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and uniqueness of a stable a.e. flow and of renormalized solutions of the associated tr
equation.
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RÉSUMÉ. – On considère ici des champs de vecteurs à divergence nulle et à coefficien
L2

loc. Avec une condition locale sur la direction du champ de vecteur, on prouve l’exis
et l’unicité d’un flot presque partout et des solutions renormalisées de l’équation de tra
associée.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

We consider the following transport equation,

∂u

∂t
(t, x)+ b(x) · ∇xu(t, x)= 0 (1)

with initial conditions

u(0, x)= uo(x) (2)

wheret ∈ R, x ∈�, uo :�→ R, b :�→ R2 satisfies divb= 0 andu :R ×�→ R. The
domain� is the torus�2, or R2 but in that case we must assume thatb satisfies some
natural growth conditions, or a bounded open regular subset ofR2 andb is then required
to be tangent to the surface∂�. We assume thatuo ∈ Lp for somep ∈ [1,∞].

As is well known, this transport equation is in some sense equivalent to the OD

Ẋ(t)= b(X(t)). (3)

E-mail address:hauray@clipper.ens.fr (M. Hauray).
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Let us begin with some definitions and a proposition in which we always assum
b belongs at least toL1

loc.

DEFINITION 1. –Given an initial condition inL∞, a solution of(1)–(2) is a function
in L∞([0,∞)×�) satisfying for allφ ∈ C∞

c ([0,∞)×�)
∫

[0,∞)×�
u

(
∂φ

∂t
+ b · ∇xφ

)
= −

∫
�

uoφ(0, ·). (4)

DEFINITION 2. –We shall call renormalized solution a functionu in L1
loc([0,∞)×

�) such thatβ(u) is a solution of(1) with initial valueβ(uo), for all β ∈ C1
b(R), the set

of differentiable functions fromR to R with bounded continuous derivative.

Remark. – In this definition, we do not asku to be a solution because ifu only belongs
to L1

loc, we cannot give a sense to the productuv. This is one of the reasons why w
introduce this definition. But, this is of course an extension of the notion of solutio
u ∈ L∞ is a renormalized solution, it may be shown using goodβ thatu is a solution.

We will give the next definition only for the case where�=�2 or a bounded ope
subset ofR2. We refer to [4] for the adaptation to the case ofR2 in order to simplify the
presentation.

DEFINITION 3. –A flow defined almost everywhere(or a.e. flow) solving (3) is a
functionX from R ×� to� satisfying

(i) X ∈ C(R,L1)2;
(ii)

∫
� φ(X(t, x)) dx = ∫� φ(x) dx ∀φ ∈ C∞, ∀t ∈ R (preservation of the Lebesgue

measure);
(iii) X(s + t, x)=X(t,X(s, x)) a.e. in x,∀s, t ∈ R;
(iv) (3) is satisfied in the sense of distributions.

These properties implies that for almost allx, ∀t ∈ R, X(t, x)= x + ∫ t0 b(X(s, x)) ds.
Moreover, the useful following result is stated in [5].

PROPOSITION 1. –The two following statements are equivalent:
(i) For all initial condition uo ∈ L1, there exists a unique stable renormaliz

solution of (1).
(ii) There exists a unique stable a.e. flow solution of(3).

Moreover the following condition(R) implies these two equivalent statements

Every solution of(1) belonging toL∞(R ×�) is a renormalized solution. (R)

This method of resolution of ODE’s and associated transport equations was intro
by DiPerna and Lions in [4]. In this article, they show that ifb ∈ W 1,1

loc , the problem
(1)–(2) has a unique renormalized solutionu. In fact, even if it is not stated in thes
terms in their article, we can adapt the method used in it to prove Proposition 1 a
fact that (R) is true whenb ∈W 1,1

loc . In our paper we will show that (R) holds provid
thatb ∈ L2

loc and that the following condition (Px ) on the local direction ofb is true for
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a sufficiently large set of pointsx

∃ξ ∈ R2, α > 0, ε > 0 such that for almost ally ∈ B(x, ε) b(y) · ξ � α. (Px)

This is a local condition and the quantitiesξ , α, ε depend onx.
We will also show that (R) still holds in the case of a physical HamiltonianH(x, y)=

y2/2+ V (x) with V ′ ∈ L1
loc.

This paper is a extension of Desvillettes and Bouchut [3], in which similar result
shown whenb is continuous. The authors use the fact that since we have an Hamilto
we can integrate the ODE to obtain a one dimensionnal problem, that we are a
solve. We will adapt this method with less regularity onb.

2. Main result

Since we are in dimension two and that div(b)= 0, there exists a scalar functionH
(the hamiltonian) such that∇H⊥ = b. If b belongs toLp, thenH is inW 1,p.

THEOREM 1. –Let �′ be an open subset of�. Assume thatb ∈ L2
loc(�

′) and (Px)
holds for everyx ∈�′, Then the condition(R) holds in�′.

Remarks. –
(i) Two is the critical exponent. It corresponds to the critical caseW 1,1 in [4] since

in two dimension we have the Sobolev embedding fromW 1,1 to L2. In the fourth
paragraph, we shall describe a flow which is inLp for all p < 2, which satisfy the
condition(Px) everywhere but for which uniqueness is false.

(ii) This theorem does not extend the result in [4] in this particular case bec
a vector-fields inW 1,1 does not necessary satisfy the condition(Px). We can
construct divergence free vector-fields inW 1,1 which does not satisfy the conditio
(Px) at any pointx.

(iii) Our method allow to prove the existence and the uniqueness directly (i.e. w
using (R)), but it raises many difficulties concerning localisation and the add
of critical points.

