A description of self-similar blow-up for dimensions $n \geq 3$

http://www.numdam.org/item?id=AIHPC_1988__5_1_1_0
A description of self-similar Blow-up for dimensions $n \geq 3$

by

J. BEBERNES
Department of Mathematics, University of Colorado,
Boulder, CO 80309 U.S.A.

and

D. EBERLY
Department of Mathematics, University of Texas,
San Antonio, TX 78285 U.S.A.

ABSTRACT. — A precise description of the asymptotic behavior near the blowup singularity for solutions of $u_t - \Delta u = f(u)$ which blowups in finite time T is given.

Key words : Blowup, self similar, nonlinear parabolic equation, thermal runaway.

RÉSUMÉ. — On établie une description précise de la conduite asymptotique autour de la singularité de l’explosion totale pour la solution de l’équation $u_t - \Delta u = f(u)$.

Classification A.M.S. : 35 B 05, 35 K 55, 35 K 60, 34 C 15.
Research supported by U.S. Army Research Office under contract number DAAG 29-85-K-0209.
0. INTRODUCTION

The purpose of this paper is to give a precise description of the asymptotic behavior for solutions \(u(z, t) \) of

\[
\frac{\partial u}{\partial t} = \Delta u + f(u) \tag{0.1}
\]

which blow-up in finite positive time \(T \). We assume \(f(u) = u^p \) \((p > 1)\) or \(f(u) = e^u \), and \(z \in B_R = \{z \in \mathbb{R}^n : |z| < R \} \) where \(R \) is sufficiently large to guarantee blow-up.

Giga and Kohn ([8], [11]) recently characterized the asymptotic behavior of solutions \(u(z, t) \) of (0.1) with \(f(u) = u^p \) near a blow-up singularity assuming a suitable upper bound on the rate of blow-up and provided \(n = 1, 2, \) or \(n \geq 3 \) and \(p \leq \frac{n+2}{n-2} \). For \(B_R \subseteq \mathbb{R}^n \) using recent a priori bounds established by Friedman-McLeod [7], this implies that solutions \(u(z, t) \) of (0.1) with suitable initial-boundary conditions satisfy

\[
(T-t)^\beta u(z, t) \to \beta^\beta \quad \text{as} \quad t \to T^- \tag{0.2}
\]

provided \(|z| \leq C(T-t)^{1/2} \) for arbitrary \(C \geq 0 \) and where \(\beta = \frac{1}{p-1} \).

For \(f(u) = e^u \) and \(n = 1 \) or 2, Bebernes, Bressan, and Eberly [1] proved that solutions \(u(z, t) \) of (0.1) satisfy

\[
u(z, t) + \ln(T-t) \to 0 \quad \text{as} \quad t \to T^- \tag{0.3}
\]

provided \(|z| \leq C(T-t)^{1/2} \) for arbitrary \(C \geq 0 \).

The real remaining difficulty in understanding how the single point blow-up occurs for (0.1) rests on determining the nonincreasing globally Lipschitz continuous solutions of an associated steady-state equation

\[
y'' + \left(\frac{n-1}{x} - \frac{x}{2}\right)y' + F(y) = 0, \quad 0 < x < \infty \tag{0.4}
\]

where \(F(y) = y^p - \beta y \) or \(e^y - 1 \) for \(f(y) = y^p \) or \(e^y \) respectively and where \(y(0) > 0 \) and \(y'(0) = 0 \).

For \(F(y) = y^p - \beta y \) in the cases \(n = 1, 2, \) or \(n \geq 3 \) and \(p \leq \frac{n}{n-2} \), we give a new proof of a special case of a known result ([8], Theorem 1) that the only such positive solution of (0.4) is \(y(x) \equiv \beta^\beta \). For \(F(y) = e^y - 1 \) and \(n = 1, \) Bebernes and Troy [3] proved that the only such solution is \(y(x) \equiv 0 \).
Eberly [5] gave a much simpler proof showing $y(x) = 0$ is the only solution for the same nonlinearity valid for $n = 1$ and 2.

For $3 \leq n \leq 9$, Troy and Eberly [6] proved that (0.4) has infinitely many nonincreasing globally Lipschitz continuous solutions on $[0, \infty)$ for $F(y) = e^y - 1$. Troy [10] proved a similar multiplicity result for (0.4) with $F(y) = y^p - \beta y$ for $3 \leq n \leq 9$ and $p > \frac{n+2}{n-2}$.

This multiple existence of solutions complicates the stability analysis required to precisely describe the evolution of the time-dependent solutions $u(z, t)$ of (0.1) near the blow-up singularity.

In this paper we extend the results of Giga-Kohn [8] and Bebernes-Bressan-Eberly [1] to the dimensions $n \geq 3$ by proving that, in spite of the multiple existence of solutions of (0.4), the asymptotic formulas (0.2) and (0.3) remain the same as in dimensions 1 and 2. The key to unraveling these problems is a precise understanding of the behavior of the nonconstant solutions relative to a singular solution of (0.4) given by

$$S_e(x) = \ln \frac{2(n-2)}{x^2} \quad (0.5)$$

for $f(u) = e^u$ and $n \geq 3$, and

$$S_p(x) = \left\{-4 \beta \left[\frac{1}{2} (2-n) \right] / x^2 \right\}^\beta \quad (0.6)$$

for $f(u) = u^p$ and $\beta + \frac{1}{2} (2-n) < 0$, $n \geq 3$. This will be accomplished by counting how many times the graphs of a nonconstant self-similar solution crosses that of the singular solution.

1. STATEMENT OF THE RESULTS

We consider the initial value problem

$$\begin{align*}
 u_t - \Delta u &= f(u), & (z, t) &\in \Omega \times (0, T) \\
 u(z, 0) &= \varphi(z), & z &\in \Omega \\
 u(z, t) &= 0, & (z, t) &\in \partial \Omega \times (0, T)
\end{align*} \quad (1.1)$$

where \(\Omega = B_{R} = \{ z \in \mathbb{R}^{n} : |z| < R \} \), \(\varphi \) is nonnegative, radially symmetric, nonincreasing (\(\varphi (z) \geq \varphi (x) \) for \(|z| \leq |x| \leq R \)), and \(\Delta \varphi + f (\varphi) \geq 0 \) on \(\Omega \). The two nonlinearities considered are

\[
f (u) = e^{u} \tag{1.2}
\]
or

\[
f (u) = u^{p}, \quad u \geq 0, \quad p > 1. \tag{1.3}
\]

We assume \(R > 0 \) and \(\varphi (z) \geq 0 \) are such that the radially symmetric solution \(u (z, t) \) blows-up in finite positive time \(T \). By the maximum principle, \(u (., t) \) is radially decreasing for each \(t \in [0, T) \) and \(u_{t} (z, t) > 0 \) for \((z, t) \in \Omega \times (0, T) \).

Friedman and McLeod [7] proved that blow-up occurs only at \(z = 0 \). The following arguments are essentially those used in [7] to obtain the needed a priori bounds.

Let \(U (t) = u (0, t) \). Since \(\Delta u (0, t) \leq 0 \) because \(u \) is radially symmetric and decreasing, from (1.1) it follows that \(U' (t) \leq f (U (t)) \). Integrating, we have

\[
-\ln (T - t) \leq u (0, t), \quad t \in [0, T) \tag{1.4}
\]
for \(f (u) = e^{u} \), and

\[
\beta^{\varphi} (T - t)^{-\varphi} \leq u (0, t), \quad t \in [0, T) \tag{1.5}
\]
for \(F (u) = u^{p} \).

