Jan Kristensen

On the non-locality of quasiconvexity

<http://www.numdam.org/item?id=AIHPC_1999__16_1_1_0>
On the non-locality of quasiconvexity

by

Jan KRISTENSEN *

Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK.

ABSTRACT. – It is shown that in the class of smooth real-valued functions on $n \times m$ matrices ($n \geq 3$, $m \geq 2$) there can be no “local condition” which is equivalent to quasiconvexity. © Elsevier, Paris.

Key words: Quasiconvexity, rank-one convexity.

A continuous function $f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ is called locally quasiconvex if at every point $X \in \mathbb{R}^{n \times m}$ there exists a neighborhood in which it coincides with a quasiconvex function. In this note we show that a C^2-function satisfying a strict Legendre-Hadamard condition at every point is locally quasiconvex. Using Šverák’s (cf. [21]) example of a rank-one convex function which is not quasiconvex we show that in dimensions $n \geq 3$, $m \geq 2$ there are locally quasiconvex functions that are not quasiconvex. Indeed, for any positive number $r > 0$ we give an example of a smooth function, which equals a quasiconvex function on any ball of radius r, but which is not itself quasiconvex. As a consequence of this we obtain that in dimensions $n \geq 3$, $m \geq 2$ there is no “local condition” which

* The research is supported by the Danish Research Councils through grant no. 9501304.
Classification A.M.S. 49J10, 49J45.
for C^∞-functions is equivalent to quasiconvexity. In particular, we confirm the conjecture of Morrey (cf. [12]) saying that in general there is no condition involving only f and a finite number of its derivatives, which is both necessary and sufficient for quasiconvexity. However, it might still be possible to find a “local condition” which is equivalent to quasiconvexity in e.g. the class of polynomials.

The proof relies heavily on Šverák’s example of a rank-one convex function which is not quasiconvex, and the main contribution here is contained in Lemma 2. Lemma 2 provides an extension result for quasiconvex functions, and is proved by use of Taylor’s formula, a slight extension of Dacorogna’s quasiconvexification formula and the equivalence of rank-one convexity and quasiconvexity for quadratic forms.

In the last part of this note we consider rank-one convexity and quasiconvexity in an abstract setting. We hereby prove that in the class of C^∞-functions, any convexity concept between rank-one convexity and quasiconvexity, which is equivalent to a “local condition” is in fact rank-one convexity.

For convenience of the reader and to fix the notation we recall some definitions. The space of (real) $n \times m$ matrices is denoted by $\mathbb{R}^{n \times m}$. We use the usual Hilbert-Schmidt norm for matrices.

A continuous real-valued function $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is said to be rank-one convex at $X \in \mathbb{R}^{n \times m}$ if the inequality

$$f(X) \leq tf(Y) + (1-t)f(Z)$$

holds for all $t \in [0,1]$, $Y, Z \in \mathbb{R}^{n \times m}$ satisfying $\text{rank}(Y - Z) \leq 1$ and $X = tY + (1-t)Z$. The function f is rank-one convex if it is rank-one convex at each point.

The space of compactly supported C^∞-functions $\varphi : \mathbb{R}^m \to \mathbb{R}^n$ is denoted by $\mathcal{D}(\mathbb{R}^m; \mathbb{R}^n)$, or briefly, by \mathcal{D}. The support of φ is denoted by $\text{spt}\varphi$, and the gradient of φ at x, $D\varphi(x)$, is identified in the usual way with a $n \times m$ matrix.

A continuous real-valued function $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is said to be quasiconvex at $X \in \mathbb{R}^{n \times m}$ if the inequality

$$\int_{\mathbb{R}^m} (f(X + D\varphi(x)) - f(X)) \, dx \geq 0$$

holds for all $\varphi \in \mathcal{D}$. The function f is quasiconvex if it is quasiconvex at each point.
If for $X \in \mathbb{R}^{n \times m}$ there exists a positive number $\delta = \delta(X) > 0$, such that the inequality (2) holds for all $\varphi \in \mathcal{D}$ satisfying $\sup_x |D\varphi(x)| \leq \delta$, then f is said to be weakly quasiconvex at X. As above, f is weakly quasiconvex if it is weakly quasiconvex at each point.