(iv) Here we state a result for a subset of�. Of course, a particular case of interest is
case when�′ =�, where we may then use Proposition 1 to obtain the exist
and the uniqueness of an a.e. flow and of the solution of the transport equatio
the case�′ � � will be useful when we will shall take into account some poi
where(Px) is not true.

Proof. –We shall prove this result in several steps. First, we shall state and
some results about a change of variables. Then, we shall justify its applicat
formula (1), and obtain a new transport equation. Finally, we reduces this probl
a one dimensionnal one, that we are able to solve.

Step1. A change of variable.
It is sufficient to show the result stated in Theorem 1 locally. Then, we shall work

bounded neighbourhoodU of x0, in which we assume thatb · ξ > α a.e. as in(Px). We
define" onU by

"(x)= (
(x − x0) · ξ,H(x)).
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We wish to use" as a change of variable. For this, we use the following lemma

LEMMA 1. –Assume thatH ∈ W 1,p(U) for p � 2, then there exist a bounde
connected open setV containing(0,0) and"−1 ∈W 1,p(V ) such that

for almost allx ∈U, "(x) ∈ V and "−1 ◦"(x)= x,
for almost ally ∈ V, "−1(y) ∈U and " ◦"−1(y)= y,

" and"−1 leave invariant zero-measure sets.
Moreover, we have forf ∈ L∞(V ) the following formula:

∫
U

f ◦"(x)∣∣D"(x)∣∣dx =
∫
V

f (y) dy. (5)

Proof. –Without loss of generality, we may assume thatx0 = 0, ξ = (−1,0), U =
(−η, η) × (−η, η). According to [7] we can assume, sinceH is W 1,p, that H is
absolutely continuous on almost all lines parallel to the coordinate axes and th
true in particular for the lines{y = ±η}. Then we define a open setV by

V = {(y1, y2) ∈ R2 |H(y1,−η) < y2<H(y1, η)
}
.

To show thatV is connected we have to show thatH(x1,−η) < H(x1, η) for all x1 ∈
(−η, η). But we have|b1(x)|> α for almost allx ∈U thenH(x1, η)−H(x1,−η) > 2ηα
for almost allx1 ∈ (−η, η), then for all thosex1 by continuity.
" preserve the first coordinate, and for almost allx1 ∈ (−η, η), H(x1, ·) is a strictly

increasing homeomorphism from(−η, η) to (H(x1,−η),H(x1, η)). Hence we can
define a suitable mesurable"−1.

Now, we can prove Eq. (5) using Fubini’s theorem. First we consider the case
f is continuous. Then, we have

∫
U

f ◦"(x)∣∣D"(x)∣∣dx =
η∫

−η

( η∫
−η
f
(
x1,H(x1, x2)

)∣∣b1(x1, x2)
∣∣dx2

)
dx1.

Fig. 1. The" map.
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Next, if F is C1(R,R) andφ is in W 1,p([a, b]), thenF ◦ φ is in W 1,p([a, b]) and
(F ◦ φ)′ = (F ′ ◦ φ)φ′. We now use this fact withF a primitive off . Therefore, we can
write

η∫
−η
f
(
x1,H(x1, x2)

)|b1|(x1, x2) dx2 =
H(x1,η)∫

H(x1,−η)
f (x1, y) dy.

And if we use Fubini’s theorem again, we obtain the result.
Now, we prove (5) for an arbitrary function inL∞. If O is an open subset ofV , we

choose a sequence offn continuous such thatfn → χO everywhere whenn goes to∞.
By increasing convergence, the result is still true forχO . We have it for the caracterist
function of an open set. If we use the fact that|b1| � α, we obtain the inequality

λ
(
"−1(O)

)
� 1

α
λ(O)

whereλ is the Lebesgue measure. Next, ifE is a zero measure subset ofV , we obtain
(using the above inequality with open set of small measure containingE) that"−1(E)

is also a zero-measure set.
Now, if we approximate aL∞-function f by a sequence of continuous functionsfn

converging tof a.e., then the sequencefn ◦ " converges tof ◦ " a.e. and with the
dominated convergence theorem, we obtain the result forf .

The formula (5) may be rewritten as follows

∫
U

f (x)
∣∣D"(x)∣∣dx =

∫
V

f ◦"−1(y) dy.

By approximation, it is always true provided the left hand side is meaningful, as
the case, for instance whenf belongs toLq(U), with q the conjugate exposant ofp
(p−1 + q−1 = 1). And if f ∈ La(U), thenf ◦"−1 belongs toLb(V ) with b= a/q.

To show that"−1 belongs toW 1,p(V ), and thatD("−1)= (D")−1 ◦"−1, the most
difficult case is to show that

∂"−1
2

∂x1
= −

(
b2

|b1|
)

◦"−1. (6)

First, sinceb2 ∈ Lp(U) and|b1|> α, we can use the change of variables to deduce

∫
V

∣∣∣∣b2

b1

∣∣∣∣
p

◦"−1 =
∫
U

b
p
2b

1−p
1 .

Hence, the right handside of (6) belongs toLp.
Then, letφ be inC∞

o (V ), we have∫
"−1

2 (y)
∂φ

∂x1
dy =

∫
x2
∂φ

∂x1
◦"(x) ∣∣b1(x)

∣∣dx

V U
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∫
U

x2

(
∂(φ ◦")
∂x1

(x)
∣∣b1(x)

∣∣− ∂(φ ◦")
∂x2

(x)b2(x)

)
dx

=
∫
U

φ ◦"(x)b2(x) dx

=
∫
V

φ(y)
b2

|b1| ◦"−1(x) dx

and this is the expected result. To obtain the second line from the first, we write

∂x1(φ ◦")= ∂x1φ ◦"− b2∂x2φ ◦",
∂x2(φ ◦")= b1∂x2φ ◦".

