DAO-MIN CAO

Multiple solutions of a semilinear elliptic equation in \mathbb{R}^N

<http://www.numdam.org/item?id=AIHPC_1993__10_6_593_0>
Multiple solutions of a semilinear elliptic equation in \mathbb{R}^N

by

Dao-Min CAO
Wuhan Institute of Mathematical Sciences,
Academia Sinica,
P.O. Box 71007, Wuhan 430071,
P. R. China

ABSTRACT. – In this paper, we are concerned with the existence of multiple solutions of

$$-\Delta u + u = \lambda b(x) |u|^{p-1} u + c(x) |u|^{q-1} u$$

where $1 < p, q < \frac{N+2}{N-2}$ if $N \geq 3$, $1 < p, q < +\infty$ if $N = 2$, $\lambda > 0$.

We obtain the existence of multiple solutions by using concentrations-compactness method and dual variational principle to establish the corresponding existence of critical points.

Key words: Semilinear elliptic equations, variation, critical point, concentration-compactness.

RÉSUMÉ. – Nous obtenons dans cet article un résultat d’existence et de multiplicité de solutions de

$$-\Delta u + u = \lambda b(x) |u|^{p-1} u + c(x) |u|^{q-1} u$$

où $1 < p, q < \frac{N+2}{N-2}$, $N \geq 3$, $1 < p, q < +\infty$ si $N = 2$, $\lambda > 0$.

A.M.S. Classification: 35 B 05, 35 J 60.
1. INTRODUCTION

We consider the existence of multiple solutions of the following semi-linear elliptic equation

\[
\begin{cases}
-\Delta u + u = \lambda b(x)|u|^p - 1 u + c(x)|u|^q - 1 u & \text{in } \mathbb{R}^N \\
u \in H^1(\mathbb{R}^N)
\end{cases}
\]

where \(1 < p, q < \frac{N+2}{N-2}\) if \(N \geq 3\), \(1 < p, q < +\infty\) if \(N = 2\), \(\lambda > 0\) is a real number, \(b(x)\) and \(c(x)\) satisfy

\[
\begin{cases}
b(x) \in C(\mathbb{R}^N), & b(x) \geq 0 \text{ in } \mathbb{R}^N \\
\lim_{|x| \to \infty} b(x) = b_\infty > 0,
\end{cases}
\]

\[
\begin{cases}
c(x) \in C(\mathbb{R}^N), & c(x) \geq 0 \text{ in } \mathbb{R}^N \\
\lim_{|x| \to \infty} c(x) = 0.
\end{cases}
\]

Existence of nontrivial solutions (positive solutions, for example) concerning (1.1) has been extensively studied even for more general nonlinearity—see, for instance, W. Strauss [12], H. Berestycki and P. L. Lions [4], W. Y. Ding and W. M. Ni [5], P. L. Lions [9], [10], A. Bahri and P. L. Lions [2] and the references therein. For the multiplicity of solutions we refer to H. Berestycki and P. L. Lions [4], X. P. Zhu [13] and Y. Y. Li [8].

It is known to some extent that the equation

\[
-\Delta u + u = c(x)|u|^{q-1} u \quad \text{in } \mathbb{R}^N
\]

may have infinitely many solutions because (1.3) ensures that the corresponding variational functional

\[
I^*(u) = \frac{1}{2} \int \nabla u^2 + u^2 - \frac{1}{q+1} \int c(x)|u|^{q+1}
\]
satisfies the (PS) (Palais-Smale) condition and the dual variational principle of A. Ambrosetti and P. Rabinowitz [1] may be applied. When λ is small, (1.1) can be taken as a small perturbation of (1.4) and thus it seems reasonable to hope that (1.1) has more and more solutions as λ tends to 0.

As mentioned in P. L. Lions ([9], [10]) that the variational functional corresponding to (1.1) defined by

$$I_\lambda(u) = \frac{1}{2} \int |\nabla u|^2 + u^2 - \frac{\lambda}{p+1} \int b(x) |u|^{p+1} - \frac{1}{q+1} \int c(x) |u|^{q+1}$$

fails to satisfy the (PS) condition because of the lack of compactness of the Sobolev embedding $H^1(\mathbb{R}^N) \subset L^2(\mathbb{R}^N)$.