The concepts of quasiconvexity and weak quasiconvexity are due to Morrey [12]. A concept of quasiconvexity relevant for higher order problems has been introduced by Meyers [11] (see also [5]).

It is obvious that quasiconvexity of f implies weak quasiconvexity of f, and, as shown by Morrey [12], weak quasiconvexity of f implies rank-one convexity of f. Hence it follows in particular that quasiconvexity of f implies rank-one convexity of f.

In the special case where f is a quadratic form the converse is also true. Hence for quadratic forms the notion of rank-one convexity is equivalent to the notion of quasiconvexity (cf. [13]). A famous conjecture of Morrey [12] is that in dimensions $n \geq 2$, $m \geq 2$ there are rank-one convex functions that are not quasiconvex. In dimensions $n \geq 3$, $m \geq 2$ this was confirmed by Šverák in [21] giving a remarkable example of a polynomial of degree four which is rank-one convex, but not quasiconvex. In the remaining non-trivial cases, i.e. $n = 2$, $m \geq 2$, the question remains open. The problem is discussed in [3], [4], and more recently, in [15], [17], [26], [27].

It is not hard to see that for a C^2-function $f : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$ rank-one convexity is equivalent to satisfaction of the Legendre-Hadamard (or ellipticity) condition at every $X \in \mathbb{R}^{n \times m}$, i.e. for each $X \in \mathbb{R}^{n \times m}$

$$D^2f(X)(a \otimes b, a \otimes b) \geq 0$$

for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

If for some $X \in \mathbb{R}^{n \times m}$ the inequality (3) holds strictly for all $a \neq 0$, $b \neq 0$, then we say that f satisfies a strict Legendre-Hadamard (or strong ellipticity) condition at X. This is equivalent to the existence of a positive number $c = c(X)$, such that

$$D^2f(X)(a \otimes b, a \otimes b) \geq c|a|^2|b|^2$$

for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. By using the Fourier transformation and the Plancherel theorem it is easily seen that (4) is equivalent to

$$\int_B D^2f(X)(D\varphi(x), D\varphi(x)) \, dx \geq c \int_B |D\varphi(x)|^2 \, dx$$

for all $\varphi \in \mathcal{D}$ with $\text{spt}\varphi \subset B$, where $B := \{x \in \mathbb{R}^m : |x| < 1\}$.

By using Taylor’s formula and the equivalence of rank-one convexity and quasiconvexity for quadratic forms it can be proved that a C^2-function f satisfying a strict Legendre-Hadamard condition at every point is weakly quasiconvex. The same kind of reasoning was used by Tartar [22] in proving a local form of a conjecture in compensated compactness.

DEFINITION. – A continuous real-valued function $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is said to be locally quasiconvex at $X \in \mathbb{R}^{n \times m}$ if there exists a quasiconvex function $g : \mathbb{R}^{n \times m} \to \mathbb{R}$, such that $f = g$ in a neighborhood of X.

The function f is locally quasiconvex if it is locally quasiconvex at each point.

One could define a similar concept of local rank-one convexity. However, by using a mollifier argument and the Legendre-Hadamard condition it is easily proved that this concept coincides with the usual concept of rank-one convexity. It is obvious that there is no need for a local concept of weak quasiconvexity.

If $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is a locally bounded Borel function, then we define its quasiconvexification, $Qf : \mathbb{R}^{n \times m} \to [-\infty, +\infty]$, as

$$Qf(X) := \sup \{g(X) : g \text{ quasiconvex and } g \leq f\}.$$

Notice that if at some X, $Qf(X) > -\infty$, then Qf is quasiconvex.

The following result is a slight extension of a similar result due to Dacorogna [6]. We refer to [8] for the proof of this and for some extensions along these lines.