And whenp � 2, these two quantities belong toL2 and we may multiply the first byb1,
the second by−b2 and add them to obtain the desired identity. To obtain the third
from the second, we use an integration by parts and the fact that divb= 0. ✷

Step2. Equivalence with a new transport equation.
We now wish to apply the change of variables in the formula (we recall that we as

thatξ = (−1,0)) ∫
[0,∞)×U

u(∂tφ + b.∇φ)= −
∫
U

uoφo. (7)

Sinceu belongs toL∞(U), this expression make sense forφ in W 1,q
0 ([0,∞) × U)

(here and belowq is always the conjugate exponent ofp). But, we want to apply (7
with φ(t, x) = ψ(t,"(y)), whereψ ∈ C∞

o ([0,∞)× V ). In this caseφ will belong to
W 1,p([0,∞)× U) and will also have a compact support because of the form of". In
addition, sincep � 2, we may write

b · ∇φ = b1(∂x1ψ ◦"− b2∂x2ψ ◦")+ b2 b1∂x2ψ ◦"= b1∂x1ψ ◦"

and we obtain, denoting byv(t, y)= u(t,"−1(y)) andJ = |b1| ◦"−1

∫
[0,∞)×V

v

(
1

J (y)
∂tψ(y)+ ∂x1ψ(y)

)
= −

∫
V

voψo

J

for all ψ in C∞
o ([0,∞) × V ). In other words,v is solution inV (in the sense of th

distributions) of

∂t

(
v

J

)
+ ∂x1v = 0 (8)

with the initial condition(v/J )(0, ·)= vo/J .
Conversely, ifv ∈ L∞([0,∞) × V ) is a solution of (8), we may test it again

functionsψ in W 1,1
0 ([0,∞) × V ), and if φ is in C∞

o ([0,∞) × U) thenφ ◦ "−1 is in
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0 ([0,∞)× V ). Thus we may follow the above argument backwards, and we o

that (8) is equivalent to (1).
Step3. Solution of the one dimensional problem.
In view of the precedent steps, it is sufficient for us to show that (R) hold for Eq

But, in this equation there is no derivative with respect toy2. Therefore, it is equivalen
to say that for almost ally2, ∂t(v/J )+ ∂x1v = 0 on the setR × Vy2 with the good initial
conditions (hereVy2 = {y ∈ R | (y, y2) ∈ V }). This would be obvious ifV were of the
form (a, b)× (c, d), but we can always seeV as a countable union of such rectangu
sets. And since an open subset ofR is a countable union of open intervals, we just h
to show that the property (R) is true for Eq. (8) on an intervalI = (a, b) of R, with J � α
a.e. onI .

Let F be a primitive of 1/J . F is continuous, strictly increasing on(a, b) onto
(F (a),F (b)), and its inverseF−1 belongs toW 1,1(F (a),F (b)). Again, we may
performe the change of variablesy �→ z = F(y) and we obtain that Eq. (8) onI is
equivalent to

∂tw+ ∂zw = 0 on[0,∞)× (F(a),F (b)) (9)

wherew(t, z)= v(t,F−1(z)). For this equation the property (R) is true. In fact we h
a flowX(t, x) = F−1(F (x)+ t) for (8), but we need to be careful because we are
exactly on the whole line and so this quantity is not defined for allt . ✷

3. Critical points

In the preceding result, we assumed that the condition(Px) was true for allx. We
want here to take into account possible critical points. However, since we only a
that b ∈ L1

loc, we cannot define critical points (of the Hamiltonian) as points wheb
vanishes (the usual notion when the flow is continuous). In some sense, critical
mean for us all those points where(Px) is not true. In fact, this yields a “larger” set
critical points.

3.1. Isolated critical points

Our first result is the following

COROLLARY 1. – If b satisfies(Px) everywhere in� except on a set of isolate
points, then the(R) hypothesis holds.

Proof. –Without loss of generality we may assume that� = R2, that (Px) holds
everywhere except at the origin(0,0) and thatb ∈ L2. We takeψ ∈ C∞

o (R) so that
ψ ≡ 1 on a neighbourhood of(0,0) and vanishes outside the ballB1 of radius 1. We
defineψε =ψ( ·

ε
).

Letφ ∈ C∞
o ([0,∞)×R2), β ∈ C1(R) andu be a solution of the transport equation onR2,

then(1−ψε)φ ∈ C∞
o (R

2\{(0,0)}, and sinceu is a renormalized solution onR2\{(0,0)},
we may write

〈
∂tβ(u)+ div

(
bβ(u)

)
, (1−ψε)φ〉=

∫
2

β(uo)(1−ψε)φo, (10)
R



632 M. HAURAY / Ann. I. H. Poincaré – AN 20 (2003) 625–644

can
a

ll

case
e.

ma.

can
i.e. ∫
[0,∞)×R2

β(u)(1−ψε)(∂tφ + b · ∇φ)−
∫

[0,∞)×R2

β(u)φb · ∇ψε

= −
∫
R2

β(uo)(1−ψε)φo. (11)

Whenε goes to 0, the first integral converges to〈∂tβ(u)+ div(bβ(u)), φ〉, the second
one converges to 0 since

∣∣∣∣
∫
R2

β(u)φ∇ψε
∣∣∣∣�C‖b‖L2(Bε)‖∇ψε‖L2 � C‖∇ψ‖L2‖b‖L2(Bε)

and the right hand side converges to− ∫
R2 β(u

o)φo.
We conclude that

〈
∂tβ(u)+ div

(
bβ(u)

)
, φ
〉=

∫
R2

β(uo)φo

for all φ ∈ C∞
o ([0,∞)× R2). Henceu is a renormalized solution.✷

3.2. A result with more regularity on H

The above result, of course, does not allow for many critical points. But we
allow much more with stronger conditions onH . First, points where there exists
neighbourhood on whichb vanishes, are obviously easy to handle. We shall caO
the set of all these points, andP the set of the points where(Px) is true. We denote
Z = (O ∪ P)c (this complementary is taken in�). It is closed, sinceO andP are open.
Then we have the following corollary.