Define the radially symmetric function \(J (z, t) = u_{t} - \delta f (u) \) where \(\delta > 0 \) is to be determined. Then \(J_{t} - \Delta J - f' (u) J \geq 0 \). For \(0 < \eta < \min (R, T) \), let \(\Omega_{\eta} = B_{R - \eta} \) be the ball of radius \(R - \eta \) centered at \(0 \in \mathbb{R}^{n} \). Let \(\Pi_{\eta} = \Omega_{\eta} \times (\eta, T) \). Since blow-up occurs only at \(z = 0 \), \(u (z, t) \) is bounded on the parabolic boundary of \(\Pi_{\eta} \) and \(f (u) \leq C_{0} < \infty \) there. Since \(u_{t} > 0 \) on \(\Omega \times (0, T) \), we have \(u_{t} \geq C > 0 \) on the parabolic boundary of \(\Pi_{\eta} \). Hence, for \(\delta > 0 \) sufficiently small, \(J_{t} \geq C - \delta C_{0} > 0 \) there. By the maximum principle, \(J > 0 \) on \(\Pi_{\eta} \). An integration yields the following upper bound on \(u (0, t) \):

\[
u (0, t) \leq -\ln [\delta (T - t)], \quad t \in [\eta, T] \tag{1.6}
\]
for \(f (u) = e^{u} \), and

\[
u (0, t) \leq \left(\frac{\beta}{\delta} \right)^{\varphi} (T - t)^{-\varphi}, \quad t \in [\eta, T] \tag{1.7}
\]
for \(f (u) = u^{p} \). In fact, since \(u_{t} (., t) \geq 0 \) for \(t \in [0, T) \), these bounds are true for all \(t \in [0, T) \).

As in [7], we also have the existence of \(\tilde{t} < T \) such that

\[
|\nabla u (z, t)| \leq [2 e^{u (0, \tilde{t})}]^{1/2}, \quad (z, t) \in \bar{\Omega} \times [\tilde{t}, T] \tag{1.8}
\]
for \(f(u) = e^u \), and
\[
|\nabla u(z, t)| \leq \left[\frac{2}{p+1} |u(0, t)|^{p+1} \right]^{1/2}, \quad (z, t) \in \Omega \times [\tau, T)
\] (1.9)
for \(f(u) = u^p \).

In this paper we prove the following two theorems which describe the asymptotic self-similar blow-up of \(u(z, t) \).

Theorem 1. — (a) For \(n \geq 3 \), the solution \(u(z, t) \) of (1.1)-(1.2) satisfies
\(u(z, t) + \ln(T-t) \to 0 \) uniformly on \(\{(z, t) : |z| \leq C(T-t)^{1/2}\} \) for arbitrary \(C \geq 0 \) as \(t \to T^- \).

(b) For \(n \geq 3 \) and \(p > \frac{n}{n-2} \), the solution \(u(z, t) \) of (1.1)-(1.3) satisfies
\((T-t)^p u(z, t) \to \beta^p \) uniformly on \(\{(z, t) : |z| \leq C(T-t)^{1/2}\} \) for arbitrary \(C \geq 0 \) as \(t \to T^- \).

Theorem 2. — Let \(r = |z| \) and \(v(r, t) = u(z, t) \). There is a value \(r_1 \in (0, R) \) such that the following properties hold.
(a) \(v(r_1, 0) = S_*(r_1) \) where \(S_* \) is the singular solution given in (0.5) or (0.6).
(b) \(v(r, 0) < S_*(r) \) for \(0 < r < r_1 \).
(c) For each \(r \in (0, r_1) \) there is a \(t = t(r) \in (0, T) \) such that \(v(r, t) > S_*(r) \) for \(t \in (t, T) \).

2. THE SELF-SIMILAR PROBLEM

Since the solution \(u(z, t) \) of (1.1) is radially symmetric, the initial-boundary value problem can be reduced to a problem in one spatial dimension.

Let \(\Pi' = \{ (r, t) : 0 < r < R, 0 < t < T \} \). If \(r = |z| \), then \(v(r, t) = u(z, t) \) is well-defined on \(\Pi' \) and satisfies
\[
v_t = v_{rr} + \frac{n-1}{r} v_r + f(v), \quad (r, t) \in \Pi'
\]
(2.1)
\[
v(r, 0) = \varphi(r), \quad r \in (0, R)
\]
\[
v_r(0, t) = 0, \quad v(R, t) = 0, \quad t \in (0, T)
\]
(2.2)
To analyze the behavior of \(v \) as \(t \to T^- \), we make the following change of variables:

\[
\sigma = \ln \left[T/(T-t) \right], \quad x = r(T-t)^{-1/2}
\]

Then \(\Pi' \) transforms into \(\Pi \) where

\[
\Pi = \{(x, \sigma) : \sigma > 0, \ 0 < x < RT^{-1/2} e^{1/2 \sigma} \}.
\]

If \(f(u) = e^u \), set

\[
w(x, \sigma) = v(r, t) + \ln (T-t).
\]

If \(f(u) = u^p \), set

\[
w(x, \sigma) = (T-t)^{\beta} v(r, t).
\]

Then \(w(x, \sigma) \) solves

\[
w_{\sigma} = w_{xx} + c(x) w_x + F(w), \quad (x, \sigma) \in \Pi
\]

\[
w_x(0, \sigma) = 0, \quad \sigma \in (0, \infty)
\]

where \(c(x) = (n-1)/x - x/2; \) if \(f(u) = e^u \), then

\[
F(w) = e^w - 1
\]

\[
w(RT^{-1/2} e^{1/2 \sigma}, \sigma) = -\sigma + \ln T, \quad \sigma \in (0, \infty)
\]

and if \(f(u) = u^p \), then

\[
F(w) = w^p - \beta w
\]

\[
w(0, \sigma) = 0, \quad \sigma \in (0, \infty)
\]

\[
w(x, 0) = \varphi(x T^{1/2}) + \ln T, \quad x \in (0, RT^{-1/2})
\]

Using the \textit{a priori} bounds established in section I for \(u(z, t) \) using the ideas of [7], we have the following \textit{a priori} estimates for \(w(x, \sigma) \). For \(F(w) = e^w - 1 \), from (1.4) and (1.6)

\[
0 \leq w(0, \sigma) \leq -\ln \delta, \quad \sigma \geq 0.
\]

For \(F(w) = w^p - \beta w \), from (1.5) and (1.7)

\[
\beta^p \leq w(0, \sigma) \leq (\beta/\delta)^\beta, \quad \sigma \geq 0.
\]

The estimates (1.8) and (1.9) imply that

\[
-\gamma \leq w_x(x, \sigma) \leq 0 \quad \text{on } \tilde{\Pi}
\]

for some positive constant \(\gamma \), and combining this with (2.7) and (2.8) yields

\[
-\gamma x \leq w(x, \sigma) \leq \mu \quad \text{on } \tilde{\Pi}
\]
where γ and μ are positive constants depending on δ. In fact, for $F(w) = w^p - \beta w$, $w(x, \sigma) = (T-t)^\beta v(r, t) \geq 0$ since $v(r, 0) \geq 0$ and $v_t(r, t) \geq 0$.