Such a failure creates difficulties for the application of standard variational techniques. In section 2, arguing as P. L. Lions [10], we show by using the concentration-compactness principle that $I_\lambda(u)$ satisfies (PS)$_c$ condition if c belongs to an interval depending on λ which becomes large as λ tends to 0. In section 3, using a variant of the dual variational principle (dealing with unbounded even functionals) of A. Ambrosetti and P. Rabinowitz [1] we obtain the existence of multiple solutions by establishing the corresponding existence of critical points of $I_\lambda(u)$ with critical values in the interval in which $I_\lambda(u)$ satisfies (PS)$_c$ condition.

We conclude this introduction by remarking that some more general nonlinearities can be considered and similar existence results can be obtained by the arguments in this paper.

2. EXISTENCE OF A POSITIVE SOLUTION

In this section, we are concerned with the existence of a positive solution of (1.1). As preparations and for the discussion of next section, we first give some notations, definitions and auxiliary results.

Define

$$M_\lambda = \{ u \in H^1(\mathbb{R}^N) \mid u \neq 0, I'_\lambda (u) u = 0 \}$$

$$M^\infty_\lambda = \{ u \in H^1(\mathbb{R}^N) \mid u \neq 0, I'^\infty_\lambda (u) u = 0 \}$$

where $I_\lambda(u)$ is defined by (1.6), $I^\infty_\lambda(u)$ is defined by

$$I^\infty_\lambda (u) = \frac{1}{2} \int |\nabla u|^2 + u^2 - \frac{\lambda}{p+1} \int b_{\infty} |u|^{p+1}$$

Let

$$I_\lambda = \inf \{ I_\lambda(u) \mid u \in M_\lambda \}$$

$$I^\infty_\lambda = \inf \{ I^\infty_\lambda(u) \mid u \in M^\infty_\lambda \}$$
We have

PROPOSITION 2.1. — For each \(\lambda > 0 \), \(I_\lambda \leq I^* \).

Proof. — If \(c(x) \equiv 0 \), then \(I^* = +\infty \), thus \(I_\lambda \leq I^* \). In what follows, we assume \(c(x) \neq 0 \).

Suppose \(u \in H^1(\mathbb{R}^N) \), \(u \neq 0 \) such that

\[
(2.8) \quad \int \nabla u \cdot u + u^2 = \int c(x) |u|^{q+1}.
\]

Let \(v = \sigma u \) such that \(v \in M_\lambda \), i. e.,

\[
(2.9) \quad \int \nabla u \cdot u + u^2 = \sigma^{p-1} \int \lambda b(x) |u|^{p+1} + \sigma^{q-1} \int c(x) |u|^{q+1}
\]

Comparing (2.8) and (2.9) we deduce that such \(\sigma \) exists and \(\sigma \in (0, 1) \).

Letting \(h(\sigma) = \frac{\sigma^2}{2} \int \nabla u \cdot u + u^2 - \frac{\sigma^{q+1}}{q+1} \int c(x) |u|^{q+1} \), we have

\[
(2.10) \quad I_\lambda(v) = \sigma^2 \int \nabla u \cdot u + u^2 - \frac{\sigma^{q+1}}{q+1} \int \lambda b(x) |u|^{p+1}
\]

Thus \(I_\lambda \leq I^* \) and we have proved Proposition 2.1.

PROPOSITION 2.2. — We have

\[
(2.11) \quad I_\lambda^\circ = \frac{p-1}{2(p+1)} S^{(p+1)/(p-1)}(\lambda, b_\infty)^{-(2/(p-1))}.
\]
Proof. – We can easily find that
\[
S = \inf \left\{ \int |\nabla u|^2 + u^2 \mid u \in H^1(\mathbb{R}^N), \int |u|^{p+1} = 1 \right\}
\]
which has a positive minimum \(\tilde{u} \in H^1(\mathbb{R}^N) \cap C^2(\mathbb{R}^N) \) satisfying
\[
-\Delta u + u = S |u|^{p-1} u \quad \text{in } \mathbb{R}^N
\]
(see W. Strauss [12], P. L. Lions ([9], [10]) for examples). By Gidas, Ni and Nirenberg [7] we may assume \(\tilde{u} \) is radial.