Lemma 1. – Let $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ be a locally bounded Borel function. Then

$$Qf(X) = \inf \left\{ \int_B f(X + D\varphi) \, dx : \varphi \in \mathcal{D} \text{ with spt}\varphi \subset B \right\}.$$

For a C^2-function $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ we have by Taylor’s formula

$$f(X + Y) = f(X) + Df(X)Y + \frac{1}{2}D^2f(X)(Y;Y) + R(X;Y),$$

where the remainder term $R(X;Y)$ is given by

$$R(X;Y) = \int_0^1 (1-t)(D^2f(X+tY) - D^2f(X))(Y;Y) \, dt.$$

For notational reasons it is convenient to introduce an auxiliary function, which essentially is a continuity modulus for the second derivative of f.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
For each \(r \in (0, +\infty) \) define \(\Omega_r : (0, +\infty) \mapsto [0, +\infty) \) as (the norm being the usual one for bilinear mappings)

\[
\Omega_r(t) := \sup \left\{ |D^2 f(X + Y) - D^2 f(X)| : |X| \leq r, |Y| < t \right\}.
\]

Obviously, \(\Omega_r \) is non-decreasing and continuous, and since \(D^2 f \) is uniformly continuous on compact sets, \(\Omega_r(t) \to 0 \) as \(t \to 0^+ \). Furthermore we notice that if \(|X| \leq r \), then

\[
|R(X; Y)| \leq \frac{1}{2} \Omega_r(|Y|)|Y|^2 \tag{6}
\]

for all \(Y \in \mathbb{R}^{n \times m} \).

Lemma 2. - Let \(f : \mathbb{R}^{n \times m} \mapsto \mathbb{R} \) be a \(C^2 \)-function, and assume that there exist numbers \(c, r > 0 \), such that

\[
\int_B D^2 f(X)(D\varphi, D\varphi) \, dx \geq c \int_B |D\varphi|^2 \, dx \tag{7}
\]

for \(|X| \leq r \) and \(\varphi \in \mathcal{D} \) with \(\text{spt} \varphi \subseteq B \). Put \(\delta := (1/2) \sup \{ t \in (0, r) : c \geq \Omega_r(t) \} \). Then there exists a quasiconvex function \(g : \mathbb{R}^{n \times m} \mapsto \mathbb{R} \) of at most quadratic growth, such that

\[
f(X) = g(X) \quad \text{whenever} \quad |X| \leq \delta.
\]

Remark. - Being quasiconvex \(g \) is necessarily locally Lipschitz continuous (cf. [6]), however, I do not know whether it is possible to obtain a quasiconvex extension \(g \) of \(f \) which is as regular as \(f \) is.

Proof. - Define the function \(g := QG \), where

\[
G(X) := \begin{cases}
 f(X) & \text{if } |X| \leq \delta, \\
 \sup_{|Y| \leq \delta} \left(f(Y) + Df(Y)(X - Y) \right) \\
 + \frac{1}{2} D^2 f(Y)(X - Y, X - Y) & \text{otherwise}.
\end{cases}
\]

Then obviously \(g \) is quasiconvex, of at most quadratic growth and \(g(X) \leq f(X) \) for \(|X| \leq \delta \). We claim that \(g(X) = f(X) \) for \(|X| \leq \delta \). Fix \(X \) with \(|X| < \delta \). Let \(\varepsilon > 0 \) and find \(\varphi = \varphi_\varepsilon \in \mathcal{D} \), such that

\[
|\mathcal{B}|(g(X) + \varepsilon) > \int_B G(X + D\varphi) \, dx.
\]
Using Taylor’s formula, (6) and (7) we obtain

\[
|\mathcal{B}|(g(X) + \varepsilon) > \int_{B \cap \{|X + D\varphi| \leq \delta\}} f(X + D\varphi) \, dx \\
+ \int_{B \cap \{|X + D\varphi| > \delta\}} \left(f(X) + Df(X)D\varphi + \frac{1}{2} D^2 f(X)(D\varphi, D\varphi) \right) \, dx \\
= \int_{B \cap \{|X + D\varphi| \leq \delta\}} R(X, D\varphi) \, dx \\
+ \int_{B} \left(f(X) + Df(X)(D\varphi) + \frac{1}{2} D^2 f(X)(D\varphi, D\varphi) \right) \, dx \\
\geq |\mathcal{B}|f(X) + \frac{1}{2} \int_{B \cap \{|X + D\varphi| \leq \delta\}} |D\varphi|^2 (c - \Omega_r(|D\varphi|)) \, dx \geq |\mathcal{B}|f(X),
\]

where the last inequality follows from the definition of \(\delta \).