3. BEHAVIOR NEAR SINGULAR SOLUTIONS

The partial differential equation (2.3) has a time-independent solution for certain choices of n and p. More precisely, if $n > 2$ and $F(w) = e^w - 1$, then

$$S_e(x) = \ln \left[\frac{2(n-2)}{x^2} \right] \quad (3.1)$$

is a singular solution of (2.3). If $F(w) = w^p - \beta w$, $n > 2$ and $p > \frac{n}{n-2}$, then

$$S_p(x) = \left\{ -4 \beta \left[\frac{1}{2} (2-n) \right] / x^2 \right\}^{\beta} \quad (3.2)$$

is a singular solution of (2.3). These solutions are in fact singular solutions of (2.1) because

$$1 + \frac{1}{2} x S_e' = 0, \quad S_e'' + \frac{n-1}{x} S_e' + \exp(S_e) = 0 \quad (3.3)$$

and

$$\beta S_p + \frac{1}{2} x S_p' = 0, \quad S_p' = 0, \quad S_p'' + \frac{n-1}{x} S_p' + (S_p)^p = 0 \quad (3.4)$$

for $0 < x < \infty$.

Consider first the singular solution $S_e(x)$ of (2.3) with $F(w) = e^w - 1$. Then $S_e(0^+) = \infty > w(0, 0)$ and

$$S_e(RT^{-1/2}) = \ln \left[\frac{2(n-2)}{RT^{-2}} \right] < \ln T = w(RT^{-1/2}, 0)$$

since $2(n-2) < R^2$ for blow-up in finite time (Lacey [9], Bellout [4]). This proves that $w(x, 0)$ intersects $S_e(x)$ at least once for $0 < x < RT^{-1/2}$.

Similarly for $F(w) = w^p - \beta w$ and $S_p(x)$, we can make the following observations: $S_p(0^+) = \infty > w(0, 0)$ and $S_p(RT^{-1/2}) > 0 = w(RT^{-1/2}, 0)$. If $w(x, 0) \leq S_p(x)$ on $[0, RT^{-1/2}]$, we conclude by the maximum principle that $w(x, \sigma) \leq S_p(x)$ on $\bar{\Omega}$. By the result of Troy [10] (see part b of Lemma 4.4), any positive global nonincreasing time-independent solution $y(x)$ associated with (2.3) must interest $S_p(x)$ transversally at least once.

By the argument given in Giga-Kohn [8] (or see our theorem 5.1),

$w(x, \sigma) \to 0$ as $\sigma \to \infty$ for each $x \geq 0$. In particular, $w(0, \sigma) \to 0$, a contradiction to (2.8).

In either case, we can conclude that there exists a first $x_1 \in (0, RT^{-1/2})$ such that $w(x_1, 0) = S_*(x_1)$ and $w(x, 0) < S_*(x)$ on $(0, x_1)$.

Lemma 3.1. — There is a continuously differentiable function $x_1(\sigma)$ with domain $[0, \infty)$ such that $x_1(0) = x_1$ and $w(x_1(\sigma), \sigma) = S_*(x_1(\sigma))$ for all $\sigma \geq 0$.

Proof. — Define $D(x, \sigma) = w(x, \sigma) - S_*(x)$. We first claim that $\nabla D \neq (0, 0)$ whenever $D = 0$. We had $v_t(r, t) > 0$ on Π'. For $f(v) = e^v$,

$$v_t = (T-t)^{-1} \left(w_\sigma + \frac{1}{2} x w_x \right),$$

and for $f(v) = v^p$,

$$v_t = (T-t)^{-p-1} \left(w_\sigma + \beta w + \frac{1}{2} x w_x \right).$$

If $\nabla D = (0, 0)$ at a point in Π where $D = 0$, then $D_\sigma = 0$ implies that $w_\sigma = 0$. For $f(v) = e^v$, $D_x = 0$ implies that $1 + \frac{1}{2} x w_x = 0$. For $f(v) = v^p$, $D_x = 0$ implies that $\beta w + \frac{1}{2} x w_x = 0$. In either case, $v_t = 0$ is forced at some point in Π', a contradiction.

Secondly, we claim that $D_x \neq 0$ at any value $(\tilde{x}, \tilde{\sigma}) \in \Pi$ where $D(\tilde{x}, \tilde{\sigma}) = 0$ and $D(x, \tilde{\sigma}) < 0$ in a left neighborhood of \tilde{x}.

If $D(\tilde{x}, \tilde{\sigma}) = 0$ and $D_x(\tilde{x}, \tilde{\sigma}) = 0$, then equations (2.3), (3.3), and (3.4) imply that $D_{xx}(\tilde{x}, \tilde{\sigma}) = D_\sigma(\tilde{x}, \tilde{\sigma})$. In addition, since $v_t > 0$ we have $D_\sigma(\tilde{x}, \tilde{\sigma}) > 0$. Thus $D_{xx}(\tilde{x}, \tilde{\sigma}) > 0$, which implies that $(\tilde{x}, \tilde{\sigma})$ is a local minimum point for D, a contradiction to $D < 0$ on a left neighborhood of \tilde{x}. Thus, $D_x(\tilde{x}, \tilde{\sigma}) > 0$.

Recall that $v(r, 0) = \phi(r)$ where $\Delta \phi + f(\phi) \geq 0$. This implies

$$D_{xx}(x, 0) + \frac{n-1}{x} D_x(x, 0) + F(w(x, 0)) - F(S_*(x)) \geq 0$$

for x in a left neighborhood of x_1. On a left neighborhood of x_1, this in turn yields $(x^{n-1} D_x(x, 0))_x \geq 0$. An integration yields $D_x(x_1, 0) > 0$. By the implicit function theorem, there is a continuously differentiable function $x_1(\sigma)$ such that $x_1(0) = x_1$ and $D(x_1(\sigma), \sigma) = 0$ for some maximal interval $[0, \sigma_0)$. If $\sigma_0 < \infty$, then by continuity $D(x_1(\sigma_0), \sigma_0) = 0$.

Annales de l'Institut Henri Poincaré - Analyse non linéaire
But $D_x(x_1(\sigma_0), \sigma_0) > 0$, so the implicit function theorem allows an extension of the domain past σ_0, a contradiction to the maximality of $[0, \sigma_0)$. Thus, $\sigma_0 = \infty$. □

For $f(u) = u^p$, since $w(0, 0) \leq S_p(0^+)$, $w(\sqrt{R^{-1/2}}, 0) \leq S_p(\sqrt{R^{-1/2}})$, and $w(x_1, 0) = S_p(x_1)$ transversally, there must be a last point of intersection between $w(x, 0)$ and $S_p(x)$, say $x_L \in (x_1, \sqrt{R^{-1/2}})$. A construction similar to Lemma 3.1 leads to the existence of a continuously differentiable function $x_L(\sigma)$ with domain $[0, \infty)$ such that $x_L(0) = x_L$ and $w(x_L(\sigma), \sigma) = S_p(x_L(\sigma))$ for $\sigma \geq 0$.

Let $\Pi_1 = \{(x, \sigma): \sigma > 0, 0 < x < x_1(\sigma)\}$. We can now prove the following comparison result on this set.

Lemma 3.2. $D(x, \sigma) < 0$ for $(x, \sigma) \in \Pi_1$.

Proof. By Lemma 3.1, we have shown that $D \leq 0$ on the parabolic boundary of Π_1. Since $F(w)$ is a local one-sided Lipschitz continuous function, we can apply the Nagumo-Westphal comparison result to obtain $D \leq 0$ on Π_1.