On the other hand, there exists a positive radial function \(\tilde{u} \in H^1(\mathbb{R}^N) \cap C^2(\mathbb{R}^N) \) achieving \(I_\lambda^\infty \) such that \(\tilde{u} \) satisfying
\[
-\Delta u + u = \lambda b_\infty |u|^{p-1} u \quad \text{in } \mathbb{R}^N
\]
(see also W. Strauss [12], P. L. Lions ([9], [10]) for examples).

Let \(\tilde{u} = \left(\frac{S}{\lambda b_\infty} \right)^{1/(p-1)} v \), then \(v > 0 \) in \(\mathbb{R}^N \) and solves (2.13). By the uniqueness of radial positive solution due to M. K. Kwong [11] we deduce \(v \equiv \tilde{u} \) and thus
\[
I_\lambda^\infty = I_\lambda^\infty (\tilde{u}) = \frac{p-1}{2(p+1)} \int |\nabla \tilde{u}|^2 + \tilde{u}^2 - \frac{p-1}{2(p+1)} S^{(p+1)/(p-1)} (\lambda b_\infty)^{-(2/(p-1))}
\]
proving Proposition 2.2.

Lemma 2.3. – \(I_\lambda(u) \) satisfies \((PS)_c \) condition if
\[
c \in (-\infty, I_\lambda^\infty).
\]
Proof. – Suppose \(\{ u_n \} \subset H^1(\mathbb{R}^N) \) such that
\[
I_\lambda(u_n) \to c \in (-\infty, I_\lambda^\infty)
\]
\[
I'_\lambda(u_n) \to 0 \quad \text{in } H^1(\mathbb{R}^N)
\]

It is easy to deduce from (2.16) and (2.17) that \(\{ u_n \} \) is bounded in \(\tilde{H}^1(\mathbb{R}^N) \). By choosing subsequence if necessary we assume
\[
u_0 \to u_0 \quad \text{weakly in } H^1(\mathbb{R}^N).
\]

By the method of concentration-compactness, as in A. Bahri and P. L. Lions [2], P. L. Lions [10], V. Benci and G. Cerami [3] we deduce that there exist a nonnegative integer \(k \), \(\{ x_i \} (1 \leq i \leq k) \) in \(\mathbb{R}^N \), solutions \(\tilde{u}_i \in H^1(\mathbb{R}^N) \) (1 \(\leq i \leq k \)) of (2.14) such that (extracting subsequence if necessary)
\[
\left\| u_n - u_0 - \sum_{i=1}^{k} \tilde{u}_i(x-x_i) \right\| \to 0
\]
(2.20) \[c = I_\lambda (u_0) + \sum_{i=1}^{\lambda} I^{\infty}_\lambda (\tilde{u}_i). \]

Since \(I^{\infty}_\lambda (\tilde{u}_i) = \frac{p-1}{2(p+1)} \int |\nabla \tilde{u}_i|^2 + \tilde{u}_i^2 \geq 0 \) for \(i = 1, \ldots, k \) if for some \(i \), \(\tilde{u}_i \neq 0 \), then \(I^{\infty}_\lambda (\tilde{u}_i) \geq I^{\infty}_\lambda \) which implies \(c \geq I^{\infty}_\lambda \) because \(I_\lambda (u_0) \geq 0 \). Thus \(\tilde{u}_i \equiv 0 \) for \(1 \leq i \leq k \). Hence \(u_n \) converges to \(u_0 \) strongly and therefore Lemma 2.3 has been proved.

We are now going to use the preceding result to obtain the existence of a positive solution.

Theorem 2.4. Suppose \(I_\lambda < I^{\infty}_\lambda \). Then (1.1) has a positive solution.

