} \lambda_i \xi_{B_i}(x) \quad (x \in X)
\]
By Lemma 1.2 there exist polynomials \(P_1, \ldots, P_m \) such that \(\|\xi_{B_i} - P_i\|_{n,X} \leq \varepsilon (|\lambda_i| + 1)^{-1} \) for each \(i \in \{1, \ldots, m\} \). Then \(P := \sum \lambda_i P_i \) is a polynomial function and \(\|f - P\|_{n,X} \leq \max_i \|\lambda_i (\xi_{B_i} - P_i)\|_{n,X} \leq \max_i |\lambda_i| (|\lambda_i| + 1)^{-1} \leq \varepsilon \).

\textbf{Theorem 1.4.} (\(C^n \)-Weierstrass Theorem) For each \(n \in \mathbb{N}_0 \), \(f \in C^n(X \to K) \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(\|f - P\|_{n,X} \leq \varepsilon \).

\textbf{Proof.} There is by Proposition 0.4 a local polynomial \(g : K \to K \) with \(\|f - g\|_{n,X} \leq \varepsilon \). This \(g \) has the form \(g = \sum_{i=1}^{m} Q_i h_i \) where \(Q_1, \ldots, Q_m \) are polynomials and \(h_1, \ldots, h_m \)
are locally constant. By Corollary 1.3 we can find polynomials P_1, \ldots, P_m for which $\|h_i - P_i\|_{n,X} \leq \varepsilon(\|Q_i\|_{n,X} + 1)^{-1}$ for each i. Then $P := \sum_{i=1}^{m} Q_i P_i$ is a polynomial and $\|g - P\|_{n,X} \leq \varepsilon$. It follows that $\|f - P\|_{n,X} \leq \max(\|f - g\|_{n,X}, \|g - P\|_{n,X}) \leq \varepsilon$.

Remarks.

1. In the case where $X = \mathbb{Z}_p$, $K \supset \mathbb{Q}_p$ the above Theorem 1.4 is not new: The Mahler base e_0, e_1, \ldots of $C(\mathbb{Z}_p \to K)$ defined by $e_m(x) = \left(\frac{x}{m}\right)$ is proved in [3], §54 to be a Schauder base for $C^n(\mathbb{Z}_p \to K)$, for each n.

2. It follows directly from Theorem 1.4 that the polynomial functions $X \to K$ form a dense subset of $C^\infty(X \to K)$.

2. A WEIERSTRASS-STONE THEOREM FOR C^n-FUNCTIONS

For this Theorem (2.10) we will need the continuity of $g \mapsto g \circ f$ in the C^n-topologies (Proposition 2.5). To prove it we need some technical lemmas that are in the spirit of [3], §77.

Let $n \in \mathbb{N}$. For a function $h : \nabla^n X \to K$ we define $\Delta h : \nabla^{n+1} X \to K$ by the formula

$$\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, x_4, \ldots, x_{n+1}) - h(x_2, x_3, \ldots, x_{n+1})}{x_1 - x_2}$$

We have the following product rule.

Lemma 2.1. (Product Rule). Let $n \in \mathbb{N}$, let $h, t : \nabla^n X \to K$. Then for all $(x_1, x_2, \ldots, x_{n+1}) \in \nabla^{n+1} X$ we have $\Delta(ht)(x_1, x_2, \ldots, x_{n+1}) = h(x_2, x_3, \ldots x_{n+1}) \Delta t(x_1, x_2, \ldots, x_{n+1}) + t(x_1, x_3, \ldots, x_{n+1}) \Delta h(x_1, x_2, \ldots, x_{n+1})$.

Proof. Straightforward.

Lemma 2.2. Let $f : X \to K$, $n \in \mathbb{N}_0$. Let S_n be the set of the following functions defined on $\nabla^{n+1} X$.

$$\begin{align*}
(x_1, \ldots, x_{n+1}) &\mapsto \Phi_1 f(x_{i_1}, x_{i_2}) & (1 \leq i_1 < i_2 \leq n + 1) \\
(x_1, \ldots, x_{n+1}) &\mapsto \Phi_2 f(x_{i_1}, x_{i_2}, x_{i_3}) & (1 \leq i_1 < i_2 < i_3 \leq n + 1) \\
& \vdots \\
(x_1, \ldots, x_{n+1}) &\mapsto \Phi_n f(x_1, \ldots, x_{n+1}).
\end{align*}$$

For $k \in \mathbb{N}$, let R^n_k be the additive group generated by $S_n, S_n^2, \ldots, S_n^k$ where, for each $j \in \{1, \ldots, k\}$, S_n^j is the product set $\{h_1 h_2 \ldots h_j : h_i \in S_n \text{ for each } i \in \{1, \ldots, j\}\}$. Then, for all $k, n \in \mathbb{N}$, $\Delta R^n_k \subseteq R^n_{k+1}$.