COROLLARY 2. –Assume thatH is continuous,Z is a set of zero-measure inR2 and
H(Z) is a set of zero-measure inR. Then(R) still holds.

Remarks. –
(i) These conditions where introduced by Desvillettes and Bouchut in [3] in the

whenb is continuous. Here, we only rewrite their proof in a less regular cas
(ii) If p > 2, according to Sobolev embeddings,H is automatically continuous.
(iii) We do not know ifH(Z) has zero-measure since we cannot apply Sard’s lem

Proof. –Let u be a solution of the transport equation (1) in�, β ∈ C1(R), φ a C∞-
test function, andKo a compact set containing the support ofφ(t, ·) for all t . We define
Zo = Z ∩ Ko andK = H(Zo). ThenK is a zero-measure compact set. Then, we
find functionsχn ∈ C∞

o (R) such that, 0� χn � 1, χn ≡ 1 on a neighbourhood ofK and
χn → χK , the characteristic function ofK , whenn goes to∞. We set6n = χn ◦H .6n
is continuous, belongs toW 1,p(R2) and6n ≡ 1 on a neighbourhood ofZo.

By Theorem 1,β(u) is a solution of (1) inP , and is also a solution inO, because on
this setu is independent of the time. Since this two sets are open,β(u) is a solution in
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P ∪O. (1−6n)φ is continuous and belongs toW 1,p([0,∞)×Ko) and has its suppo
in [0,∞)× (Ko\Zo). Hence, since(Ko\Zo)⊂ P ∪O we can use it as a test functio
We have 〈

∂tβ(u)+ div
(
bβ(u)

)
, (1−6n)φ〉=

∫
�

β(uo)(1−6n)φo,

i.e. ∫
[0,∞)×�

β(u)(1−6n)(∂tφ + b · ∇φ)−
∫

[0,∞)×�
β(u)b · ∇6n

= −
∫
�

β(uo)(1−6n)φo. (12)

The second integral vanishes because∇6n = ("′
n ◦H)∇H andb= ∇H⊥.

The first integral converges by dominated convergence to∫
[0,∞)×H−1(K)c

β(u)(∂tφ + b · ∇φ)

while the left hand side goes to− ∫H−1(K)c β(u
o)φo.

Then, to prove that (4) holds, we just have to show that∫
[0,∞)×H−1(K)

β(u)(∂tφ + b · ∇φ)= −
∫

H−1(K)

β(uo)φo. (13)

ButH ∈W 1,p(R2) andK is a zero-measure set, and this is a classical result that in
case∇H = 0 a.e. onH−1(K) (see for instance [5]). Then,b= ∇H⊥ = 0 a.e. on this se
and ∫

[0,∞)×H−1(K)

β(u)(∂tφ + b · ∇φ)=
∫

[0,∞)×H−1(K)

β(u)∂tφ.

Moreover,H−1(K) ∩ P is a set of zero-measure because onP , ∇H �= 0 a.e. Hence
the following quantity will not change if we integrate only onH−1(K)∩ (O ∪Z) or on
H−1(K) ∩O sinceZ has zero-measure. But we already know thatu is independent o
the time on this set, then we can integrate in time to obtain the equality (13).✷

As a conclusion to this section we just wanted to say that we do not know
happens when the condition(Px) is not true on a sufficiently large set. Of course,
can construct divergence free vector-fields which do not satisfy(Px) at every point, bu
it seems difficult to work with such flows because their definition is complex.

4. One example

We observe in this section that the example introduced by DiPerna and Lions
provides an example of an divergence free vector fieldsb such thatb ∈ L∞

loc(R
2\(0,0)),
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Fig. 2. Flow lines of the example.

b is in Lp in a neighbourhood of the origin for allp < 2 but not forp= 2, b satisfies the
condition (Px) everywhere, but there exist several solutions to the transport equ
and several a.e. flows solving the associated ODE.

4.1. Definition of the vector-field

We define the hamiltonianH as follows (see Fig. 2)

H(x)=



− x1
|x2| if |x1| � |x2|,

−(x1 − |x2| + 1) if x1> |x2|,
−(x1 + |x2| − 1) if x1<−|x2|.

Then,b is given by

b1(x)= −∂H
∂x2

= −sign(x2)

(
x1

|x2|2 1|x1|�|x2| + sign(x1)1|x1|>|x2|
)
,

b2(x)= ∂H

∂x1
= −

(
1

|x2|1|x1|�|x2| + 1|x1|>|x2|
)
.

4.2. Form of the solutions

First, we construct an a.e. flowX solution of the associated ODE. Since it would
symmetric in relation to thex2-axis, we only defined it forx1 � 0. We also define it jus
for t � 0.

In the case when 0� x2 � x1, we set

X(t, x)= (x1 − t, x2 − t) for t � x2,

X(t, x)= (x1 − 2x2 + t, x2 − t) for t � x2,
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while for 0� −x2 � x1, we set

X(t, x)= (x1 + t, x2 − t).

In the case when 0� x1< x2, we set

X(t, x)=
√

1− 2t

(x2)2
(x1, x2) for t � (x2)

2

2
,

X(t, x)=
√

2t

(x2)
2

− 1 (x1,−x2) for t � (x2)
2

2
.