Proof. By Ekeland's variational principle [6] and the definition of \(I_\lambda \), there exists a minimizing sequence \(\{ u_n \} \) such that \(\{ u_n \} \subset M_\lambda \)

\[
\begin{align*}
(2.21) & \quad I_\lambda (u_n) \to I_\lambda \\
(2.22) & \quad I'_{\lambda | M_\lambda} (u_n) \to 0 \quad \text{in} \quad H^{-1} (\mathbb{R}^N).
\end{align*}
\]

\[
(2.23) \quad I'_\lambda (u_n) \to 0 \quad \text{in} \quad H^{-1} (\mathbb{R}^N).
\]

Indeed, from (2.21), \(u_n \in M_\lambda \), using Sobolev inequality we can find \(C_1, C_2 > 0 \) such that

\[
(2.24) \quad C_1 < \int |\nabla u_n|^2 + u_n^2 < C_2 \quad \text{for all} \quad n = 1, 2, \ldots
\]

Letting \(J_\lambda (u) = \int |\nabla u|^2 + u^2 - \int \lambda \beta (x) |u|^{p+1} - \int c(x) |u|^{q+1} \), we have

\[
(2.25) \quad M_\lambda = \{ u \in H^1 (\mathbb{R}^N) \setminus \{ 0 \} \mid J_\lambda (u) = 0 \}.
\]

Thus

\[
(2.26) \quad I'_{\lambda | M_\lambda} (u_n) = I'_\lambda (u_n) - \theta_n J'_{\lambda | M_\lambda} (u_n)
\]

for some \(\theta_n \in \mathbb{R} \).

Since \(u_n \in M_\lambda \), we have from (2.26)

\[
(2.27) \quad I'_{\lambda | M_\lambda} (u_n) u_n - \theta_n J'_{\lambda | M_\lambda} (u_n) u_n = I'_\lambda (u_n) u_n = 0
\]

\[
(2.28) \quad J'_\lambda (u_n) u_n = 2 \int |\nabla u_n|^2 + u_n^2 - (p+1) \int \lambda \beta (x) |u_n|^{p+1} - (q+1) \int c(x) |u_n|^{q+1}
\]

\[= -(p+1) \int \lambda \beta (x) |u_n|^{p+1} - (q+1) \int c(x) |u_n|^{q+1}.
\]
Thus from (2.24), (2.28) and $u_n \in M_\lambda$ we have

$$-C_3 < J'(u_n) u_n < -C_4$$

for some constants $C_3, C_4 > 0$ independent of n.

From $I'_{\lambda n} (u_n) \to 0$, we obtain by (2.27) and (2.29) that $\theta_n \to 0$ which combined with (2.26) deduces $I'(u_n) \to 0$ in $H^{-1} (\mathbb{R}^N)$. Thus (2.23) holds.

Following Lemma 2.3, we can assume (by choosing subsequence if necessary)

$$u_n \to u_0 \quad \text{strongly in} \quad H^1 (\mathbb{R}^N).$$

By Sobolev inequality, we have $I_\lambda > 0$. Thus u_0 is a nontrivial solution of (1.1). Letting $u_0 = u_0^+ + u_0^-$, where $u_0^+ = \max \{ u_0, 0 \}$, $u_0^- = u_0 - u_0^+$, we have $I_\lambda (u_0) = I_\lambda (u_0^+) + I_\lambda (u_0^-)$. Since $I_\lambda (u_0^+) u_0^+ = 0$, i.e., $u_0^+ \in M_\lambda$ if $u_0^+ \neq 0$ we have $I_\lambda (u_0^-) \geq I_\lambda$ if $u_0^- \neq 0$. Therefore $u_0^+ \equiv 0$ or $u_0^- \equiv 0$. Without loss of generality, assume $u_0^- \equiv 0$. Thus $u_0 \geq 0$ in \mathbb{R}^N. It follows from standard regularity method and maximum principle that $u_0 \in C^2 (\mathbb{R}^N)$, $u_0 > 0$ in \mathbb{R}^N. Thus, we conclude the proof of Theorem 2.4.