Proof. We use induction with respect to \(k \). For the case \(k = 1 \) it suffices to prove \(h \in S_n \Rightarrow \Delta h \in R^1_{n+1} \). Then \(h \) has the form

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_j f(x_{i_1}, x_{i_2}, \ldots, x_{i_{j+1}})
\]

for some \(j \in \{2, 3, \ldots, n+1\} \) and so

\[
\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, \ldots, x_{n+2}) - h(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}
\]

vanishes if \(i_1 > 1 \) (and then \(\Delta h \) is the null function), while if \(i_1 = 1 \) it equals

\[
\frac{\Phi_j f(x_1, x_{i_2}, \ldots, x_{i_{j+1}+1}) - \Phi_j f(x_2, x_{i_2}, \ldots, x_{i_{j+1}+1})}{x_1 - x_2}
\]

and it follows that \(\Delta h \in S_{n+1} \subset R^1_{n+1} \). For the induction step assume \(\Delta R^{k-1}_{n} \subset R^{k-1}_{n+1} \); it suffices to prove that \(\Delta S^k_n \subset R^k_{n+1} \). So let \(h \in S^k_n \) and write \(h = h_1 H \), where \(h_1 \in S_n, H \in S^{k-1}_n \). By the Product Rule 2.1 we have

\[
\Delta h(x_1, \ldots, x_{n+2}) = h_1(x_2, x_3, \ldots, x_{n+2}) \Delta H(x_1, x_2, \ldots, x_{n+2}) + H(x_1, x_3, \ldots, x_{n+2}) \Delta h_1(x_1, x_2, \ldots, x_{n+2}).
\]

The fact that \(h_1 \in S_n \) makes

\[
(x_1, x_2, \ldots, x_{n+2}) \mapsto h_1(x_1, x_3, \ldots, x_{n+2})
\]

into an element of \(S_{n+1} \). Similarly, since \(H \in S^{k-1}_n \), the function

\[
(x_1, x_2, \ldots, x_{n+2}) \mapsto H(x_2, x_3, \ldots, x_{n+2})
\]

is in \(S^{k-1}_{n+1} \). By our first induction step, \(\Delta h_1 \in R^1_{n+1} \) and by the induction hypothesis \(\Delta H \in R^{k-1}_{n+1} \). Hence,

\[
\Delta h \in S_{n+1} R^1_{n+1} + S^{k-1}_{n+1} R^1_{n+1} \\
\subset R^1_{n+1} R^1_{n+1} + R^{k-1}_{n+1} R^1_{n+1} \subset R^k_{n+1}.
\]

Lemma 2.3. Let \(f, n, S_n, k, R^k_n \) be as in the previous lemma. Let \(f(X) \subset Y \subset K \) where \(Y \) has no isolated points. Let \(g : Y \to K \) be a \(C^n \)-function. Let \(B_n \) be the set of the following functions defined on \(\nabla^{n+1} X \):

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_1 g(f(x_{i_1}), f(x_{i_2})) \quad (1 \leq i_1 < i_2 \leq n + 1)
\]

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_2 g(f(x_{i_1}), f(x_{i_2}), f(x_{i_3})) \quad (1 \leq i_1 < i_2 < i_3 \leq n + 1)
\]

\[
\vdots
\]

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_n g(f(x_1), f(x_2), \ldots, f(x_{n+1})).
\]
Let A_n be the additive group generated by B_nR^n. Then

$$\Delta A_n \subset A_{n+1}.$$

Proof. We prove: $h \in B_nR^n \Rightarrow \Delta h \in A_{n+1}$. Write $h = br$ where $b \in B_n$, $r \in R^n$. By the Product Rule 2.1 we have for all $(x_1, x_2, \ldots, x_{n+2}) \in \nabla^{n+2}X$

$$\Delta h(x_1, x_2, \ldots, x_{n+2}) = b(x_2, x_3, \ldots, x_{n+2})\Delta r(x_1, x_2, \ldots, x_{n+2}) + r(x_1, x_2, \ldots, x_{n+2})\Delta b(x_1, x_2, \ldots, x_{n+2}).$$

We have:

(i) $b \in B_n$ so $(x_1, \ldots, x_{n+2}) \mapsto b(x_2, x_3, \ldots, x_{n+1})$ is in B_{n+1}.