And if 0 � x1<−x2,

X(t, x)=
√

1+ 2t

(x2)2
(x1, x2).

In the sequels, we denoteI = {x ∈ R2 | 0 < x1 < −x2} and J = {x ∈ R2 | 0 <
x1 < x2}. For an initial conditionuo, some tedious computation easily shows that
solutions of the transport equation (we use the fact thatu(t,X(t, x)) is independent o
t as long asX(t, x) does not reach the origin, and then we use the change of va
(t, x)→ (t,X(t, x)) on all the space, paying attention to what happens at the or
They are of the form

u(t, x)=

u

o(X(−t, x)) if x /∈ I or x ∈ I and t � (x2)
2

2 ,

ũ(X(−t, x)) if x ∈ I and t � (x2)
2

2 ,
(14)

whereũ is any function defined onJ satisfying the condition

∀x2> 0,

x2∫
−x2

ũ(x1, x2) dx1 =
x2∫

−x2

uo(x1, x2) dx1. (15)

Indeed, we use here the flowX for simplicity but these solutions are not defin
according to this flow when a trajectory pass through the origin. We will try to exp
what happens at the origin. Forx2> 0, if the quantityu represent a density of mass,
the mass on the segment{(x, x2) | x ∈ (−x2, x2)} reaches the origin at the time(x2)

2/2.
After this time it continues to move inI always on segments parallel to thex1-axis, but
it can be redistributed on them in any way provided the total mass on this segm
conserved. This is what means the condition (15).

The renormalized solutions are always of this form, but the condition (15) shou
replaced by

∀x2> 0,∀β ∈ C1(R)

x2∫
−x
β(ũ)(x1, x2) dx1 =

x2∫
−x

β(uo)(x1, x2) dx1. (16)
2 2
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This condition (16) is equivalent to the fact that for allx2 ∈ R, we have a measure
preserving transformation" from (−x2, x2) into itself such that̃u = uo ◦". We refer
to [6] for this point.

Moreover, we can also find all the flows solutions of the associated ODE. Choo
mesurable measure-preserving transformation6 from (−1,1) into itself, we defined a
flow X6 by

X6(t, x)=

X(t, x) if x /∈ J or t � (x2)

2

2 ,

6(x)X(t, x) if x ∈ J andt � (x2)
2

2 .

To see that this defined a a.e. flow, we use the property stated in the definition
a.e. flow and the fact that an a.e. flow is measure preserving. Let us try to illustra
definition. A particle with an initial positionxo in J moving according toX6 behaves a
follow. It moves on the half-line{x|x1/x2 = λ, x2> 0} (with λ= xo1/xo2) until it reaches
the origin. Then it continues to move inI but on the half-line{x|x1/x2 =6(λ), x2< 0}.
Indeed,6 may be seen as a mapping between the upper half-lines and the
ones.

We can thus see that in this case, we have renormalized solutions that are not
according to an a.e. flow. Indeed, for a renormalized solution, we can choose di
mappings between the upper half-lines and the lower ones for eachx2 (in other words
ũ= uo(6x2(x1/x2)x2, x1) where6x2 is measure-preserving transformation from(−1,1)
into itself depending onx2), while for a solution defined according to an a.e. flow, t
correspondance will be independant ofx2.

4.3. Remark about the uniqueness of the solution

First we remark that the flowX is a specific one. It is the only one for which t
hamiltonian remains constant on all the trajectories. Moreover, we observe th
solutionu defined according toX is specific among all the others. This is the only o
which satisfies also the above family of equations (17), which says that the hamil
remains constant on the trajectories.

∀f ∈ C(R,R) ∂t
(
f (H)u

)+ div
(
f (H)bu

)= 0. (17)

Indeed, we do the same computation that leads to (15) with these equations a
obtain the following conditions

∀x2> 0, ∀f ∈ C(R,R),
x2∫

−x2

ũ(x1, x2)f (x1) dx1 =
x2∫

−x2

uo(x1, x2)f (x1) dx1. (18)

This implies thatũ= uo and then thatu= u.
Hence, adding the conditions (17) in the definition of a solution, we are able to d

it uniquely. Moreover, if we try to solve this problem by approximation, choosin
sequence of divergence free vector-fieldbm converging tob in all L

p
loc, for p < 2 (this

implies thatHm converge toH up to a constant in allW 1,p
loc , for p < 2), we obtain a
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sequence of solutionsum, that satisfy all Eqs. (17) with the initial conditionuo. This
sequenceum is weakly compact inL∞. Extracting a converging subsequence, we
that Eqs. (17) are always true at the limit and then the sequenceum converge tou. This
solution is therefore the only that we can construct by approximation.

5. The case of a particule moving on a line

We consider here a classical Hamiltonian

H(x, y)= y2/2+ V (x) or b(x, y)= (
y,−V ′(x)

)
with V a potential inW 1,p

loc (R). ThenV ′ belongs toLploc(R). In this case,b satisfies the
(Px) assumption inR2\{y = 0}. The set of criticals pointsZ has then zero-measure. W
can apply the preceding results, ifH satisfiesm(H(Z))= 0. WhenV ′ is continuous, this
is true because we can apply the Sard Lemma. But this is false for a generalV ′ ∈ L1

loc.
If V ′ oscillates very quickly,Z may even be the whole line. And thenH(Z) is an
interval becauseH is continuous. However, we will show that the result is always
in this case. Moreover, we can only assume thatV ′ belongs toL1

loc(R), since the othe
composant ofb is in L∞

loc(R).
The transport equation we are considering has the form

∂u

∂t
+ y ∂u

∂x
− V ′(x)

∂u

∂y
= 0. (19)

Here we can solve the differential equationx′ = y, y′ = −a(x) directly if we use the
fact that the Hamiltonian is constant on a trajectory and integrate the system. B
flow is not regular, and we do not know how to work directly with it in order to solve
transport equation.