Proposition 1. – Let \(f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \) be a \(C^2 \)-function satisfying a strict Legendre-Hadamard condition at every point. Then \(f \) is locally quasiconvex.

Proof. – This follows easily by applying Lemma 2 to the functions \(f_X(Y) := f(X + Y) \), \(Y \in \mathbb{R}^{n \times m} \), where \(X \in \mathbb{R}^{n \times m} \) is fixed.

According to Šverák [21] there exists a polynomial \(p \) of degree four on \(\mathbb{R}^{3 \times 2} \), which is rank-one convex but not quasiconvex. A closer inspection of the proof in [21] reveals that we may take \(p \) so that it additionally satisfies a strict Legendre-Hadamard condition at every point, hence by the above result \(p \) is locally quasiconvex.

Recall that a continuous function \(f \) is polyconvex if \(f(X) \) can be written as a convex function of the minors of \(X \). A polyconvex function is quasiconvex, but not conversely (cf. Ball [2], and [1], [20], [24], [25]). If one defines a concept of local polyconvexity as done above for quasiconvexity it is possible to prove that there are locally polyconvex functions on \(\mathbb{R}^{n \times m} (n, m \geq 2) \) that are not polyconvex. In higher dimensions, i.e. \(n \geq 3 \), \(m \geq 2 \), there are locally polyconvex functions on \(\mathbb{R}^{n \times m} \) that are not quasiconvex (cf. [9]).

Proposition 2. – Assume that \(n \geq 3 \), \(m \geq 2 \). For any \(r > 0 \) there exists a \(C^\infty \)-function \(f_r : \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \) with the following two properties:

(I) \(f_r \) is not quasiconvex;

(II) for all \(X \in \mathbb{R}^{n \times m} \) there exists a quasiconvex function \(g_X \), such that \(g_X(Y) = f_r(Y) \) holds for \(|Y - X| < r \).

In particular, local quasiconvexity does not imply quasiconvexity.
Proof. – Let \(p: \mathbb{R}^{n \times m} \to \mathbb{R} \) be a polynomial of degree four which is rank-one convex, but not quasiconvex (cf. Šverák [21]). Take for each \(s > 1 \) two auxiliary functions \(\zeta_s, \xi_s \in C^\infty(\mathbb{R}) \) verifying

\[
\zeta_s(t) = \begin{cases}
1 & \text{if } t < s \\
0 & \text{if } t > s + 1,
\end{cases}
\]

\[
\xi_s(t) = \begin{cases}
0 & \text{if } t < s - 1 \\
t^2 & \text{if } t > s + 1,
\end{cases}
\]

and \(\xi_s \) non-decreasing, convex and \(\xi''_s(t) > 0 \) for \(t \in (s - 1, s + 1) \).

It is not hard to see that we may find \(s > 1 \) and \(k > 0 \), such that

\[
p(X)\zeta_s(|X|) + k\xi_s(|X|)
\]

is rank-one convex, but not quasiconvex (cf. Šverák [19] remark 3.4 and [20]). Next take \(\varepsilon > 0 \), so that

\[
g(X) := p(X)\zeta_s(|X|) + k\xi_s(|X|) + \varepsilon|X|^2
\]

is not quasiconvex. Notice that \(g \) satisfies a uniform Legendre-Hadamard condition:

\[
\int_B D^2g(X)(D\varphi, D\varphi) \, dx \geq \varepsilon \int_B |D\varphi|^2 \, dx
\]

for all \(X \in \mathbb{R}^{n \times m} \) and all \(\varphi \in \mathcal{D} \) with \(\text{spt} \varphi \subset B \).

Notice also that if \(R(X, Y) \) denotes the remainder term in the Taylor expansion of \(g \) about \(X \), then for some constant \(C > 0 \)

\[
|R(X, Y)| \leq 3 \int_0^1 (1 - t)^2 \sum_{|\alpha|=3} |\partial^\alpha g(X + tY)\frac{Y^\alpha}{\alpha!}| \, dt \leq C|Y|^3
\]

for all \(X, Y \in \mathbb{R}^{n \times m} \). In the notation of Lemma 2 (see (6)) this corresponds to \(\Omega_r(t) = 2Ct, t > 0 \), independent of \(r > 0 \).