(ii) $r \in R^n$ so $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+2})$ is in R_{n+1} (in the previous proof we had $r \in S_n^{1}$, the map $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+1})$ is in S_n^{1}, and (ii) follows from this).

(iii) $r \in R^n$ so $\Delta r \in R^{n+1}$ (Previous Lemma).

(iv) b has the form

$$(x_1, x_2, \ldots, x_{n+1}) \mapsto \Phi_j g(f(x_i), \ldots, f(x_{i+1}))$$

for some $j \in \{2, \ldots, n+1\}$ and so

$$\Delta b(x_1, x_2, \ldots, x_{n+2}) = \frac{b(x_1, x_3, x_4, \ldots, x_{n+2}) - b(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}$$

vanishes if $i_1 > 1$ (and then Δb is the null function), while if $i_1 = 1$ it equals

$$\frac{\Phi_j g(f(x_1), f(x_{i_2} + 1), \ldots, f(x_{i_{j+1} + 1})) - \Phi_j g(f(x_2), f(x_{i_2} + 1), \ldots, f(x_{i_{j+1} + 1}))}{x_1 - x_2}$$

$$= \Phi_{j+1} g(f(x_1), f(x_2), f(x_{i_2} + 1), \ldots, f(x_{i_{j+1} + 1}))\Phi_1 f(x_1, x_2).$$

(if $f(x_1) = f(x_2)$ we have 0 at both sides). So we see that $\Delta b \in B_{n+1}R_{n+1}^{1}$.

Combining (i) - (iv) we get $\Delta h \in B_{n+1}R_{n+1}^{1} + R^n_{n+1}B_{n+1}R_{n+1}^{1} \subset B_{n+1}R_{n+1}^{n+1} + B_{n+1} \cdot R_{n+1}^{n+1} \subset A_{n+1}$.

Corollary 2.4. With the notations as in the previous lemma we have $\Phi_n(g \circ f) \in A_n$ ($n \in N$).

Proof. We proceed by induction on n. For the case $n = 1$ we write, for $(x_1, x_2) \in \nabla^2X$,

$$\Phi_1(g \circ f)(x_1, x_2) = (x_1 - x_2)^{-1}\left(g(f(x_1)) - g(f(x_2))\right) = \Phi_1 g(f(x_1), f(x_2))\Phi_1 f(x_1, x_2).$$
Hence, \(\Phi_1(g \circ f) \in B_1 S_1 \subset B_1 R_1 \subset A_1 \). To prove the step \(n \to n+1 \) observe that by the induction hypothesis, \(\Phi_n(g \circ f) \in A_n \). By Lemma 2.3, \(\Phi_{n+1}(g \circ f) = \Delta \Phi_n(g \circ f) \in A_{n+1} \).

Remark. From Corollary 2.4 it follows easily that the composition of two \(C^n \)-functions is again a \(C^n \)-function, a result that already was obtained in [3], 77.5.

Proposition 2.5. (Continuity of \(g \mapsto g \circ f \)) Let \(n \in \mathbb{N}_0 \), let \(f \in C^n(X \to K) \) and let \(g \in C^n(Y \to K) \) where \(Y \) has no isolated points, \(Y \supset f(X) \). Then \(\|g \circ f\|_{n,X} \leq \|g\|_{n,Y} \max_{0 \leq j \leq n} \|f\|^j_{j,X} \).

Proof. We may assume \(\|g\|_{n,Y} < \infty \). It suffices to prove \(\|\Phi_0(g \circ f)\|_{n+1,X} \leq \|g\|_{n,Y} \|f\|_{n,X} \). Now \(\|\Phi_0(g \circ f)\|_{n+1,X} = \max_{x \in X} |g(f(x))| \leq \|g\|_{n,Y} \|f\|_{n,X} \) which proves the case \(n = 0 \). For \(n \geq 1 \) we apply Corollary 2.4 which says that \(\Phi_n(g \circ f) \in A_n \) i.e. \(\Phi_n(g \circ f) \) is a sum of functions in \(B_n S^n \). By the definition of \(B_n \) we have

\[
(*) \quad h \in B_n \Rightarrow \|h\|_{n+1,X} \leq \|g\|_{n,Y}
\]

Similarly

\[
k \in S_n \Rightarrow \|k\|_{n+1,X} \leq \max_{1 \leq i \leq n} \|\Phi_i f\|_{n+1,X} \leq \|f\|_{n,X}
\]

so that

\[
(**) \quad k \in S^n \Rightarrow \|k\|_{n+1,X} \leq \|f\|_{n,X}
\]

Combination of (*) and (**) yields \(\|\Phi_n(g \circ f)\|_{n+1,X} \leq \|g\|_{n,Y} \|f\|_{n,X} \).