THEOREM 2. –For a flow b(x, y) = (y,−V ′(x)) with V ′ ∈ L1
loc(R) and

1/
√

max(1,−V (x)) not integrable at±∞, the transport equation has an unique ren
malized solution.

Remarks. –
(i) The condition of integrability onV is there to insure that a point does n

reach±∞ in a finite time. It could be replaced by a stronger condition
V (x)� −C(1+ x2).

(ii) This result can be adapted to the case of two particles moving on a line acco
to a interaction potential inW 1,1

loc . In order to do so this we just have to use
change of variable which follows the classical way of reducing this two-b
problem to a one-body problem.

Proof. –We can use our previous theorem in the neighboorhood of a point withy �= 0.
This will give us “the result” on two half-planes, but we need to “glue” together
information available on this two half-planes. Then we need to work differently, an
shall follow the same sketch of proof as in our first theorem.

Step1. A change of variables.
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First we define

"+(x, y)= (x, y2/2+ V (x)) from R × (0,∞) toB,

"−(x, y)= (x, y2/2+ V (x)) from R × (−∞,0) toB,

whereB = {(x,E) ∈ R2 | V (x) < E}. Then"+ and6− are continuous and belong
W

1,1
loc with

D"± =
(

1 0
V ′(x) y

)
and the same for"−.

These transformations are one-to-one and onto and"−1± (x,E)= (x,±
√

2(E − V (x)).

D"−1
+ =

(
1 0

− V ′(x)√
2(E−V (x))

1√
2(E−V (x))

)
,

with a similar formula for"−1− .
The following change of variables is true

∫
y>0

f (x, y) dx dy =
∫
B

f ◦"−1+ (x,E)√
2(E − V (x)) dx dE

for f in L∞ and even inL1.
Before going further, we state some properties about the setW 1,1(B). We define

C∞(B) (respectivelyC∞
o (B)) the space of restriction toB of C∞-functions onR2

(respectively such functions with compact support). We recall that∂B = {(x,V (x)) |
x ∈ R}.

PROPOSITION 2. –
(i) C∞

o (B) is dense inW 1,1(B).
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(ii) The trace of a function inW 1,1(B) has a sense inL1. More precisely, there exis
a continuous applicationTr :W 1,1(B)→ L1(R) such thatTr(φ) = φ(·, V (·)) if
φ ∈ C∞

o (B).
(iii) C∞

o (B)= Ker(Tr), the kernel of the trace, also denoted byW 1,1
o (B).

(iv) The same results are true forR ×B and [0,∞)×B as well as locally.

Proof. –We refer to Theorem 3.18 in [1] for a complete proof. But we may adap
proof of this theorem to this simpler case. For af ∈W 1,1(B), we define forε > 0

fε = ρε ∗ (f (· + 2εe)χ{E>V (x)−2ε}
)

where e = (0,1) and ρε(x,E) = ρ(x/ε,E/ε) with ρ ∈ C∞
o (R

2) satisfying
∫
ρ = 1.

Then, the functionsfε belong toC∞
o (B) and converges tof in W 1,1(B) asε→ 0.

For the second point, we choosef ∈ C∞
o (B). Then

f
(
x,V (x)

)= −
∞∫

V (x)

∂f

∂E
(x,E)dE

taking the absolute value and integrating inx leads to

∫
R

∣∣f (·, V (·))∣∣� ‖∇f ‖L1(B).

Then, the trace is a contraction fromC∞
o (B) with theW 1,1-norm intoL1(R), and since

C∞
o (B) is dense inW 1,1(B), we may extend this application toW 1,1(B).
For the third point, we takef ∈ Ker(Tr) and extend it by zero outsideB. We obtain

a f̃ in W 1,1(R2). Then if we translatef̃ in the direction ofe = (1,0) and smooth it by
convolution, we can constructC∞-approximations off with support inB. ✷

Step2. Equivalence with a simpler transport equation.
Now, letu be a solution of the transport equation. We may write

∫
[0,∞)×R2

u
(
∂tφ + y∂xφ − V ′(x)∂yφ

)
dx dy = −

∫
R2

uoφo (20)

for all φ ∈ W 1,1([0,∞) × R2) with compact support (in the sense of distributio
satisfying moreover∂yφ ∈ L∞([0,∞)× R2).

Let 6+ and6− be in C∞
o ([0,∞) × B), and6+ and6− satisfy the compatibility

condition6+|[0,∞)×∂B =6−|[0,∞)×∂B . We defineφ from [0,∞)× R2 to R with

φ(t, x, y)=
{
6+(t,"+(x, y)) if y > 0,

6−(t,"−(x, y)) if y < 0.

Then,φ belongs toW 1,1([0,∞)× R2), has a compact support, andφ, ∂tφ, ∂yφ are in
L∞. Moreover,
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∂xφ = (∂x6+) ◦"+ +E(x)(∂y6+) ◦"+ for y > 0,

∂yφ = y(∂y6+) ◦"+,
∂tφ = (∂t6+) ◦"+.