If $D(x_0, \sigma_0) = 0$ for some $(x_0, \sigma_0) \in \Pi_1$, then $D_x(x_0, \sigma_0) = 0$, $D_{xx}(x_0, \sigma_0) \leq 0$ and $D_\sigma(x_0, \sigma_0) \neq 0$ [since $\forall D \neq (0, 0)$ when $D = 0$]. But $D_\sigma(x_0, \sigma_0) \neq 0$ implies $D(x_0, \sigma)$ is positive for some σ near σ_0. This contradicts $D \leq 0$ on Π_1.

Let $x_2 = \sup\{x \in (x_1, \sqrt{R^{-1/2}}]: D(s, 0) \geq 0 \text{ for } s \in [x_1, 0) = 0$ and $D_x(x_1, 0) > 0$, the supremum exists. For $f(u) = e^u$, $x_2 \leq \sqrt{RT^{-1/2}}$, and for $f(u) = u^p$, $x_2 \leq x_L < \sqrt{RT^{-1/2}}$. Define $x_2(\sigma) = x_2 e^{1/2 \sigma}$ and $\Pi_2 = \{(x, \sigma): \sigma > 0, x_1(\sigma) < x < x_2(\sigma)\}$.

Lemma 3.3. $D(x_2(\sigma), \sigma) \geq 0$ for all $\sigma \geq 0$. Moreover, $D(x, \sigma) > 0$ for $(x, \sigma) \in \Pi_2$.

Proof. Let $E(\sigma) = D(x_2(\sigma), \sigma)$. By definition of x_2, $E(0) = D(x_2, 0) \geq 0$. Also, $E'(\sigma) = D_\sigma(x_2(\sigma), \sigma) + \frac{1}{2} x_2(\sigma) D_x(x_2(\sigma), \sigma)$.

We had earlier that $v_t(r, t) \geq 0$ on $\bar{\Pi}'$. Via the change of variables $(r, t) \to (x, \sigma)$, this implies $E'(\sigma) \geq 0$ in the case $f(v) = e^v$ and $e^{-\beta \sigma} \frac{d}{d\sigma} [e^{\beta \sigma} E(\sigma)] = E'(\sigma) + \beta E(\sigma) \geq 0$ in the case $f(v) = v^p$. An integration yields $E(\sigma) \geq 0$ for $\sigma \geq 0$.

On the parabolic boundary of Π_2, we now have that $D \geq 0$. By the Nagumo-Westphal comparison theorem, $D \geq 0$ on Π_2. A similar argument as in Lemma 3.2 shows that $D > 0$ on Π_2. □
COROLLARY 3.4. — For each $N > 0$ there is a $\sigma_N > 0$ such that for each $\sigma > \sigma_N$, $w(x, \sigma)$ intersects $S_*(x)$ at most once for $x \in [0, N]$.

Proof. — For each $N > 0$ choose σ_N such that $N = x_2 \exp \left(\frac{1}{2} \sigma_N \right)$.

Lemma 3.2 guarantees that $D(x, \sigma) < 0$ for $x \in [0, x_1(\sigma))$ and Lemma 3.3 guarantees that $D(x, \sigma) > 0$ for $x \in (x_1(\sigma), x_2(\sigma)]$. For $\sigma > \sigma_N$, $[0, N] \subseteq [0, x_2(\sigma)]$ by definition of σ_N, so $D = 0$ at most once on this interval.

In section 5 we will see that $x_1(\sigma) \to l$ as $\sigma \to \infty$ where $S_*(l) = 0$ or $S_p(l) = \beta^p$.

4. ANALYSIS OF THE STEADY-STATE PROBLEM

The time-independent solutions of (2.3)-(2.4) satisfy
\begin{align*}
y'' + c(x)y' + F(y) &= 0, \quad 0 < x < \infty \quad (4.1) \\
y(0) &= \alpha, \quad y'(0) = 0 \quad (4.2)
\end{align*}

In this section we will analyze the behavior of a particular class of solutions of (4.1) which are possible members of the ω-limit set for the initial-boundary value problems (2.3)-(2.4)-(2.5) or (2.3)-(2.4)-(2.6).

By the a priori bounds stated in section 2, we have that $w(0, \sigma)$ is bounded for $\sigma \geq 0$. More precisely for $F(w) = e^w - 1$, $w(0, \sigma) \in [0, -\ln \delta]$, and for $F(w) = w^p - \beta w$, $w(0, \sigma) \in [\beta^p, (\beta/\delta)^p)$, for $\sigma \geq 0$. We also had $-\gamma \leq w(x, \sigma) \leq 0$ on Π and, for $F(w) = w^p - \beta w$, $w \geq 0$ on Π.

If $F(w) = e^w - 1$, we need to consider those solutions $y(x)$ of (4.1)-(4.2) which satisfy
\begin{align*}
y(0) &= \alpha \geq 0, \quad y'(x) \leq 0 \quad \text{for} \quad x \geq 0, \quad y'(x) \text{bounded below}. \quad (4.3)
\end{align*}

For $n = 1$ or 2, (4.1)-(4.2)-(4.3) has only the solution $y(x) \equiv 0$ ([3], [5]). For $3 \leq n \leq 9$, (4.1)-(4.2)-(4.3) has infinitely many nonconstant solutions [6]. In this section we prove that all nonconstant solutions of (4.1)-(4.2)-(4.3) must intersect the singular solution $S_*(x)$ at least twice. Hence, the only solution intersecting $S_*(x)$ exactly once is $y(x) \equiv 0$.

For $F(w) = w^p - \beta w$, we consider those solutions $y(x)$ of (4.1)-(4.2) which satisfy
\begin{align*}
y(0) &= \alpha \geq \beta^p, \quad y'(x) \leq 0 \quad \text{and} \quad y(x) > 0 \quad \text{for} \quad x \geq 0. \quad (4.4)
\end{align*}
For \(n = 1, 2, \text{ or } n \geq 3 \) with \(p = \frac{n}{n-2} \), we prove a special case of the known result [8] that the only solution to (4.1)-(4.2)-(4.4) is \(y(x) = \beta^p \). Troy [10] showed that, for \(n \geq 3 \) and \(p > \frac{n+2}{n-2} \), (4.1)-(4.2)-(4.4) has infinitely many nonconstant solutions. In this section we show that any nonconstant solution \(y(x) \) of (4.1)-(4.2)-(4.4) must intersect \(S_p(x) \) at least twice. Hence, the only solution intersecting \(S_p(x) \) exactly once is \(y(x) = \beta^p \).

Lemma 4.1. Consider initial value problem (4.1)-(4.2).

(a) Any solution to (4.1)-(4.2)-(4.3) must satisfy \(y(\sqrt{2n}) \leq 0 \).

(b) Any solution to (4.1)-(4.2)-(4.4) must satisfy \(y(\sqrt{2n}) \leq \beta^p \).

Proof. (a) In this case, \(F(y) = e^y - 1 \geq y \), so equation (4.1) implies that \(y'' + c(x)y' + y \leq 0 \). Let \(u(x) = \alpha(1-x^2/2n) \). Then \(u'' + c(x)u' + u = 0 \), \(u(0) = y(0) \), and \(u'(0) = y'(0) \). Define \(W(x) = u(x)y'(x) - u'(x)y(x) \). While \(u(x) > 0 \), \(W' + c(x)W \leq 0 \) and \(W(0) = 0 \), so an integration yields that \(W(x) \leq 0 \). But \((y/u)'(x) = W(x)/[u(x)]^2 \leq 0 \), so integrating from 0 to \(\sqrt{2n} \) yields \(y(\sqrt{2n}) \leq u(\sqrt{2n}) = 0 \).