Proposition 2.5 enables us to prove

Proposition 2.6. Let \(n \in \mathbb{N}_0 \) and let \(A \) be a closed subalgebra of \(C^n(X \to K) \). Suppose \(A \) separates the points of \(X \) and contains the constant functions. Then \(A \) contains all locally constant functions \(X \to K \).

Proof. 1. We first prove that \(f \in A, U \subset K \), \(U \) clopen implies \(\xi_{f^{-1}(U)} \in A \). In fact, \(f(X) \) is compact so there exist a \(\delta \in (0,1) \) and finitely many disjoint balls \(B_1, \ldots, B_m \) of radius \(\delta \) covering \(f(X) \) where, say, \(B_1, \ldots, B_q \) lie in \(U \), and \(B_{q+1}, \ldots, B_m \) are in \(K \backslash U \). Let \(\varepsilon > 0 \). By the Key Lemma 1.2 there exists, for each \(i \in \{1, \ldots, m\} \) a polynomial \(P_i \) such that \(\|\xi_{B_i} - P_i\|_{n,B} < \varepsilon \), where \(B := \bigcup_{i=1}^m B_i \). Then \(P := \sum_{i=1}^q P_i \) is a polynomial and

\[
\|P - \xi_U\|_{n,B} = \|P - \xi_{B^0}\|_{n,B} = \| \sum_{i=1}^q (P_i - \xi_{B_i})\|_{n,B} < \varepsilon,
\]

where \(B^0 := \bigcup_{i=1}^q B_i \).

By Proposition 2.5

\[
\|(P - \xi_U) \circ f\|_{n,X} \leq \|P - \xi_U\|_{n,B} \max_{0 \leq j \leq n} \|f\|^j_{j,X} \leq \varepsilon \max_{0 \leq j \leq n} \|f\|^j_{j,X}
\]
and we see that there exists a sequence P_1, P_2, \ldots of polynomials such that $\|P_k \circ f - \xi U \circ f\|_n, X \to 0$. Since A is an algebra with an identity we have $P_k \circ f \in A$ for all k. Then $\xi_{f^{-1}(U)} = \xi U \circ f = \lim_{k \to \infty} P_k \circ f \in A$.

2. Now consider

$$B := \{V \subset X, \xi_V \in A\}.$$

It is very easy to see that B is a ring of clopen subsets of X and that B covers X. To show that B separates the points of X let $x \in X, y \in X, x \neq y$. Then there is an $f \in A$ for which $f(x) \neq f(y)$. Set $U := \{\lambda \in K : |\lambda - f(x)| < |f(x) - f(y)|\}$. Then U is clopen in K. By the first part of the proof, $f^{-1}(U) \in B$. But $x \in f^{-1}(U)$ whereas $y \notin f^{-1}(U)$.

By [1], Exercise 2.H B is the ring of all clopens of X. It follows easily that all locally constant functions are in A.

To arrive at the Weierstrass-Stone Theorem 2.10 we need a final technical lemma.

Lemma 2.7. Let $a_1, \ldots, a_m \in X$, let $\delta_1, \ldots, \delta_m$ be in $(0, 1)$ such that $B(a_1, \delta_1), \ldots, B(a_m, \delta_m)$ form a disjoint covering of X. Let $n \in \mathbb{N}_0$, $h \in C^n(X \to K)$ and suppose $D_j h(a_i) = 0$ and $|D^n_{x_j} h(x_1, \ldots, x_{n+j})| \leq \varepsilon$ for all $i \in \{1, \ldots, m\}, x_1, \ldots, x_{n+1} \in B(a_i, \delta_i) \cap X, j \in \{0, 1, \ldots, n\}$. Then $\|h\|_n, X \leq \varepsilon$.