Then we have

∂tφ + y∂xφ −E(x)∂yφ = (∂t6+) ◦"+ + y(∂x6+) ◦"+

for all y > 0. We writev± = u ◦"−1± , defined on[0,∞)×B. Then, (20) may be writte
as follows. ∫

[0,∞)×{y>0}

[
v+(∂t6+ +√2(E − V (x))∂x6+)

] ◦"+

+
∫

[0,∞)×{y<0}

[
v−(∂t6− −√2(E − V (x))∂x6−)

] ◦"−

=
∫
y>0

(
v0

+6
0
+
) ◦"+ +

∫
y<0

(
v0

−6
0
−
) ◦"−. (21)

We can apply the change of variables, and we obtain∫
[0,∞)×B

v+
(

∂t6+√
2(E − V (x)) + ∂x6+

)
+

∫
[0,∞)×B

v−
(

∂t6−√
2(E − V (x)) − ∂x6−

)

=
∫
B

v0+60+ + v0−60−√
2(E − V (x)) . (22)

It is difficult to work with "+ and"− because of the compatibility condition. But w
may make the particular choice"+ ="− (below we will omit the indices±). Then (22)
becomes

∫
[0,∞)×B

(v+ + v−)
∂t6√

2(E − V (x)) + (v+ − v−)∂x6 =
∫
B

(v0+ + v0−)√
2(E − V (x))6

0. (23)

Now, we choose6+ = −6− and6|[0,∞)×∂B = 0 (we omit the indices±). In this case
(22) becomes

∫
[0,∞)×B

(v+ − v−)
∂t6√

2(E − V (x)) + (v+ + v−)∂x6 =
∫
B

(v0+ − v0−)√
2(E − V (x))6

0. (24)

Then, (20) implies (23) for all6 in C∞
o ([0,∞)×B), and (24) for all6 ∈ C∞

o ([0,∞)×
B) with 6|[0,∞)×∂B = 0, or equivalently for all6 ∈ C∞

o ([0,∞)×B) sinceC∞
o ([0,∞)×

B) is dense inW 1,1
o ([0,∞) × B). And conversly, these two statements are equiva

with (22) for all6+ and6− in C∞
o ([0,∞)×B) having the same trace on the bounda

Thus, we have to solve
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∂t

(
v+ + v−√

2(E − V (x))
)

+ ∂x(v+ − v−)= 0 onD′([0,∞)×B ), (25)

∂t

(
v+ − v−√

2(E − V (x))
)

+ ∂x(v+ + v−)= 0 onD′([0,∞)×B), (26)

with the convenient initial conditions. In (25),D′([0,∞)×B ) means that we allow tes
functions inC∞([0,∞)×B ).

We can do the same arguments backwards. Therefore, solving (25)–(26) is equ
to solve (19)

Step3. Reduction to one dimension.
These two equations do not contain any derivative inE. As in the proof of the firs

result, we want to reduce them to equations in one dimension of space. For the
equation (26), we can make the same argument and we obtain that this equatio
onBE, for almost allE in R (with BE = {x ∈ R | (x,E) ∈ B}).

For the first equation (25) we can still apply the argument. We shall be more p
since it is a little bit more involved. We choose a test functionφ of the formφ1φ2 with
φ1 depending only on(t, x) andφ2 depending onE. We obtain

∫
[0,∞)×B

(
(v+ + v−)

∂tφ1√
2(E − V (x)) + (v+ − v−)∂xφ1

)
φ2 =

∫
B

(v0+ + v0−)√
2(E − V (x))φ

o
1φ2.

(27)
Since the linear combinaisons of functions of the formφ1φ2 are dense inC∞

o ([0,∞))
with theW 1,1-norm, (27) for allC∞

o φ1 andφ2 is equivalent with (23) for allC∞
o 6.

Moreover, sinceW 1,1([0,∞)× R) is separable, it is sufficient (and necessary) to w
(27) forφ1 choosen among a countable subsetF1 of C∞

o -functions.
Now, using Fubini’s theorem (27) may be rewritten∫

R

( ∫
[0,∞)×BE

(v+ + v−)
∂tφ1√

2(E − V (x)) + (v+ − v−)∂xφ1 dt dx

)
φ2dE

=
∫
R

(∫
BE

(v0+ + v0−)√
2(E − V (x))φ

o
1 dx

)
φ2 dE (28)

for a fixedφ1. Since it is satisfied for allC∞
o -φ2, we obtain that

∫
[0,∞)×BE

(v+ + v−)
∂tφ√

2(E − V (x)) + (v+ − v−)∂xφ =
∫
BE

(v0+ + v0−)√
2(E − V (x))φ

o (29)

for all E ∈ R\N whereN is a zero-measure set depending onφ1. Now, if we write this
equation for allφ1 ∈ F1, we obtain that (25) is satisfied, but this time in[0,∞)×BE for
allmost allE ∈ R. And we can do the argument backwards to show that this is equiv
to the initial problem. Finally, we just have to solve (25)–(26) onBE instead ofB.

Step4. Solution of the one dimensional problem.
BE is a countable union of disjoint open intervals. We denoteBE =⋃n(an, bn), where

an, bn are disjoints reals. But, since we shall also work onBE we want that thes
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open intervals are not to “close” to each other. For instance, if there existn, m such
thatbn = am and if 1/

√
2(E − V (x)) is integrable on a neighboorhood ofbn, a particle

reachingbn from the left may continue to go further right or may change direction
go backwards. This will give rise to distinct solutions of the transport equation. Bu
shall show that for almost allE, we have some “free zone” around each(an, bn). More
precisely, for almost allE there exists anεn > 0 such thatBE ∩ (an − εn, bn + εn) =
(an, bn). If we admit this point, we see that we just have to solve (25)–(26) on an int
of the type(a′, b′), wherea′ belongs to[−∞,+∞) andb′ to (−∞,+∞]. Before going
further, we prove the