Corollary 2.5. Suppose (1.2) holds, $c (x)$ satisfies

$$\begin{cases}
 c (x) \in C (\mathbb{R}^N), & c (x) \geq 0 \quad \text{in} \quad \mathbb{R}^N, \\
 c (x) \to 0, & c (x) \neq 0 \quad \text{in} \quad \mathbb{R}^N.
\end{cases}$$

Then (1.1) has a positive solution provided

$$\lambda \in \left(0, \left[\frac{p-1}{2 (p+1) I^*} \right]^{(p-1)/2} S^{(p+1)/2} b^{-1} \right).$$

Proof. From (2.31) we have

$$I^* < \frac{p-1}{2 (p+1)} S^{(p+1)/(p-1)} (\lambda b) - (2/(p-1)) = I_\lambda^\infty$$

which combined with Proposition 2.1 implies

$$I_\lambda < I_\lambda^\infty.$$

Thus, by Theorem 2.4 we know (1.1) has a positive solution.

We end this section by a few remarks.

Remark 2.6. The fact that if $I_\lambda < I_\lambda^\infty$ then I_λ has a minimum has been proved in P. L. Lions ([9], [10]). We reprove this fact for the sake of completeness.

Remark 2.7. Consider the following equation

$$-\Delta u + u = Q (x) |u|^{p-1} u \quad \text{in} \quad \mathbb{R}^N$$

where $Q (x) \in C (\mathbb{R}^N)$, $Q (x) \geq 0$ in \mathbb{R}^N, $Q (x) \to Q > 0$ as $|x| \to \infty$.

(2.35) can be obtained by taking $\lambda = 1$, $Q(x) \equiv b(x)$, $c(x) \equiv 0$ in (1.1). From Theorem 2.4 we can deduce the corresponding results concerning the existence of positive solution of (2.35) in section 3 of W. Y. Ding and W. M. Ni [5] [for the case $Q(x) \to \bar{Q}$ as $|x| \to \infty$]. Corollary 2.5 gives a type of precise condition under which $I_\lambda < I_\infty$.

Suppose $Q(x) = \lambda b(x) + c(x)$, where $b(x)$ satisfies (1.2) and
c(x) satisfies (2.30) with $\text{supp } c(x)$ bounded. Corollary 2.5 ensures the existence of positive solution if λ is properly small. It should be pointed out that in this case $Q(x)$ does not satisfy the condition proposed by A. Bahri and P. L. Lions in [2].

3. EXISTENCE OF MULTIPLE SOLUTIONS

First of all, let us state a variant of the dual variational principle of A. Ambrosetti and P. Rabinowitz [1] dealing with unbounded even functionals.

Let E be a Banach space, B_r be the ball in E centered at 0 with radius r, ∂B_r be the boundary of B_r. $A \subset E$ is called symmetric if $u \in A$ implies $-u \in A$. Let

$$\Sigma = \{ A | A \subset E \setminus \{0\}, A \text{ is closed and symmetric} \}$$

For $A \subset \Sigma$, $v(A)$ denotes the genus of A. We set for $f \in C^1(E, \mathbb{R})$

$$E_+ = \{ u \in E | f(u) \geq 0 \}$$

$$H_n = \{ h | h \in C(E, E), h \text{ is odd homeomorphism } h(B_1) \subset E_+ \}$$

$$\Gamma_n = \{ A \subset \Sigma | A \text{ is compact, } v(A \cap h(\partial B_1)) \geq n \text{ for any } h \in H \}$$

Replacing (PS) by condition, we have the following lemma proved exactly as in [1].

Lemma 3.1. Suppose $f \in C^1(E, \mathbb{R})$ satisfies

(C1) $f(0) = 0$ and there exist $\rho, \alpha > 0$ such that $f(u) > 0$ for any $u \in B_\rho \setminus \{0\}$, $f(u) \geq \alpha$ for all $u \in \partial B_\rho$;

(C2) for any finite dimensional subspace $E^n \subset E$, $E^n \cap E_+$ is bounded;

(C3) $f(u) = f(-u)$.