Fix \(X_0 \in \mathbb{R}^{n \times m} \). We claim that there exists a quasiconvex extension of \(g \) from the closed ball \(|X - X_0| \leq \varepsilon/(4C) \). Indeed, define \(g_{X_0}(X) := g(X_0 + X) \) and notice that by Lemma 2 we may find a quasiconvex function \(G_{X_0} \), such that \(g(X + X_0) = g_{X_0}(X) = G_{X_0}(X) \) for \(|X| \leq \varepsilon/(4C) \), or equivalently, such that

\[
g(X) = G_{X_0}(X - X_0) \quad \text{for} \quad |X - X_0| \leq \frac{\varepsilon}{4C}.
\]
This proves the claim. Finally we define the function f_r as

$$f_r(X) := g \left(\frac{4C}{\varepsilon r} X \right), \quad X \in \mathbb{R}^{n \times m}.$$

This finishes the proof.

Let $\mathcal{C}^\infty(\mathbb{R}^{n \times m})$ denote the space of all real-valued \mathcal{C}^∞-functions $f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ and let \mathcal{F} denote the space of all extended real-valued functions $F : \mathbb{R}^{n \times m} \mapsto [-\infty, +\infty]$.

If we define the operator $\mathcal{P}_{rc} : \mathcal{C}^\infty(\mathbb{R}^{n \times m}) \mapsto \mathcal{F}$ as

$$\mathcal{P}_{rc}(f)(X) := \inf \{ D^2 f(X)(a \otimes b, a \otimes b) : a \in \mathbb{R}^n, b \in \mathbb{R}^m \}, \quad X \in \mathbb{R}^{n \times m},$$

then $f \in \mathcal{C}^\infty(\mathbb{R}^{n \times m})$ is rank-one convex if and only if $\mathcal{P}_{rc}(f) = 0$. Furthermore, the operator \mathcal{P}_{rc} is local in the sense that if $f, g \in \mathcal{C}^\infty(\mathbb{R}^{n \times m})$ are equal in a neighborhood of X, then also $\mathcal{P}_{rc}(f)$ equals $\mathcal{P}_{rc}(g)$ in a neighborhood of X. Thus:

$$f = g \text{ in a neighborhood of } X \Rightarrow \mathcal{P}_{rc}(f) = \mathcal{P}_{rc}(g) \text{ in a neighborhood of } X.$$

It would be interesting if one could find a similar condition for quasiconvexity. That is, a local operator $\mathcal{P}_{qc} : \mathcal{C}^\infty(\mathbb{R}^{n \times m}) \mapsto \mathcal{F}$ with the property

$$\mathcal{P}_{qc}(f) = 0 \iff f \text{ is quasiconvex} \quad (*)$$

for $f \in \mathcal{C}^\infty(\mathbb{R}^{n \times m})$.

Theorem 1. - In dimensions $n \geq 3, m \geq 2$ there does not exist a local operator

$$\mathcal{P} : \mathcal{C}^\infty(\mathbb{R}^{n \times m}) \mapsto \mathcal{F}$$

with the property $(*)$.

Remark. - The proof will show that the operator \mathcal{P} cannot satisfy $(*)$ and the following locality-type condition: There exists a number $r > 0$, such that for $f, g \in \mathcal{C}^\infty(\mathbb{R}^{n \times m})$ and $X \in \mathbb{R}^{n \times m}$

$$f(Y) = g(Y) \text{ for } |Y - X| \leq r \Rightarrow \mathcal{P}(f)(X) = \mathcal{P}(g)(X).$$

Proof. - We argue by contradiction and assume that it is possible to find a local operator with the property $(*)$.
By Proposition 2 we may find a C^∞-function $f : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$ which is not quasiconvex, but agrees with quasiconvex functions on all balls of, say, radius one.

Let $\Phi_\varepsilon \in C^\infty$, $\varepsilon > 0$, be a non-negative mollifier with support contained in $\{ X : |X| \leq \varepsilon \}$. Put $f_\varepsilon := f * \Phi_\varepsilon$, i.e. the convolution of f and Φ_ε.

We claim that if $\varepsilon \in (0, 1/2)$, then f_ε is quasiconvex.