LEMMA 2. –For almost allE, if we writeBE = ⋃
n(an, bn) then, for eachn, there

exists someεn > 0 such thatBE ∩ (an − εn, bn + εn)= (an, bn).
Proof. –First we recall that sinceV belongs toW 1,1

loc , the image byV of a zero-
measure set is a zero-measure set. Then, we state a result similar to the Sard’s le
V. Let Z be the set wereV ′ vanishes. We claim thatV (Z) has zero-measure. Of cours
Z is defined up to a zero-measure set, but this is irrelevant for our claim in view o
fact recalled above. In order to prove our claim, we choose a sequence of open sOn
such thatZ ⊂On andλ(On\Z) goes to 0 asn goes to∞. Here and belowλ denotes the
Lesbegue measure onR or R2. We may writeOn =⋃

m In,m where theIn,m are disjoint
intervals ofR. Then,

λ
(
V (On)

)= λ
(
V

(⋃
m

In,m

))
�
∑
m

λ
(
V (In,m)

)

�
∑
m

∫
In,m

|V ′| =
∫
On

|V ′| �
∫

On\Z
|V ′|

and the last quantity goes to 0 asn→ ∞ sinceλ(On\Z) goes to 0 asn→ ∞ and our
claim is shown.

Next, we denote byZ1 the set such thatZc1 is the set of Lebesgue points ofV ′ (i.e. the
set of points such that 1/(2ε)

∫ x+ε
x−ε |V ′(y) − V ′(x)|dy goes to zero asε → 0). Then,

λ(Z1) = 0. According to what we proved above, we know thatλ(V (Z ∪ Z1)) = 0.
Now, if we chooseE ∈ V (Z ∪ Z1)

c, and writeBE = ⋃
n(an, bn) as above, we know

that an and bn are Lebesgue’s point ofV ′ with V ′(an) �= 0 and V ′(bn) �= 0. Then
necessarily,V ′(bn) > 0 andV is strictly increasing in a neighboorhood ofbn because
it is a Lebesgue’s point. Since we may make the same argument nearan, we have then
shown the existence ofεn as stated in the lemma.✷

To solve (25)–(26) on(a′, b′) we use the change of variablex �→ z= F(x) whereF
is a primitive of 1/

√
2(E − V (x)) from (a′, b′) to (a, b). We can because this quantity

locally integrable on almost all lines (this result is easily seen using Fubini’s theo
Then, we obtain the two following equations

∂t(w+ +w−)+ ∂z(w+ −w−)= 0 on[0,∞)× [a, b], (30)

∂t(w+ −w−)+ ∂z(w+ +w−)= 0 on[0,∞)× (a, b), (31)
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Fig. 4. Behaviour ofw+ andw−.

with appropriate initial conditions. And as before, in (30) we use test function
C∞
o ([0,∞) × [a, b]) (in others words the tests functions do not necessarily vanis

{z= a} and{z= b} whena andb are finite).
Here, if a′ = −∞ or b′ = +∞ we need the assumption of non-integrability onV . If

it is not verified,a (or b) will be finite, and we cannot use test functions which do
vanish on{z= a} (or {z= b}) in (25). And we shall not have the uniqueness of soluti
of the equivalent problem (as will become clearerr below).

Adding and substracting the two equations inD′([0,∞)× (a, b)) yields

∂tw+ + ∂zw+ = 0 inD′([0,∞)× (a, b)),
∂tw− − ∂zw− = 0 inD′([0,∞)× (a, b)).

Hence, the solutions are of the formw+(t, z)="+(z− t) andw−(t, z)="−(z+ t)
with "+ and"− belonging toL∞(R). but we have not used yet the fact that (3
is true on[a, b]. This tells us formally thatw+(t, a) = w−(t, a) when a �= −∞ and
w+(t, b) = w−(t, b) whenb �= +∞. This can be justified. Indeed, let us assume
b �= +∞ and let we choose someφ ∈ C∞

o ((0,∞)), an ε ∈ (0, b − a) andχε ∈ C∞(R)
increasing such thatχε(z)= 0 for z < b− ε and someχε(z)= 1 for z > b . We useφχε
as a test function in (30). We then obtain∫

[0,∞)×(b−ε,b)

(
"+(z− t)+"−(z+ t))∂tφ(t)χε(z) dt dz

+
∫

[0,∞)×(b−ε,b)

(
"+(z− t)−"−(z+ t))φ(t)∂zχε(z) dt dz= 0.

Whenε→ 0, the first integral goes to 0. The second integral goes to
∫
[0,∞)("+(b− t)−

"−(b + t))φ(t) dt . Since it holds for allφ ∈ C∞
o ((0,∞)), we obtain that"+(b − t) =

"−(b+ t). We can prove similary that"+(a − t)="−(t + a) if a �= −∞.
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Now, we shall assume thata and b are both finite (the other cases are similar a
simpler) and we definel = b − a. Without using the boundary conditions, the init
conditions onw+ andw− impose the value of"+ and"− on the interval(a, b). Of
course, it should be understood in sense of functions defined almost everywhe
here it does not raise any difficulty and we will omit to specify it afterwards. Using
boundary condition"+(b − t) = "−(b + t), we see that"+ and"− are determined
in (b, b + l). And the condition"+(a − t) = "−(t + a) determines"+ and"− in
(a− l, a). If we continue to use this symmetry argument further, we see that"+ and"−
are uniquely determined inR, provided we know them in(a, b) (we remark here that it i
not the case if one of the boundary counditions is missing, as it is the case whena = −∞
or b= +∞ and the assumption of non-integrability onV is not satisfied).Then, for ever
intial condition (onw+ andw−) in L∞, there exists a unique solution to the syst
(30)–(31). And in view of the form of those solutions, we see that they are renorma
ones. This concludes the proof.✷
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