Proof. We first prove that $\|h\|_n, X \leq \varepsilon$ (see Proposition 0.4(iii)). Let $i \in \{1, \ldots, m\}$. Set $B_i = B(a_i, \delta_i)$. By Taylor's formula (Proposition 0.3(iv)) we have for $x \in X \cap B_i$:

$$|h(x)| = \left| \sum_{s=0}^{n-1} \left(x - a_i \right)^s D_s h(a_i) + \left(x - a_i \right)^n \rho_1 h(x, a_i) \right| \leq |x - a_i|^n |\Phi_n h(x, a_i, \ldots, a_i)| \leq \delta_i^n \varepsilon.$$

Similarly we have for $j \in \{0, \ldots, n-1\}$ and $x \in X \cap B_i$:

$$|D_j h(x)| = \left| \sum_{t=0}^{n-1-j} \left(x - a_i \right)^t D_t D_j h(a_i) + \left(x - a_i \right)^{n-j} \rho_1 \rho_1(D_j h)(x, a_i) \right| \leq \delta_i^{n-j} \varepsilon.$$

It follows that $\|h\|_X, \|D_1 h\|_X, \ldots, \|D_{n-1} h\|_X$ are all $\leq \varepsilon$. Now let $x, y \in X$. If x, y are in the same B_i then $|\rho_1 h(x, y)| = |\Phi_n h(x, y, y, \ldots, y)| \leq \varepsilon$ by assumption. If $x \in B_i$, $y \in B_s$ and $i \neq s$ then $|x - y| \geq \delta := \max(\delta_i, \delta_s)$ and by Taylor's formula

$$h(x) = \sum_{t=0}^{n-1} \left(x - y \right)^t D_t h(y) + \left(x - y \right)^n \rho_1 h(x, y)$$

we obtain, using (*),

$$|\rho_1 h(x, y)| \leq \frac{|h(x) - h(y)|}{|x - y|^n} \vee \frac{|D_1 h(y)|}{|x - y|^{n-1}} \vee \ldots \vee \frac{|D_{n-1} h(y)|}{|x - y|} \leq \frac{\delta^n \varepsilon}{\delta^n} \vee \frac{\delta_{n-1}^{n-1} \varepsilon}{\delta_{n-1}} \vee \ldots \vee \frac{\delta_s \varepsilon}{\delta} \leq \varepsilon.$$
and we have proved \(\|h\|_{n,X}^\alpha \leq \varepsilon \).

Now to prove that even \(\|h\|_{n,X} \leq \varepsilon \) observe that by Proposition 0.4(iii)

\[
\|h\|_{n,X} = \|h\|_{n,X}^\alpha \vee \|D_1 h\|_{n-1,X}^\alpha \vee \cdots \vee \|D_n h\|_{0,X}^\alpha.
\]

To prove, for example, that \(\|D_1 h\|_{n-1,X}^\alpha \leq \varepsilon \) we observe that \(D_1 h \in C^{n-1}(X \to K) \) and that for \(i \in \{1, \ldots, m\} \) and \(j \in \{0, 1, \ldots, n-2\} \) we have \(D_j D_1 h(a_i) = (j+1)D_{j+1} h(a_i) = 0 \) and for all \(x_1, \ldots, x_n \in B(a_i, \delta_i) \) and \(j \in \{0, 1, \ldots, n-2\} \)

\[
|\overline{\mathbb{F}}_{n-1-j} D_j(D_1 h)(x_1, \ldots, x_{n-j})| = |(j+1)| \overline{\mathbb{F}}_{n-1-j} D_{j+1} h(x_1, \ldots, x_{n-j})| \leq \varepsilon
\]

by assumption. So the conditions of our Lemma (with \(D_1 h, n-1 \) in place of \(h, n \) respectively) are satisfied and by the first part of the proof we may conclude that \(\|D_1 h\|_{n-1,X}^\alpha \leq \varepsilon \). In a similar way we prove that \(\|D_2 h\|_{n-2,X}^\alpha \leq \varepsilon, \ldots, \|D_n f\|_{0,X}^\alpha \leq \varepsilon \)

and it follows that \(\|h\|_{n,X} \leq \varepsilon \).

Proposition 2.8. Let \(n \in \mathbb{N}_0 \) and let \(A \) be a closed subalgebra of \(C^n(X \to K) \) containing the locally constant functions. Let \(g \in C^n(X \to K) \) and suppose for each \(a \in X \) there exists an \(f_a \in A \) with \(D_i g(a) = D_i f_a(a) \) for \(i \in \{0, 1, \ldots, n\} \). Then \(g \in A \).