Note that for \(\alpha > 0 \), if \(y(z) = 0 \), then \(y'(z) < 0 \) by uniqueness to initial value problems, so \(y(x) < 0 \) for \(x > z \).

(b) The function \(F(y) = y^p - \beta y \) in convex, so \(F(y) \geq y - \beta^p \) and equation (4.1) implies that \(v'' + c(x)v' + v \leq 0 \) where \(v(x) = y(x) - \beta^p \). A similar argument as in part (a) shows that \(v(\sqrt{2n}) \leq 0 \), thus, \(y(\sqrt{2n}) \leq \beta^p \).

Note that for \(\alpha > \beta^p \), if \(y(z) = \beta^p \), then \(y'(z) < 0 \) by uniqueness to initial value problems, so \(y(x) < \beta^p \) for \(x > z \). \(\square \)

Define \(h(x) = y'' + \frac{n-1}{x} y' \). For \(F(y) = e^y - 1 \), define \(g(x) = 1 + \frac{1}{2} xy' \) and for \(F(y) = y^p - \beta y \), define \(g(x) = \beta y + \frac{1}{2} xy' \). It can be shown that \(h \) and \(g \) satisfy the following equations:

\[
\begin{align*}
g'' + c(x)g' + [F'(y) - 1]g &= 0, \quad g(0) > 0, \quad g'(0) = 0. \quad (4.5) \\
h'' + c(x)h' + [F'(y) - 1]h &= -F''(y)(y'), \quad h(0) \leq 0, \quad h'(0) = 0. \quad (4.6)
\end{align*}
\]

For \(F(y) = e^y - 1 \),

\[
g' - \frac{1}{2} xg = -\frac{1}{2} xe^y + \frac{1}{2} (2-n) y'. \quad (4.7)
\]

For \(F(y) = y^p - \beta y \),

\[
g' - \frac{1}{2} xg = -\frac{1}{2} xy^p + \left[\beta + \frac{1}{2} (2-n) \right] y'. \quad (4.8)
\]
Also define $W(x) = g(x)h'(x) - g'(x)h(x)$. Then
\[W' + c(x)W = -F''(y)(y')^2 g, \quad W(0) = 0, \]
and
\[W(x) = -x^{1-n} e^{(1/4)x^2} \int_0^x s^{n-1} e^{-(1/4)s^2} F''[y(s)][y'(s)]^2 g(s) ds \quad (10) \]
where $I(x) \geq 0$, while $g > 0$ on $(0, x)$. Note that
\[\left(\frac{h}{g} \right)'(x) = W(x)/[g(x)]^2, \]
so while $g > 0$ on $(0, x)$, we have
\[h(x) = \frac{h(0)}{g(0)} - g(x) \int_0^x t^{1-n} e^{(1/4)t^2} I(t)[g(t)]^{-2} dt \quad (4.9) \]

Lemma 4.2. Consider initial value problem (4.1)-(4.2).

(a) If $y(x)$ is a solution to (4.1)-(4.2)-(4.3) with $\alpha > 0$, then $g(x)$ must have a zero.

(b) If $y(x)$ is a solution to (4.1)-(4.2)-(4.4) with $\alpha > \beta$, then $g(x)$ must have a zero.

Proof. Suppose that $g(x) \geq \varepsilon > 0$ for all $x \geq 0$. Note that $h(0) < 0$ because $\alpha > 0$ [part (a)] or $\alpha > \beta$ [part (b)]. Then (4.9) implies that $h(x) \leq [h(0)/g(0)]g(x) \leq -\delta < 0$ since $h(0)/g(0) < 0$ and since $I(x) \geq 0$. Multiplying by x^{n-1} and integrating yields $y'(x) \leq -\frac{\delta}{n}$. This contradicts the boundedness of y' in equation (4.3) and forces y to be negative eventually, contradicting equation (4.4). Thus, $g(x)$ cannot be bounded away from zero.

Suppose that $g(x) > 0$ for $x \geq 0$ and that g is not bounded away from zero. Suppose there is an increasing unbounded sequence $\{x_k\}^\infty_1$ such that $g'(x_k) = 0$. Equation (4.5) implies that $g''(x_k) = 1 - F'(y(x_k))g(x_k)$. However, Lemma 4.1 implies that $1 - F'(y(x_k)) > 0$ for k sufficiently large. This forces $g''(x_k) > 0$ for k sufficiently large, a contradiction, since this would imply that g has two local minimums without a local maximum between. It must be the case that $g'(x) < 0$ for x sufficiently large and $g(x) \to 0$ as $x \to \infty$.

Suppose there is an increasing unbounded sequence $\{x_k\}^\infty_1$ such that $g''(x_k) = 0$ and $g'(x_k) \leq -L < 0$. Then equation (4.5) implies that $0 = c(x_k)g'(x_k) + [F'(y(x_k)) - 1]g(x_k) \quad (4.7) \quad (c(x_k) \to -\infty, \quad g'(x_k) \leq -L, \quad F'(y(x_k)) - 1$ is bounded, and $g(x_k) \to 0$. But then the right-hand side of

Annales de l'Institut Henri Poincaré - Analyse non linéaire
the last equality must become infinite, a contradiction. Thus, \(g'(x) < 0 \) for
\(x \) large and \(g''(x) \to 0 \).

In equation (4.9), take the limit as \(x \to \infty \) to obtain
\[
\lim_{x \to \infty} h(x) = - \lim_{x \to \infty} g(x) \int_0^x t^{1-n} e^{(1/4)t^2} I(t) [g(t)]^{-2} \, dt
\]
\[
= \lim_{x \to \infty} x^{1-n} e^{(1/4)x^2} I(x) [g'(x)]^{-1} = -\infty
\]
where we have used L'Hôpital's rule. This implies that \(h(x) \leq -\delta < 0 \) for
\(x \) sufficiently large. Multiplying by \(x^{n-1} \) and integrating yields
\(y'(x) \leq K - \frac{\delta}{n} x \) for \(x \) sufficiently large. As before, this contradicts the
boundedness of \(y' \) in equation (4.3) and forces \(y \) to be negative eventually,
contradicting equation (4.4).

In all of the above cases, we arrived at contradictions, so there must be
a value \(x_0 \) such that \(g(x_0) = 0 \), \(g'(x_0) < 0 \), and \(g(x) > 0 \) on \([0, x_0)\). □

Lemma 4.3. — Consider problem (4.1)-(4.2)-(4.3).

(a) If \(1 \leq n \leq 2 \), then the only solution is \(y(x) \equiv 0 \).

(b) If \(n > 2 \), then the only solution which intersects \(S_e(x) \) exactly once is
\(y(x) \equiv 0 \).

Proof. — (a) Let \(1 \leq n \leq 2 \), then \(\frac{1}{2} (2-n) > 0 \). Let \(x_0 \) be the first zero for
\(g(x) \). Suppose there is an \(x_1 > x_0 \) such that \(g'(x_1) = 0 \) and \(g(x) < 0 \) on
\((x_0, x_1) \). Equation (4.7) implies that
\[
0 \leq -\frac{1}{2} x_1 g(x_1) = g'(x_1) - \frac{1}{2} x_1 g(x_1) = - \frac{1}{2} x_1 e^{y(x_1)} + \frac{1}{2} (2-n) y'(x_1) < 0
\]
which is a contradiction. Thus, \(g'(x) < 0 \) for \(x \geq x_0 \) and so \(g(x) \leq -\varepsilon < 0 \)
for \(x \geq x > x_0 \). But \(h(x) = g(x) - e^y(x) \leq g(x) \leq -\varepsilon \). Multiplying by \(x^{n-1} \) and
integrating yields \(y'(x) \leq K - \frac{\varepsilon}{n} x \), contradicting equation (4.3). As a result,
the only solution of (4.1)-(4.2)-(4.3) for these values of \(n \) is \(y(x) \equiv 0 \).