Fix $X \in \mathbb{R}^{n \times m}$. By the assumption on f we may find a quasiconvex function $g_X : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$, such that

$$f(Y) = g_X(Y) \text{ whenever } |Y - X| \leq 1.$$

Now if $g_{X,\varepsilon} := g_X * \Phi_\varepsilon$, then $g_{X,\varepsilon}$ is a quasiconvex C^∞-function. Furthermore, if $|Y - X| < 1/2$, then

$$g_{X,\varepsilon}(Y) = \int_{|Z-Y|\leq\varepsilon} \Phi_\varepsilon(Y-Z) g_X(Z) \, dZ = f_\varepsilon(Y),$$

hence by the locality of P and the quasiconvexity of $g_{X,\varepsilon}$

$$P(f_\varepsilon)(X) = P(g_{X,\varepsilon})(X) = 0.$$

Therefore it follows from the assumption that f_ε is quasiconvex if $\varepsilon < 1/2$. If we let ε tend to zero we get a contradiction. \(\square \)

Before we state the next result we need some additional terminology. Let $C^0(\mathbb{R}^{n \times m})$, the space of continuous real-valued functions, be endowed with the usual metric making it a Fréchet space. The dual space, $C(\mathbb{R}^{n \times m})'$, is identified with, $M_{\text{comp}}(\mathbb{R}^{n \times m})$, the space of compactly supported Radon measures. The space $M_{\text{comp}}(\mathbb{R}^{n \times m})$ is endowed with the weak* topology.

Let Λ be a non-empty set of compactly supported probabilities on $\mathbb{R}^{n \times m}$ all of which have center of mass at 0. Then we say that a continuous real-valued function $f : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$ is Λ-convex if

$$\int f(X + Y) \, d\mu(Y) \geq f(X)$$

for all $\mu \in \Lambda$ and all $X \in \mathbb{R}^{n \times m}$.

Obviously, Λ-convexity is equivalent to $\text{co} \Lambda$-convexity, where $\text{co} \Lambda$ denotes the closed convex hull of Λ in $M_{\text{comp}}(\mathbb{R}^{n \times m})$.

This convexity concept also captures the concept of directional convexity (cf. [10], [14], [18], [23]).
Let V be a non-empty subset of $C^0(\mathbb{R}^{n \times m})$. We say that the concept of Λ-convexity is local on V if there exists a local operator $\mathcal{P} : V \mapsto \mathcal{F}$, such that for $f \in V$ we have

$$f \text{ is } \Lambda\text{-convex } \iff \mathcal{P}(f) = 0.$$

Let Λ_{rc} denote the set of probabilities μ of the form

$$\int \Phi \, d\mu := \sum_{i=1}^{N} t_i \Phi(X_i), \Phi \in C^0(\mathbb{R}^{n \times m}),$$

where $t_i \in [0, 1]$, $X_i \in \mathbb{R}^{n \times m}$ satisfy the (H_N) condition and $\sum_{i=1}^{N} t_i X_i = 0$. We refer to Dacorogna (cf. [6]) for the definition of the (H_N) condition.

We notice that Λ_{rc}-convexity is rank-one convexity.

Let Λ_{qc} be the set of probabilities ν of the form

$$\int \Phi \, d\nu := \int_{B} \Phi(D\varphi(x)) \, dx, \Phi \in C^0(\mathbb{R}^{n \times m}),$$

for some $\varphi \in \mathcal{D}$ with $\text{spt} \varphi \subset B$.

We notice that Λ_{qc}-convexity is quasiconvexity.

The probabilities in $\overline{\text{co}} \Lambda_{rc}$ and $\overline{\text{co}} \Lambda_{qc}$ can be interpreted as certain homogeneous Young measures (cf. Kinderlehrer and Pedregal [7] and [16]). However, we shall not use this viewpoint here.

Theorem 2. Let Λ be a set of compactly supported probabilities with center of mass at 0. Assume that

$$\overline{\text{co}} \Lambda_{rc} \subseteq \overline{\text{co}} \Lambda \subseteq \overline{\text{co}} \Lambda_{qc}.$$

If Λ-convexity is local on $C^\infty(\mathbb{R}^{n \times m})$, then $\overline{\text{co}} \Lambda = \overline{\text{co}} \Lambda_{rc}$.