Proof. Let \(\varepsilon > 0 \). For each \(a \in X \), choose an \(f_a \in A \) with \(f_a(a) = g(a), D_1 f_a(a) = D_1 g(a), \ldots, D_n f_a(a) = D_n g(a) \). By continuity there exists a \(\delta_a > 0 \) such that, with \(h_a := f_a - g, \overline{\mathbb{F}}_{n-j} D_j h_a(x_1, \ldots, x_{n-j+1}) \leq \varepsilon \) for all \(j \in \{0, 1, \ldots, n\} \) and \(x_1, \ldots, x_{n-j+1} \in B(a, \delta_a) \). The \(B(a, \delta) \) cover \(X \) and by compactness there exists a finite disjoint subcovering \(B(a_1, \delta_{a_1}), \ldots, B(a_m, \delta_{a_m}) \). Set

\[
f := \sum_{i=1}^m f_{a_i} \chi_{B(a_i, \delta_{a_i})} \cap X
\]

Then, by our assumption on \(A, f \in A \). By Lemma 2.7, applied to \(h := f - g \) and where \(\delta_1, \ldots, \delta_m \) are replaced by \(\delta_{a_1}, \ldots, \delta_{a_m} \) respectively, we then have \(\|f - g\|_{n,X} \leq \varepsilon \). We see that \(g \in \overline{A} = A \).

Remark. It follows directly that the local polynomial functions \(X \to K \) form a dense subset of \(C^n(X \to K) \).

Proposition 2.9. Let \(n \in \mathbb{N} \) and let \(A \) be a \(K \)-subalgebra of \(C^n(X \to K) \) containing the constant functions. Suppose \(f'(a) \neq 0 \) for some \(f \in A, a \in X \). Then there is a \(g \in A \) with \(g(a) = 0, g'(a) = 1 \) and \(D_2 g(a) = D_3 g(a) = \cdots = D_n g(a) = 0 \).

Proof. By considering the function \(f'(a)^{-1}(f - f(a)) \) it follows that we may assume that \(f(a) = 0, f'(a) = 1 \). Then

\[
(*) \quad f = (X - a)h
\]
where \(h \) is continuous, \(h(a) = 1 \). To obtain the statement by induction with respect to \(n \) we only have to consider the induction step \(n - 1 \to n \) and, to prove that, we may assume that
\[
D_2 f(a) = \cdots = D_{n-1} f(a) = 0.
\]
From (*) we obtain
\[
f^n = (X - a)^n h^n
\]
and by uniqueness of the Taylor expansion of the \(C^n \)-function \(f^n \) we obtain
\[
f^n(a) = D_1 f^n(a) = \cdots = D_{n-1} f^n(a) = 0 \quad \text{and} \quad D_n f^n(a) = h^n(a) = 1.
\]
We see that \(g := f - D_n f(a) f^n \) is in \(A \) and that \(g(a) = 0 \), \(g'(a) = 1 \), \(D_2 g(a) = \cdots = D_{n-1} g(a) = 0 \) and
\[
D_n g(a) = D_n f(a) - D_n f(a) D_n f^n(a) = 0.
\]

Theorem 2.10. (Weierstrass-Stone Theorem for \(C^n \)-functions). Let \(n \in \mathbb{N}_0 \) and let \(A \) be a closed subalgebra that separates the points of \(A \) and that contains the constant functions. Suppose also that for each \(a \in X \) there exists an \(f \in A \) with \(f'(a) \neq 0 \). Then \(A = C^n(X \to K) \).

Proof. By Proposition 2.9, for each \(a \in X \) there exists an \(f \in A \) with \(f(a) = 0 \), \(f'(a) = 1 \), \(D_i f(a) = 0 \) for \(i \in \{2, \ldots, n\} \). The function \(g := X \) satisfies \(g(a) = 0 \), \(g'(a) = 1 \), \(D_i g(a) = 0 \) for \(i \in \{2, \ldots, n\} \) so applying Proposition 2.8 (observe that \(A \) contains the locally constant functions by Proposition 2.6) we obtain that \(X \in A \). But then all polynomials are in \(A \) and \(A = C^n(X \to K) \) by the Weierstrass Theorem 1.4.

Remarks.

1. The case \(n = 0 \) yields, at least for those \(X \) that are embeddable into \(K \), the well known Kaplansky Theorem proved in [1], 6.15.

2. We leave it to the reader to establish a \(C^\infty \)-version of Theorem 2.10.

REFERENCES