(b) Let \(n > 2 \). Define \(D(x) = y(x) - S_e(x) \) where \(S_e \) is the singular solution
discussed in section 3. Then
\[
D'' + c(x) D' + \frac{2(n-2)}{x^2} (e^D - 1) = 0, \quad 0 < x < \infty,
\]
\[
D(0^+) = -\infty, \quad D'(0^+) = \infty.
\]
\[
(4.10)
\]
Note that $D' > 0$ while $D < 0$ on $(0, x)$. Suppose that $D(x) < 0$ for all $x \geq 0$. Then $e^D - 1 < 0$ and $D'' + c(x)D' \geq 0$. Integrating this last equation yields
\[x^{n-1} e^{-(1/4)x^2} D'(x) \geq x^{n-1} e^{-(1/4)x^2} D'(x) =: p > 0. \]
Consequently,
\[D(x) \geq D(\tilde{x}) + \int_{\tilde{x}}^{x} pt^{-n} e^{(1/4)t^2} dt. \]
But the right-hand side of this inequality must be positive for x sufficiently large, contradicting our assumption. Thus, $D(x)$ must have a first zero x_1 and $D'(x) > 0$ on $(0, x_1]$.

By Lemma 4.2, $g(x)$ must have a zero x_0. But then $D'(x_0) = \frac{2}{x_0} g(x_0) = 0$ and $x_0 > x_1$. If $D(x_0) < 0$, then there must have been a second zero x_2 for D. Otherwise, $D(x) > 0$ on $(x_1, x_0]$. Suppose that $D > 0$ for all $x \geq x_0$. Then there is an \tilde{x} sufficiently large such that $D(\tilde{x}) > 0$, $D'(\tilde{x}) < 0$, $D''(\tilde{x}) > 0$, and $c(\tilde{x}) < 0$. Evaluating equation (4.10) at \tilde{x} yields $0 < (D'' + cD + e^D - 1)(\tilde{x}) = 0$, a contradiction. Thus, D must have a second zero x_2.

We have shown that there are at least two points of intersection between the graphs of $y(x)$ and $S_e(x)$ for $\alpha > 0$. Thus, the only solution to (4.1)-(4.2)-(4.3) which intersects $S_e(x)$ exactly once is $y(x) \equiv 0$.

Lemma 4.4. — Consider initial value problem (4.1)-(4.2)-(4.4).

(a) If $1 \leq n \leq 2$, or if $n > 2$ and $\beta + \frac{1}{2}(2-n) \geq 0$, then the only solutions is $y(x) \equiv \beta^\gamma$.

(b) If $n > 2$ and $\beta + \frac{1}{2}(2-n) < 0$, then the only solution which intersects $S_e(x)$ exactly once is $y(x) \equiv \beta^\gamma$.

Proof. — (a) In this case, $\beta + \frac{1}{2}(2-n) \geq 0$. Let x_0 be the first zero for $g(x)$. Suppose there is an $x_1 > x_0$ such that $g'(x_1) = 0$ and $g(x) < 0$ on $(x_0, x_1]$. Equation (4.8) implies that
\[0 < -\frac{1}{2} x_1 g(x_1) = g'(x_1) - \frac{1}{2} x_1 g(x_1) \]
\[= -\frac{1}{2} x_1 [y(x_1)]^\gamma + \left[\beta + \frac{1}{2}(2-n) \right] y'(x_1) \leq 0 \]
which is a contradiction. Thus \(g'(x_0) < 0 \) for \(x \geq x_0 \) and so \(g(x) \leq -\varepsilon < 0 \) for \(x \geq x > x_0 \). But \(h(x) = g(x) - [y(x)]^p \leq g(x) \leq -\varepsilon \). Multiplying by \(x^{n-1} \) and integrating yields \(y'(x) \leq K - \frac{\varepsilon}{n} x \), which forces \(y(x) \) to have a zero.

This contradicts equation (4.4). As a result, the only solution for these cases is \(y(x) \equiv \beta^p \).

(b) Let \(n > 2 \) and \(f + \frac{1}{2}(2-n) < 0 \left(p > \frac{n}{n-2}\right) \). The result for the cases \(p > \frac{n+2}{n-2} \) is proved by Troy [10]. For the larger range \(p > \frac{n}{n-2} \) we have the following proof. Define \(W(x) = y(x)S_p'(x) - y'(x)S_p(x) \) and \(Q(u) = F(u)/u \). Then \(W' + c(x)W = yS_p[Q(y) - Q(S_p)] \). Note that \(Q(u) \) is an increasing function. Also note that \(W(x) = -2Kx^{-2-\beta}g(x) \) where \(S_p(x) = Kx^{-\beta} \). Thus, \(x^{n-1}W(x) = -2Kx^{n-2-\beta}g(x) \) where \(n-2-\beta > 0 \). As a result, \(x^{n-1}W(x) \rightarrow 0 \) as \(x \rightarrow 0^+ \). Integrating the equation for \(W(x) \), we obtain

\[
x^{n-1}e^{-\frac{1}{4}x^2}W(x) = \int_0^x t^{n-1}e^{-\frac{1}{4}t^2}y(t)S_p(t)[Q(y(t)) - Q(S_p(t))] dt.
\]

If \(0 < y < S_p \) for all \(x \geq 0 \), then since \(Q(u) \) is increasing, \(W(x) < 0 \) for all \(x \). But then \(g(x) > 0 \) for all \(x \) is forced, a contradiction to Lemma 4.2. Consequently, there must be a value \(z \) such that \(y(z) = S_p(z) \).

Also, \(W(x) < 0 \) for \(x \in [0, x_0) \). At \(x_0, 0 < W'(x_0) \) which implies that \(y'(x_0) > S_p'(x_0) \). [Note that \(W'(x_0) = 0 \) and \(y(x_0) = S_p(x_0) \) imply that \(y'(x_0) = S'(x_0) \) which in turn would imply, by uniqueness to initial value problems, that \(y(x) \equiv S_p(x) \), a contradiction.] So \(z < x_0 \) is necessary.

Let \(x_1 > x_0 \) be small enough so that \(W(x_1) > 0 \). Suppose that \(y > S_p \) for all \(x > z \). Then integrating the equation for \(W(x) \), we have \(W' + c(x)W \geq 0 \) and

\[
x^{n-1}e^{-\frac{1}{4}x^2}W(x) \geq x_1^{n-1}e^{-\frac{1}{4}x_1^2}W(x_1) =: p > 0.
\]

But \((S_p/y)'(x) = W(x)[y(x)]^2 \), so

\[
(S_p/y)(x) \geq (S_p/y)(x_1) + p \int_{x_1}^x t^{1-n}e^{\frac{1}{4}t^2}[y(t)]^{-2} dt.
\]

For \(x \) sufficiently large, the right-hand side must become larger than 1, in which case \((S/y)(x) \geq 1 \). That is, there is another value \(q \) where \(y(q) = S_p(q) \).
We have shown that there are at least two points of intersection between
the graphs of \(y(x) \) and \(S_p(x) \) for \(\alpha > \beta^p \). Thus, the only solution to (4.1)-(4.2)-(4.4) which intersects \(S_p(x) \) exactly once is \(y(x) = \beta^p \). \(\square \)

5. THE CONVERGENCE RESULTS

We are now able to precisely describe how the blowup asymptotically
evolves in dimensions \(n \geq 3 \). Let \(w(x, \sigma) \) be the solution of (2.3)-(2.4)-(2.5) or (2.3)-(2.4)-(2.6) depending on the nonlinearity being considered.