For the proof of Theorem 2 we need the following result which is essentially contained in [7], [16]. We outline the proof for the convenience of the reader.

Lemma 3. Let μ be a compactly supported probability measure on $\mathbb{R}^{n \times m}$ with center of mass $\overline{\mu} = 0$. If for all rank-one convex C^∞-functions $f : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$ with $\sup_{X} |D^3 f(X)| \leq 1$ the inequality

$$\int f \, d\mu \geq f(0)$$

holds, then $\mu \in \overline{\text{co}} \Lambda_{rc}$.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
Proof. – It is easily seen that if \(f \) is a rank-one convex function, then it follows from (8) that also
\[
\int f \, d\mu \geq f(0).
\]
(9)

Let \(T \) be a weakly* continuous linear functional on \(\mathcal{M}_{\text{comp}}(\mathbb{R}^{n \times m}) \) satisfying
\[
T(\nu) \geq \alpha
\]
for all \(\nu \in \co \Lambda_{rc} \), where \(\alpha \in \mathbb{R} \). By Hahn-Banach’s separation theorem it is enough to show that also \(T(\mu) \geq \alpha \). A weakly* continuous linear functional is an evaluation functional. Hence
\[
T(\nu) = \int \Phi \, d\nu, \, \nu \in \mathcal{M}_{\text{comp}}(\mathbb{R}^{n \times m}),
\]
for some \(\Phi \in C^0(\mathbb{R}^{n \times m}) \). Now (10) gives that
\[
R\Phi(0) = \inf \left\{ \int \Phi \, d\nu : \nu \in \co \Lambda_{rc} \right\} \geq \alpha,
\]
where \(R\Phi \) is the rank-one convexification of \(\Phi \) (cf. Dacorogna [6] and [8]). We end the proof by applying (9) with \(f = R\Phi \).

Proof (of Theorem 2). – Let \(\mathcal{P} : C^\infty(\mathbb{R}^{n \times m}) \mapsto \mathcal{F} \) denote the local operator detecting \(\Lambda \)-convexity. Let \(\mu \in \Lambda \), and fix a rank-one convex \(C^\infty \)-function \(f \) with \(\sup_X |D^3 f(X)| \leq 1 \). For \(\gamma > 0 \), put \(f_\gamma(X) := f(X) + \gamma |X|^2 \), \(X \in \mathbb{R}^{n \times m} \). Notice that
\[
\int_B D^2 f(X)(D\varphi, D\varphi) \, dx \geq \gamma \int_B |D\varphi|^2 \, dx
\]
for all \(\varphi \in \mathcal{D} \) with \(\text{spt}\varphi \subset B \), and that \(\sup_X |D^3 f_\gamma(X)| \leq 1 \). Hence by Lemma 2 \(f_\gamma \) coincides with quasiconvex functions on balls of radius \(\gamma/4 \). Take \(\varepsilon \in (0, \gamma/8) \), put \(f_{\gamma,\varepsilon} := f_\gamma * \Phi_\varepsilon \). Here \(\Phi_\varepsilon \) is the mollifier from the proof of Theorem 2. Obviously, \(f_{\gamma,\varepsilon} \) equals quasiconvex \(C^\infty \)-functions on balls of radius \(\gamma/8 \). Consequently, by the locality of the operator \(\mathcal{P} \), \(\mathcal{P}(f_{\gamma,\varepsilon}) = 0 \), and therefore by the assumption, \(f_{\gamma,\varepsilon} \) is \(\Lambda \)-convex. In particular,
\[
\int f_{\gamma,\varepsilon} \, d\mu \geq f_{\gamma,\varepsilon}(0)
\]
for \(\gamma > 0, \varepsilon \in (0, \gamma/8) \). Now let \(\gamma \) tend to zero and apply Lemma 3 to finish the proof.
ACKNOWLEDGEMENTS

I would like to thank John Ball, Zhang Kewei, Michael Levitin, Francois Murat and Petr Plechac for helpful comments and stimulating discussions. I would also like to thank the referee for some useful remarks.

REFERENCES

Annales de l'Institut Henri Poincaré - Analyse non linéaire

(Manuscript received June 17, 1996; Revised version received October 10, 1996.)