Set

$$b_n = \inf_{A \in \Gamma_n} \sup_{A \in \Gamma_n} \{ f(u) | u \in A \}, \quad n = 1, 2, \ldots$$

Then

(i) $\Gamma_n \neq 0$ for $n = 1, 2, \ldots$, $b_n \geq \alpha$;

(ii) b_n is a critical level if f satisfies (PS)$_c$ condition for $c = b_n$.

Annales de l'Institut Henri Poincaré - Analyse non linéaire
Furthermore, if \(b = b_n = \ldots = b_{n+m} \), then \(v(K_b) \geq m+1 \), where \(K_b = \{ u \in E \mid f(u) = b, f'(u) = 0 \} \).

In what follows, we always take \(E = H^1(\mathbb{R}^N) \) and use the same notations \(\Sigma, B_\ast, \partial B_\ast \) and \(v(A) \). Let
\[
E_\lambda = \{ u \in H^1(\mathbb{R}^N) \mid I_\lambda(u) \geq 0 \}
\]
\[
E_\ast = \{ u \in H^1(\mathbb{R}^N) \mid I^*(u) \geq 0 \}
\]
\[
H_\lambda = \{ h \in C(H^1(\mathbb{R}^N), H^1(\mathbb{R}^N)) \mid h \text{ is odd homeomorphism}, h(B_\lambda) \subset E_\lambda \}
\]
\[
H_\ast = \{ h \in C(H^1(\mathbb{R}^N), H^1(\mathbb{R}^N)) \mid h \text{ is odd homeomorphism}, h(B_\lambda) \subset E_\ast \}
\]

Obviously \(E_\lambda \subset E_\ast \), \(H_\lambda \subset H_\ast \).

Proposition 3.2. — If \(b(x) \) satisfies (1.2), \(c(x) \) satisfies
\[
\begin{align*}
&c(x) \in C(\mathbb{R}^N), \quad c(x) \geq 0 \quad \text{in } \mathbb{R}^N, \\
&\text{meas} \{ x \in \mathbb{R}^N \mid c(x) = 0 \} = 0,
\end{align*}
\]
\[
c(x) \to 0 \quad \text{as} \quad |x| \to \infty
\]

Then \(I_\lambda(u) \) and \(I^*(u) \) satisfy (C1), (C2) and (C3) in the previous lemma.

Proof. — The verification of (C1) and (C3) is trivial. We only show that (C2) holds for \(I_\lambda(u) \) [resp. \(I^*(u) \)]. We argue by way of contradiction. Suppose there exists a \(m \) dimensional subspace \(E^m \subset H^1(\mathbb{R}^N) \), a sequence \(\{ u_n \} \subset E^m \cap E_\lambda \) (resp. \(\{ u_n \} \subset E^m \cap E_\ast \)) such that \(\| u_n \| \to +\infty \). Let \(e_1, e_2, \ldots, e_m \) be the basis of \(E_m \). Then
\[
u_{n}=t_{11}e_{1}+\ldots+t_{m}e_{m}
\]
for some \(t_n = (t_{11}, \ldots, t_{m}) \in \mathbb{R}^m \).

Set \(|t_n| = \max_{1 \leq i \leq m} |t_{ii}| \), we have \(|t_n| \to +\infty \).

\[
\int |\nabla u_n|^2 + u_n^2 = 0 (|t_n|^2)
\]
\[
\int b(x)|u_n|^{p+1} \geq 0
\]
\[
\int c(x)|u_n|^{q+1} \geq C_5 |t_n|^{q+1} \quad \text{for } n \text{ large enough}
\]

where \(C_5 > 0 \) is some constant.