By Corollary 3.4 we know that for each \(N > 0 \) there is a \(\sigma_N > 0 \) such that \(w(x, \sigma) \) intersects \(S_*(x) \) at most once on \([0, N]\) for each \(\sigma > \sigma_N \). By

Lemmas 4.3 and 4.4, the only possible steady-state solution of (2.3) with
\[F(w) = w^p - \beta w, \]
the only possible steady-state solution of (2.3) intersecting
\(\tilde{S}_e(x) \) at most once is \(y(x) = \beta^p \).

Because of these observations we are now able to prove a convergence
or stability result similar to those given in [8] and [1] which prove that
the \(\omega \)-limit set for (2.3)-(2.4)-(2.5) consists of the singleton critical point
\(y(x) = 0 \), and for (2.3)-(2.4)-(2.6), \(y(x) = \beta^p \).

For the sake of completeness, we include the proof of the following
theorem which is influenced by the ones given in [1] and [8].

Theorem 5.1. — Let \(n \geq 3 \).

(a) As \(\sigma \to \infty \), the solution \(w(x, \sigma) \) of (2.3)-(2.4)-(2.5) converges to
\(y(x) = 0 \) uniformly in \(x \) on compact subsets of \([0, \infty)\).

(b) As \(\sigma \to \infty \), the solution \(w(x, \sigma) \) of (2.3)-(2.4)-(2.6) converges to
\(y(x) = \beta^p \) uniformly in \(x \) on compact subsets of \([0, \infty)\).

Proof. — Define \(w^\tau(x, \sigma) = w(x, \sigma + \tau) \) as the function obtained by
shifting \(w \) in time by the amount \(\tau \). We will show that as \(\tau \to \infty \), \(w^\tau(x, \sigma) \)
converges to the solution \(y(x) \) uniformly on compact subsets of \(\mathbb{R}^+ \times \mathbb{R} \).

Provided that the limiting function is unique, it is equivalent to prove that
given any unbounded increasing sequence \(\{n_j\} \), there exists a subsequence
\(\{n_j\} \) such that \(w^{n_j} \) converges to \(y(x) \) uniformly on compact subsets of
\(\mathbb{R}^+ \times \mathbb{R} \).

Let \(N \in \mathbb{Z}^+ \). For \(i \) sufficiently large, the rectangle given by \(Q_{2N} = \{ (x, \sigma): \)
\(0 \leq x \leq 2N, |\sigma| \leq 2N \} \) lies in the domain of \(w^{n_i} \). The radially symmetric
function \(\tilde{w}(\zeta, \sigma) = w^n_i(\|\zeta\|, \sigma) \) solves the parabolic equation

\[
\tilde{w}_\sigma = \Delta \tilde{w} - \frac{1}{2} \langle \zeta, \nabla \tilde{w} \rangle + F(\tilde{w})
\]

on the cylinder given by \(\Gamma_{2N} = \{ (\zeta, \sigma) \in \mathbb{R}^n \times \mathbb{R} : |\zeta| \leq 2N, |\sigma| \leq 2N \} \) with \(-2N \leq \gamma \leq 2N, \sigma \leq \mu \) using (2.10).

By Schauder's interior estimates, all partial derivatives of \(\tilde{w} \) can be uniformly bounded on the subcylinder \(\Gamma_N \subseteq \Gamma_{2N} \). Consequently, \(w^n_i, w^o_i, \) and \(w^n_{xx} \) are uniformly Lipschitz continuous on \(Q_N \subseteq Q_{2N} \). Their Lipschitz constants depend on \(N \) but not on \(i \). By the Arzela-Ascoli theorem, there is a subsequence \(\{ \eta_j \}_1 \) and a function \(\tilde{w} \) such that \(w^n_i, w^o_i, w^n_{xx} \) converge to \(\tilde{w}, \tilde{w}_\sigma, \) and \(\tilde{w}_{xx} \), respectively, uniformly on \(Q_N \).

Repeating the construction for all \(N \) and taking a diagonal subsequence, we can conclude that \(w^n_i \rightarrow \tilde{w}, w^o_i \rightarrow \tilde{w}, \) and \(w^n_{xx} \rightarrow \tilde{w}_{xx} \) uniformly on every compact subset in \(\mathbb{R}^+ \times \mathbb{R} \). Clearly \(\tilde{w} \) satisfies (2.3)-(2.4) with \(-\gamma \leq \tilde{w}_x \leq 0 \). For \(n \geq 3 \) and \(F(w) = e^w - 1 \), the limiting function \(\tilde{w} \) intersects \(S_p(x) \) at most once since, by Corollary 3.4, \(w^n(x, \sigma) \) intersects \(S_p(x) \) at most once on \([0, N]\) for each \(\sigma > \sigma_n \), and \(0 \leq \bar{w}(0, \sigma) \leq -\ln \delta \) for \(\sigma \geq 0 \). For \(n \geq 3 \),

\[
\beta + \frac{1}{2} (2 - n) < 0, \quad \text{and}
\]

\[
F(w) = w^p - \beta w,
\]

Corollary 3.4 guarantees that \(\tilde{w} \) intersects \(S_p(x) \) at most once. By (2.8) we have \(\beta^\sigma \leq \tilde{w}(0, \sigma) \leq (\beta/\delta)^\beta \) for \(\sigma \geq 0 \).

We now prove that \(\tilde{w} \) is independent of \(\sigma \). For the solution \(w(x, \sigma) \) of (2.3)-(2.4)-(2.5) or (2.6), define the energy functional

\[
E(\sigma) = \int_0^\nu \left[\frac{1}{2} w_x^2 - G(w) \right] dx,
\]

\[
u = RT^{-1/2} e^{1/2 \sigma}, \quad \rho(x) = x^{n-1} e^{-(1/4) x^2}
\]

where \(G(w) = e^w - w \) if \(F(w) = e^w - 1 \), and \(G(w) = w^{p+1}/(p + 1) - 1/2 \beta w^2 \) if \(F(w) = w^p - \beta w \).

Multiplying equation (2.3) by ρw_σ and integrating from 0 to v yields the equation

$$
\int_0^v \rho w_\sigma^2 dx = \int_0^v w_\sigma (\rho w_\sigma)_x dx + \int_0^v \frac{\partial}{\partial \sigma} [\rho G(w)] dx
$$

Moreover,

$$
E'(\sigma) = \int_0^v \frac{\partial}{\partial \sigma} \left[\frac{1}{2} \rho w_\sigma^2 - \rho G(w) \right] dx
+ \frac{1}{2} \{ \rho (v) \left[\frac{1}{2} w_x^2 (v, \sigma) - G(w(v, \sigma)) \right]\} \quad (5.2)
$$

Therefore, for all a, b with $0 \leq a < b$, integrating (5.2) with respect to σ from a to b, and using (5.3), we have

$$
\int_a^b \int_0^v \rho w_x dx d\sigma = - \int_a^b E'(\sigma) d\sigma + \int_a^b \rho (v) w_\sigma (v, \sigma) w_x (v, \sigma) d\sigma
$$

$$
+ \frac{1}{2} \int_a^b \rho (v) \left[\frac{1}{2} w_x^2 (v, \sigma) - G(w(v, \sigma)) \right] d\sigma =: E(a) - E(b) + \psi(a, b) \quad (5.4)
$$

Recalling that $|w_x| \leq \gamma$ and observing that

$$
w_\sigma (v, \sigma) = -1 - R u_{r}(R, T(1-e^{-\sigma}))
$$

for $f(u) = e^u$, or $w_\sigma (v, \sigma) = -R u_{r}(R, T(1-e^{-\sigma}))$ for $f(u) = u^p$, we see that in either case the quantity is uniformly bounded as $\sigma \to \infty$. We conclude that

$$
\lim_{a \to \infty} \{ \sup_{b > a} \psi(a, b) \} = 0 \quad (5.5)
$$

For any fixed N, we shall prove that

$$
\int_{\mathbb{R}^N} \int \rho \overline{w_\sigma^2} dx d\sigma = \lim_{n_j \to \infty} \int_{\mathbb{R}^N} \rho (w_{\sigma}^n)^2 dx d\sigma = 0.
$$
Note that it is not a restriction to assume that \(\lim (n_{j+1} - n_j) = \infty \). For all \(j \) large enough, \(N \leq R T^{-1/2} \exp \left[\frac{1}{2} (n_j - N) \right] \) and \(n_{j+1} - n_j \geq 2 N \). Hence,

\[
\int_{-N}^{N} \int_{0}^{N} \rho (w_j^\sigma) dx d\sigma \leq \int_{-N}^{N} \int_{0}^{\frac{RT^{-1/2} \exp \left(1/2 n_j\right)}} \rho (w_j^\sigma) dx d\sigma \\
= E(n_j - N) - E(n_{j+1} - N) + \psi (n_j - N, n_{j+1} - N)
\]

by (5.4). As a consequence of (5.5), we have

\[
\int_{Q_N} \int_{-N}^{N} \rho w_j^2 dx d\sigma \leq \limsup_{j \to \infty} [E(n_j - N) - E(n_{j+1} - N)].
\] (5.6)

Fix any \(K \) arbitrarily large. For \(j \) sufficiently large, we have

\[
E(n_j - N) - E(n_{j+1} - N) = \int_{0}^{K} \rho \left\{ \left[w_j^\sigma(x, -N) \right]^2 - \left[w_j^{\sigma+1}(x, -N) \right]^2 \right\} dx \\
- \int_{0}^{K} \rho \left\{ G(w_j^\sigma(x, -N) - G(w_j^{\sigma+1}(x, -N)) \right\} dx \\
+ \int_{K}^{RT^{-1/2} \exp \left(1/2 (n_j - N)\right)} \rho \left\{ \frac{1}{2} \left[w_j^\sigma(x, -N) \right]^2 - G(w_j^\sigma(x, -N)) \right\} dx \\
\int_{K}^{RT^{-1/2} \exp \left(1/2 (n_j - N)\right)} \rho \left\{ \frac{1}{2} \left[w_j^{\sigma+1}(x, -N) \right]^2 - G(w_j^{\sigma+1}(x, -N)) \right\} dx
\] (5.7)

In (5.7), the first two integrals on the right-hand side converge to zero as \(j \to \infty \). Recalling that \(\left| w_j^\sigma(x, -N) \right| \leq \gamma \) and \(-\gamma x \leq w_j^\sigma(x, -N) \leq \mu \), we see that the sum of the absolute values of the last two integrals is bounded by \(M \int_{K}^{\infty} x^{n-1} e^{-\nu x^2} dx \) where \(M \) is a positive constant. This integral can be made arbitrarily small by choosing \(K \) large enough.

This proves that \(\int_{-N}^{N} \rho w_j^2 dx d\sigma = 0 \) and hence \(w_\sigma = 0 \). Thus, \(\bar{w}(x, \sigma) = \bar{w}(x, 0) = y(x) \) where \(y(x) \) is a nonincreasing globally Lipschitz continuous solution of (4.1)-(4.2) which intersects \(S_e(x) \) at most once. If \(f(u) = e^u \), then \(y(0) \in [0, -\ln \delta] \) and so \(y(x) \equiv 0 \) is the only solution which intersects \(S_e(x) \) exactly (and thus at most) once on \([0, \infty)\). Similarly for \(f(u) = u^p \), \(y(0) \in [\beta^0, (\beta/\delta)^0] \) and the only possible solution is \(y(x) \equiv \beta^0 \).
Since the limiting solution $y(x)$ is unique in either case, $o^{+}(x, \sigma) \to y(x)$ as $\tau \to \infty$ and we have the result asserted. \qed

Proof of Theorem 1. — The last theorem shows that $w(x, \sigma) \to y(x)$ uniformly in x on compact subsets of $[0, \infty)$ as $\sigma \to \infty$.

(a) In the case $f(u) = e^u$, changing back to the variables (r, t), we have that $v(r, t) + \ln(T-t) \to 0$ as $t \to T^-$ provided $r \leq C(T-t)^{1/2}$ for arbitrary $C \geq 0$.

In particular, $v(0, t) + \ln(T-t) \to 0$ as $t \to T^-$. (b) In the case $f(u) = u^p$ we obtain $(T-t)^p v(r, t) \to \beta^p$ as $t \to T^-$ provided $r \leq C(T-t)^{1/2}$ for arbitrary $C \geq 0$. In particular, $(T-t)^p v(0, t) \to \beta^p$ as $t \to T^-$.

Proof of Theorem 2. — Theorem 5.1 guarantees that the first branch of zeros $x_1(\sigma)$ of $D(x, \sigma) = w(x, \sigma) - S_*(x)$ is bounded and converges to l where $S_*(l) = 0$ or $S_*(l) = \beta^p$.

Define $r_1 = x_1^{1/2}$. Then $D(x_1, 0) = 0$ implies that $v(r_1, 0) = S_*(r_1)$. In addition, $v(r, 0) < S_*(r)$ for $r \in (0, r_1)$.

Since $x_1(\sigma)$ is bounded and since $\frac{d}{d\sigma} D(r T^{-1/2} e^{1/2\sigma}, \sigma) \geq 0$ for each $r \in (0, r_1)$, there is a value $\overline{\sigma} > 0$ such that

$$r T^{-1/2} e^{1/2\overline{\sigma}} = x_1(\overline{\sigma}) D(x_1(\overline{\sigma}), \overline{\sigma}) = 0,$$

and $D(r T^{-1/2} e^{1/2\sigma}, \sigma) > 0$ for $\sigma > \overline{\sigma}$. Changing back to the variables (r, t) with $\overline{\sigma} = \ln[T/(T-t)]$, we obtain $v(r, t) > S_*(r)$ for $t \in (r_1, T)$.

Remark. — After this paper was completed we received the preprint [11] of Giga and Kohn. In the introduction there is a detailed discussion of self-similar solutions and their importance in describing the behavior of solutions near a blow up point. The referee pointed out a number of papers ([12] to [18]) which are related to the ideas used in this paper. Their relevance is discussed in [11]. The referee also pointed out a briefer proof of Lemma 4.1 which we have used.

REFERENCES

(Manuscrit reçu le 23 octobre 1986.)