(3.14), (3.15) and (3.16) deduce \(I_\lambda(u_n) < 0 \) for \(n \) large enough [resp. \(I^*(u_n) < 0 \) for \(n \) large enough], which contradicts \(u_n \in E_\lambda \) (resp. \(u_n \in E_\ast \)).
Define

(3.17) \[\Gamma^n_k = \{ A \subset \Sigma \mid A \text{ is compact and } \nu(A \cap h(\partial B_i)) \geq n \} \text{ for any } h \in \mathcal{H}_k, \quad n = 1, 2, \ldots, \]

(3.18) \[\Gamma^n_* = \{ A \subset \Sigma \mid A \text{ is compact and } \nu(A \cap h(\partial B_i)) \geq n \} \text{ for any } h \in \mathcal{H}_*, \quad n = 1, 2, \ldots, \]

(3.19) \[c^n_k = \inf_{A \in \Gamma^n_k} \max_{u \in A} \{ I_k(u) \}, \quad n = 1, 2, \ldots, \]

(3.20) \[c^n_* = \inf_{A \in \Gamma^n_*} \max_{u \in A} \{ I^*(u) \}, \quad n = 1, 2, \ldots, \]

By the definitions we have

(3.21) \[\Gamma^n_1 = \Gamma^n_* \quad \text{for } n = 1, 2, \ldots. \]

Suppose (3.10) holds then by Proposition 3.2 and Lemma 3.1, \(\Gamma^n_* \neq \emptyset \) for each \(n = 1, 2, \ldots, \) and consequently \(c^n_* < +\infty. \)

Let

\[\lambda_k = \left[\frac{p-1}{2(p+1)c^n_k} \right]^{(p-1)/2} S^{(p+1)/2} b^{-1}_\infty, \quad k = 1, 2, \ldots. \]

We have

Theorem 3.3. Suppose (1.2) and (3.10) hold. Then for each \(n = 1, 2, \ldots, \) (1.1) has \(n \) pair of solutions \(\{-u_i, u_i\}, \quad i = 1, \ldots, n \) if \(\lambda \in (0, \lambda_n). \)

Proof. By the definition of \(c^n_k, c^n_* \), \(n = 1, 2, \ldots \) we have

\[c^n_k = \inf_{A \in \Gamma^n_k} \max_{u \in A} \{ I_k(u) \} \]

\[\leq \inf_{A \in \Gamma^n_*} \max_{u \in A} \{ I_k(u) \} \]

\[\leq \inf_{A \in \Gamma^n_*} \max_{u \in A} \{ I^*(u) \} \]

\[= c^n_. \]

Thus

(3.23) \[c^n_k \leq c^n_* \quad \text{for } n = 1, 2, \ldots. \]

Next we claim that for each \(c^n_k, k = 1, \ldots, n, \) \(I_k(u) \) satisfies (PS)c condition.

Indeed, \(\lambda < \lambda_n \) implies

\[\lambda \left[\frac{p-1}{2(p+1)c^n_k} \right]^{(p-1)/2} S^{(p+1)/2} b^{-1}_\infty. \]
Thus
\[c_n^* < \frac{p-1}{2(p+1)} S^{(p+1)/(p-1)}(h, b_\infty)^{-2/(p-1)} = I_k^\infty \]

which combining with (3.23) deduces
\[(3.24) \quad c_n^* < I_k^\infty. \]

On the other hand, obviously we have
\[(3.25) \quad c^1_k \leq \ldots \leq c^n_k. \]

Thus, by Lemma 2.3, \(I_k(u) \) satisfies (PS)\(_c\) condition for \(c^k, k = 1, 2, \ldots, n \). Following Lemma 3.1, has at least \(n \) different critical points \(u_i \in H^1(\mathbb{R}^n) (1 \leq i \leq n) \) such that \(I_k(u_i) = c^i_k (1 \leq i \leq n) \). Since \(I_k(u) \) is an even functional \(-u_i \) is critical point either \((1 \leq i \leq n) \), \(\{ -u_i, u_i \} \) are the solutions we are looking for. Hence we have proved Theorem 3.3.

ACKNOWLEDGEMENTS
This work was completed while the author was visiting CEREMADE, University of Paris-Daupine. He would like to express his gratitude to P. L. Lions for helpful suggestions and comments. He would like also to thank K. C. Wang Fund for financial support of his work.

REFERENCES

Manuscript received April 15, 1992; revised October 20, 1992.